NASA Space User Update
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASA) Memoranda and Reports Concerning the Decommissioning of the International Space Station (ISS), 2010-2016
Description of document: Unpublished National Aeronautics and Space Administration (NASA) memoranda and reports concerning the decommissioning of the International Space Station (ISS), 2010-2016 Requested date: 28-July-2016 Released date: 05-April-2017 Posted date: 21-May-2018 Source of document: NASA Headquarters 300 E Street, SW Room 5Q16 Washington, DC 20546 Fax: (202) 358-4332 Email: [email protected] The governmentattic.org web site (“the site”) is noncommercial and free to the public. The site and materials made available on the site, such as this file, are for reference only. The governmentattic.org web site and its principals have made every effort to make this information as complete and as accurate as possible, however, there may be mistakes and omissions, both typographical and in content. The governmentattic.org web site and its principals shall have neither liability nor responsibility to any person or entity with respect to any loss or damage caused, or alleged to have been caused, directly or indirectly, by the information provided on the governmentattic.org web site or in this file. The public records published on the site were obtained from government agencies using proper legal channels. Each document is identified as to the source. Any concerns about the contents of the site should be directed to the agency originating the document in question. GovernmentAttic.org is not responsible for the contents of documents published on the website. National Aeronautics and Space Administration Lyndon B. Johnson Space Center 2101 NASA Parkway Houston, Texas 77058-3696 April 5, 2017 Replytoattn.of AD91 l/JSC FOIA Office REF: 16-JSC-F-00829 - Final Release Thank you for your Freedom oflnformation Act (FOIA) request dated and received in the NASA Headquarters FOIA Office on July 28, 2016. -
Baikonur-International Space Station : International Approach to Lunar Exploration
ICEUM4, 10-15 July 2000, ESTEC, Noordwijk, The Netherlands Baikonur-International Space Station : International Approach to Lunar Exploration Gulnara Omarova, National Aerospace Agency; Chinghis Omarov, ISU Summer Session '98 alumni On 20th November 1998 our aircraft made soft landing at the Baikonur airport. I was among onboard passengers - officials from Kazakhstan Space, press and diplomats. We all were invited to attend the launch of the International Space Station (ISS) first component (the Russian-made Zarya or Functional Cargo Module FGB) by Proton launch-vehicle at the Baikonur spaceport. Two hours before ISS first module launch we joined the official delegations from NASA, Russian Space Agency (RSA), ESA, Canadian Space Agency (CSA) and NASDA to see the modified facilities of both "Energiya" Corp. and Khrunichev's Proton assembly-and- test building. Mr. Yuri Koptev, Chief of RSA and Mr. Dan Goldin, NASA Administrator actively were drinking russian tea and talking about crucial issues of the International Space Station and the future of Space Exploration. In fact, Cold War is over and the world's top space powers accomplishments are stunning: • The first human flight in space in 1961; • Human space flight initiatives to ascertain if and how long a human could survive in space; • Project Gemini (flights during 1965-1966) to practice space operations, especially rendezvous and docking of spacecraft and extravehicular activity; • Project Apollo (flights during 1968-1972) to explore the Moon; • Space Shuttle's flights (1981 - present); • Satellite programs; • A permanently occupied space station "Mir" (during 1976-1999); • A permanently occupied International Space Station presently underway. We and a few people approached them to learn much more particulars of their talking and to ask them most interesting questions. -
IADC Space Debris Mitigation Guidelines
IADC-02-01 Revision 2 Mar 2020 IADC Space Debris Mitigation Guidelines Issued by IADC Steering Group and Working Group 4 Table of Contents Table of Contents .................................................................................................................. 1 Revision History .................................................................................................................... 2 List of Abbreviations .............................................................................................................. 3 1 Scope ............................................................................................................................. 