Prof Amanda C. Swart by Therina Du Toit

Total Page:16

File Type:pdf, Size:1020Kb

Prof Amanda C. Swart by Therina Du Toit The metabolism of 11β-hydroxyandrostenedione by steroidogenic enzymes yields metabolites contributing to the androgen pool in prostate cancer by Therina du Toit Dissertation presented for the degree of Doctor of Philosophy (Biochemistry) in the Faculty of Science at Stellenbosch University Promoter: Prof Amanda C. Swart March 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. This thesis includes 4 original papers published in peer-reviewed journals. The development and writing of the papers were the principal responsibility of myself and, for each of the cases where this is not the case, a declaration is included in the thesis indicating the nature and extent of the contributions of co-authors. T du Toit March 2018 Copyright © 2018 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Ter herinnering aan Katherina Helena (Ina) Theron Dankie vir my naam, ek mis Ouma iii Stellenbosch University https://scholar.sun.ac.za Summary This study describes: • The development and validation of three ultra-performance convergence chromatography tandem mass spectrometry (UPC2-MS/MS) analytical methods which were applied in the detection and quantification of C19 and C21 steroids, including C11-oxy C19 and C11-oxy C21 steroids; • The investigation into the contribution of adrenal 11β-hydroxyandrostenedione (11OHA4) and 11β-hydroxytestosterone (11OHT) to the pool of active androgens in the prostate, by following androgen metabolism in normal epithelial prostate PNT2, benign prostatic hyperplasia (BPH-1) and prostate cancer LNCaP, C4-2B and VCaP cell models; Steroid profiles revealed 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) activity in all the cell models, confirmed in the conversion of 11OHA4 to 11keto-androstenedione (11KA4), with reductive 17β-hydroxysteroid dehydrogenase (17βHSD) enzymes metabolising 11KA4, ultimately yielding 11keto-testosterone (11KT). • The in vitro investigation into the inactivation, reactivation, glucuronidation and sulfation of 11OHA4, 11OHT and their downstream metabolites; In prostate cancer (PCa) cell models, the conjugation of 11KT and 11keto- dihydrotestosterone (11KDHT) were hampered compared to testosterone (T) and dihydrotestosterone (DHT), while the inactivation and reactivation of the C11-oxy C19 steroids were less efficient than the C19 steroids in BPH-1 cells. • The in vivo steroid profiles in PCa, BPH and castration-resistant prostate cancer (CRPC) tissue and plasma of healthy and PCa patients; Analyses of the C19 and C11-oxy C19 steroids, together with glucuronide and sulfate conjugates, showed increased unconjugated levels of 11KT and 11KDHT in plasma of PCa patients compared to a healthy subject, and 11OHA4, 11KT and 11KDHT levels were prominent in PCa tissue, while downstream inactive C11-oxy 3α-reduced metabolites were identified in BPH and CRPC tissue. iv Stellenbosch University https://scholar.sun.ac.za Opsomming Hierdie studie beskryf die volgende: • Die ontwikkeling en validering van drie UPC2-MS/MS analitiese metodes wat vervolgens toegepas is in die skeiding en kwantifisering van steroïedmetaboliete. • Die ondersoek na 11OHA4 and 11OHT se bydrae tot die aktiewe androgeen poel in die prostaat; Androgeen metabolisme is in normale epiteel prostaat PNT2, BPH-1 en prostaat kanker LNCaP, C4-2B en VCaP selmodelle ondersoek. Die steroïdprofiele bevestig die teenwoordigheid van 11βHSD2 aktiwiteit in al die modelle in die omsetting van 11OHA4 na 11KA4, sowel as die aktiwiteit van 17βHSD wat vervolgens die omsetting van 11KA4 na 11KT gekataliseer het. • Die in vitro inaktivering, heraktivering en konjugering van 11OHA4 en 11OHT metaboliete; In prostaatkanker selmodelle was 11KT en 11KDHT konjugering oneffektief in vergelyking met T en DHT, en die inaktivering van die C11-oksie C19 steroïede was nie optimaal in vergelyking met die C19 steroïede in BPH-1 selmodelle nie. • Die in vivo steroïedprofiele in prostaatkankerweefsel, BPH weefsel en kastrasie- weerstandige prostaatkankerweefsel en in plasma van gesonde normale individuë en prostaatkanker pasïente, asook die teenwoordigheid van ongekonjugeerde en gekonjugeerde steroïedmetaboliete in sirkulasie; Analiese toon dat ongekonjugeerde 11KT en 11KDHT hoër was in die plasma van pasïente met prostaatkanker; 11OHA4, 11KT en 11KDHT vlakke was abnormaal hoog in die prostaatkankerweefsel, terwyl onaktiewe C11-oksie 3α-gereduseerde metaboliete