6 2 Application ...................................................................................................................... 6 3 Terms and definitions ..................................................................................................... 6 3.1 Space Debris ........................................................................................................... 6 3.2 Spacecraft, Launch Vehicles, and Orbital Stages .................................................... 6 3.3 Orbits and Protected Regions ................................................................................. 7 3.4 Mitigation Measures and Related Terms ................................................................. 8 3.5 Operational Phases ................................................................................................. 8 4 General Guidance ......................................................................................................... -
Treaties and Other International Acts Series 94-1115 ______
TREATIES AND OTHER INTERNATIONAL ACTS SERIES 94-1115 ________________________________________________________________________ SPACE Cooperation Memorandum of Understanding Between the UNITED STATES OF AMERICA and CANADA Signed at Washington November 15, 1994 with Appendix NOTE BY THE DEPARTMENT OF STATE Pursuant to Public Law 89—497, approved July 8, 1966 (80 Stat. 271; 1 U.S.C. 113)— “. .the Treaties and Other International Acts Series issued under the authority of the Secretary of State shall be competent evidence . of the treaties, international agreements other than treaties, and proclamations by the President of such treaties and international agreements other than treaties, as the case may be, therein contained, in all the courts of law and equity and of maritime jurisdiction, and in all the tribunals and public offices of the United States, and of the several States, without any further proof or authentication thereof.” CANADA Space: Cooperation Memorandum of Understanding signed at Washington November 15, 1994; Entered into force November 15, 1994. With appendix. MEMORANDUM OF UNDERSTANDING between the UNITED STATES NATIONAL AERONAUTICS AND SPACE ADMINISTRATION and the CANADIAN SPACE AGENCY concerning COOPERATION IN THE FLIGHT OF THE MEASUREMENTS OF POLLUTION IN THE TROPOSPHERE (MOPITT) INSTRUMENT ON THE NASA POLAR ORBITING PLATFORM AND RELATED SUPPORT FOR AN INTERNATIONAL EARTH OBSERVING SYSTEM 2 The United States National Aeronautics and Space Administration (hereinafter "NASA") and the Canadian Space Agency (hereinafter "CSA") -
International Space Exploration Coordination Group (ISECG) Provides an Overview of ISECG Activities, Products and Accomplishments in the Past Year
Annual Report 2012 of the International Space Exploration Coordination Group INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP ISECG Secretariat Keplerlaan 1, PO Box 299, NL-2200 AG Noordwijk, The Netherlands +31 (0) 71 565 3325 [email protected] ISECG publications can be found on: http://www.globalspaceexploration.org/ 2 Table of Contents 1. Introduction 4 2. Executive Summary 4 3. Background 5 4. Activities 4.1. Overview 7 4.2. Activities on ISECG Level 7 4.3. Working Group Activities 8 4.3.1. Exploration Roadmap Working Group (ERWG) 8 4.3.2. International Architecture Working Group (IAWG) 9 4.3.3. International Objectives Working Group (IOWG) 10 4.3.4. Strategic Communications Working Group (SCWG) 10 Annex: Space Exploration Highlights of ISECG Member Agencies 12 1. Agenzia Spaziale Italiana (ASI), Italy 13 2. Centre National d’Etudes Spatiales (CNES), France 15 3. Canadian Space Agency (CSA), Canada 17 4. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany 21 5. European Space Agency (ESA) 23 6. Japan Aerospace Exploration Agency (JAXA), Japan 28 7. Korea Aerospace Research Institute (KARI), Republic of Korea 30 8. National Aeronautics and Space Administration (NASA), USA 31 9. State Space Agency of Ukraine (SSAU), Ukraine 33 10. UK Space Agency (UKSA), United Kingdom 35 3 1 Introduction The 2012 Annual Report of the International Space Exploration Coordination Group (ISECG) provides an overview of ISECG activities, products and accomplishments in the past year. In the annex many of the ISECG participating agencies report on national space exploration highlights in 2012. 2 Executive Summary ISECG was established in response to the “The Global Exploration Strategy: The Framework for Coordination” (GES) developed by 14 space agencies1 and released in May 2007. -
Canadian Space Agency
Canadian Space Agency ERIC LALIBERTÉ DIRECTOR GENERAL, SPACE UTILIZATION Outline • Mandate & Objectives • International Collaboration • Key Activities • Flagship Missions • Scientific Activities • Social and Economic Benefits • Strategic Implications 2 Outline Mandate Promote the peaceful use and development of space, to advance the knowledge of space through science and to ensure that space science and technology provide social and economic benefits for Canadians Departmental Results Space Space Canada's research and Canadians information and investments in development engage with technologies space benefit the advances space improve the lives Canadian science and of Canadians economy technology 3 International Collaboration • All space-faring countries rely on international collaboration • Canada a critical contributor to the US; entrusted with critical components • 21 international MOUs that provide a framework for project level collaboration with X countries • Only non-European Cooperating Member of the European Space Agency (ESA) • Key partner on the International Space Station • Founding member of the International Charter on Space and Major Disasters 4 Key Activities Exploration – Leads Canada’s participation in the International Space Station (ISS), planetary exploration missions and astronomy missions Satellites – Leads the implementation of the earth observation/science satellites to ensure GoC needs are met for high quality space data, applications and services essential for the provision of services to Canadians Technology -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory .................................................................................. -
Propulsion BHT-200-I Thruster
SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the iodine Satellite (iSAT) Project. Presented to Lunar Exploration Analysis Group (LEAG) October 23, 2014 The SmallSat Market SmallSat Applications – USASMDC / ARSTRAT Low Cost • Per-Unit Cost Very Low • Enables Affordable Satellite Constellations • Minimal Personnel and Logistics Tail • Frequent Technology Refresh Survivability • Fly Above Threats and Crowded Airspace • Rapid Augmentation and Reconstitution • Very Small Target Responsiveness • Short-Notice Deployment • Tasked from Theater • Persistent and Globally Available • Can Adapt to the Threat DISTRIBUTION A. Approved for public release; 24 July 2013 Release Number 3105 Why Iodine? • Today’s SmallSats have limited propulsion capability and most spacecraft have none • The State of the Art is cold gas propulsion providing 10s of m/s ∆V • No solutions exist for significant altitude or plane change, or de-orbit from high altitude • SmallSat secondary payloads have significant constraints • No hazardous propellants allowed • Limited stored energy allowed • Limited volume available • Indefinite quiescent waiting for launch integration • Iodine is uniquely suited for SmallSat applications • Iodine electric propulsion provides the high ISP * Density (i.e. ∆V per unit volume) • 1U of iodine on a 12U vehicle can provide more than 5 km/s ∆V • Enables transfer to high value operations orbits • Enables constellation deployment from a single launch • Enables de-orbit from high altitude deployment (ODAR Compliance) • Iodine enables > 10km/s for ESPA Class Spacecraft • GTO deployment to GEO, Lunar Orbits, Near Earth Asteroids, Mars and Venus • Reduces launch access by 90% • Reduces mission life cycle cost by 30 – 80% • Iodine is a solid at ambient conditions, can launch unpressurized and sit quiescent indefinitely • The technology leverages high heritage xenon Hall systems • All systems currently at TRL 5 with maturation funded to achieve TRL 6 in FY16 • The iSAT System is planned for launch readiness in early 2017 Iodine vs. -
Propulsion System Testing for the Iodine Satellite (Isat) Demonstration Mission
Propulsion System Testing for the Iodine Satellite (iSAT) Demonstration Mission Kurt A. Polzin ∗ NASA-Marshall Space Flight Center, Huntsville, AL 35812 Hani Kamhawi† NASA-Glenn Research Center, Cleveland, OH 44135 I. Abstract UBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary Cpayload,1 providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cm 3 and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high ∆v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. 3, 4 Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high ρIsp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine ◦ flow can also be thermally regulated, subliming at relatively low temperature (< 100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. -
HP ENVY ISS Printer Fact Sheet