geïdentifiseer was in BPH weefsel en in kastrasie-weerstandige prostaatkankerweefsel. v Stellenbosch University https://scholar.sun.ac.za Acknowledgements I hereby wish to express my sincere gratitude and appreciation to: Prof Amanda C Swart, a remarkable woman, who has helped me discover myself, my inquisitive nature for science and the world. Without you none of this would have been possible, thank you. You are an amazing supervisor and role-model, I hope that we will always find the time to talk about our day and have a G&T. Prof Pieter Swart, thank you for teaching me to appreciate the ‘everyday’. I will always cherish our conversations around the dinner table. Ralie Louw, a wonderful laboratory manager, who was always willing to help me and order the products needed for my project – thank you! The technical and administrative staff of the Biochemistry department, especially Reggie Brandt for all the nitrogen canisters you had to carry for me. Dr. Maria ‘Marietjie’ Stander and her CAF team at Stellenbosch University for their technical expertise during UPC2-MS/MS and UPLC-MS/MS analyses. The Harry Crossley foundation and trustees, the National Research Foundation, the South African Rooibos Council and Stellenbosch University for funding this project. My fellow students – this journey was worth it because of all of you! Colin – you are my best friend and my favourite person to talk to, you mean the world to me, never forget that. My mother – your support and unconditional love is what motivates me, keep me safe, allows me to dream and has provided me with a home and an amazing life. vi Stellenbosch University https://scholar.sun.ac.za Contents Chapter 1 ............................................................................................................................................................. 1 General introduction ....................................................................................................................................... 1 Chapter 2 ............................................................................................................................................................. 7 The biosynthesis of the C11-oxy C19 steroids and their contribution to prostate cancer ............................... 7 2.1 Introduction ........................................................................................................................................... 7 2.2 Adrenal steroidogenesis ........................................................................................................................ 8 2.2.1 The production of C11-oxy steroids by cytochrome P450 11β-hydroxylase and aldosterone synthase ................................................................................................................................................. 13 2.3 Steroid metabolic pathways in the prostate ....................................................................................... 17 2.3.1 The classic and alternative pathway to DHT production .............................................................. 17 2.3.2 The 11OHA4-pathway to 11KT and 11KDHT production ............................................................. 19 2.3.3 The backdoor pathway to DHT and 11KDHT production ............................................................. 22 2.4 Steroidogenic enzymes involved in steroid metabolic pathways in the prostate ............................... 24 2.4.1 11β-hydroxysteroid dehydrogenases ........................................................................................... 25 2.4.2 17β-hydroxysteroid dehydrogenases ........................................................................................... 26 2.4.3 5α-reductases ............................................................................................................................... 26 2.4.4 3α-hydroxysteroid dehydrogenases ............................................................................................. 27 2.4.5 Retinol-like hydroxysteroid dehydrogenases ............................................................................... 28 2.4.6 Uridine-diphosphate glucuronosyltransferases ........................................................................... 30 2.4.7 Sulfotransferases and sulfatases .................................................................................................. 31 2.5 C11-oxy C19 steroids and their implications in disease ........................................................................ 35 2.5.1 Androgen receptor action ............................................................................................................ 35 2.5.2