HP ENVY ISS Printer Fact Sheet In 2016, NASA began launching HP ZBook Workstations to the International Space Station (ISS). Approximately 120 ZBooks will be deployed to support its mission operations and utilization objectives including sparing. In 2017, NASA selected the HP OfficeJet 5740 Printer as a “Next Generation Printer” to replace the existing printing capability onboard the ISS. In response to this selection, HP developed a custom HP ENVY ISS Printer for use in the ISS. While the bulk of the HP ENVY ISS Printer is off-the-shelf, NASA had a list of requirements that the printer needed in order to safely operate onboard the ISS including: ▪ Paper management in zero-G ▪ Flame retardant plastics* ▪ Waste ink management in zero-G ▪ Glass removal ▪ Wired and wireless connectivity ▪ Printing in multiple orientations (0⁰, 90⁰, 180⁰ & 270⁰ positions) ▪ Environmental Testing (EMI, Materials, Acoustics, Flammability*, Off-gassing, Power Compatibility, etc.) The zero-G requirements were the most challenging to meet and verify due to their unique nature. Through creative reengineering and the use of specialized materials, including components 3D-printed using HP’s Multi Jet Fusion technology and 3D High Reusability PA 12 Glass Beads material, the HP ENVY ISS Printer successfully met all of NASA’s requirements. The ISS Crew members print about two reams of paper a month in total across all printers. Hardcopies are used for procedural and mission critical information like Emergency E-Books, inventory Return trajectories, timelines, and personal items, including letters and photographs from home. The HP ENVY ISS Printers are currently scheduled to launch to the ISS on the Space-X 14 rocket. -
Space Propulsion Technology for Small Spacecraft
Space Propulsion Technology for Small Spacecraft The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Krejci, David, and Paulo Lozano. “Space Propulsion Technology for Small Spacecraft.” Proceedings of the IEEE, vol. 106, no. 3, Mar. 2018, pp. 362–78. As Published http://dx.doi.org/10.1109/JPROC.2017.2778747 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/114401 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ PROCC. OF THE IEEE, VOL. 106, NO. 3, MARCH 2018 362 Space Propulsion Technology for Small Spacecraft David Krejci and Paulo Lozano Abstract—As small satellites become more popular and capa- While designations for different satellite classes have been ble, strategies to provide in-space propulsion increase in impor- somehow ambiguous, a system mass based characterization tance. Applications range from orbital changes and maintenance, approach will be used in this work, in which the term ’Small attitude control and desaturation of reaction wheels to drag com- satellites’ will refer to satellites with total masses below pensation and de-orbit at spacecraft end-of-life. Space propulsion 500kg, with ’Nanosatellites’ for systems ranging from 1- can be enabled by chemical or electric means, each having 10kg, ’Picosatellites’ with masses between 0.1-1kg and ’Fem- different performance and scalability properties. The purpose tosatellites’ for spacecrafts below 0.1kg. In this category, the of this review is to describe the working principles of space popular Cubesat standard [13] will therefore be characterized propulsion technologies proposed so far for small spacecraft. -
Canadian Space Agency
CANADIAN SPACE AGENCY Performance Report For the period ending March 31, 2008 ________________________ Minister of Industry TABLE OF CONTENTS SECTION 1: OVERVIEW............................................................................................... 2 1.1 Minister's Message.................................................................................................. 2 1.2 Management Representation Statement.................................................................. 4 1.3 Summary Information............................................................................................. 5 1.3.1) CSA Program Activity Architecture....................................................................... 10 1.4 Department Performance - Summary ................................................................... 12 SECTION 2: ANALYSIS OF PROGRAM ACTIVITIES BY STRATEGIC OUTCOME ............................................................................................. 17 2.1 Space Based Earth Observation............................................................................ 17 2.2 Space Science and Exploration............................................................................. 22 2.3 Satellite Communications..................................................................................... 26 2.4 Generic Space Activities in support of EO, SE and SC........................................ 31 2.5 Space Awareness and Learning ............................................................................ 34 2.6 Corporate