Recommended publications
  • Testosterone, Or
    COSI SIMILI, COSI DIVERSE 1. FOR A FEW ATOMS MORE: TESTOSTERONE AND DOPING A few days ago, the Tour de France winner, Floyd Landis, was found to have a high, indeed impermissible level of testosterone in his urine. Not quite, more of what was actually found in just a while. The sample was taken just after his comeback victory in a critical stage of bicycling’s premier race. If a second sample confirms the problem, Landis’s victory will be disallowed. Testosterone is the principal male sex hormone, produced mainly where… you might suspect from its name. And it is also produced in the ovaries of females. Testosterone is a so-called anabolic steroid, a class of molecules that give us a continuing lesson that almost the same is not the same. All the steroids, the class of molecules that include testosterone, have the same atomic framework – four all-carbon rings, fused together. Three are hexagons, the third ring going off at an angle to the other two. Fused to that last ring is a pentagon of carbon atoms. Call the rings A (6 carbons), B (6), C (6), D (5). Testosterone has an oxygen and a hydrogen (OH) attached to ring D, two CH3 (methyl) groups, one at the juncture of rings C and D, the other at the juncture of A and B. Finally ring A of testosterone has an oxygen attached to it as well, and there is a double bond in that ring. testosterone Testosterone is responsible for the secondary sex changes which occur in male puberty – facial and pubic hair, oiliness of skin, body odor, all that teenage boy stuff.
    [Show full text]
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/01/17/dmd.117.078428.DC1 1521-009X/46/4/367–379$35.00 https://doi.org/10.1124/dmd.117.078428 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:367–379, April 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin D3-3-O-Sulfate, a Major Circulating Vitamin D Metabolite in Humans s Timothy Wong, Zhican Wang, Brian D. Chapron, Mizuki Suzuki, Katrina G. Claw, Chunying Gao, Robert S. Foti, Bhagwat Prasad, Alenka Chapron, Justina Calamia, Amarjit Chaudhry, Erin G. Schuetz, Ronald L. Horst, Qingcheng Mao, Ian H. de Boer, Timothy A. Thornton, and Kenneth E. Thummel Departments of Pharmaceutics (T.W., Z.W., B.D.C., M.S., K.G.C., C.G., B.P., Al.C., J.C., Q.M., K.E.T.), Medicine and Kidney Research Institute (I.H.d.B.), and Biostatistics (T.A.T.), University of Washington, Seattle, Washington; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (Z.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (R.S.F.); St. Jude Children’s Research Hospital, Memphis, Tennessee Downloaded from (Am.C., E.G.S.); and Heartland Assays LLC, Ames, Iowa (R.L.H.) Received September 1, 2017; accepted January 10, 2018 ABSTRACT dmd.aspetjournals.org Metabolism of 25-hydroxyvitamin D3 (25OHD3) plays a central role in with the rates of dehydroepiandrosterone sulfonation. Further analysis regulating the biologic effects of vitamin D in the body.
    [Show full text]
  • Transcriptomic Characterization of Fibrolamellar Hepatocellular
    Transcriptomic characterization of fibrolamellar PNAS PLUS hepatocellular carcinoma Elana P. Simona, Catherine A. Freijeb, Benjamin A. Farbera,c, Gadi Lalazara, David G. Darcya,c, Joshua N. Honeymana,c, Rachel Chiaroni-Clarkea, Brian D. Dilld, Henrik Molinad, Umesh K. Bhanote, Michael P. La Quagliac, Brad R. Rosenbergb,f, and Sanford M. Simona,1 aLaboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065; bPresidential Fellows Laboratory, The Rockefeller University, New York, NY 10065; cDivision of Pediatric Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; dProteomics Resource Center, The Rockefeller University, New York, NY 10065; ePathology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and fJohn C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065 Edited by Susan S. Taylor, University of California, San Diego, La Jolla, CA, and approved September 22, 2015 (received for review December 29, 2014) Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a exon of DNAJB1 and all but the first exon of PRKACA. This deletion of ∼400 kb in chromosome 19, resulting in a fusion of the produced a chimeric RNA transcript and a translated chimeric genes for the heat shock protein, DNAJ (Hsp40) homolog, subfam- protein that retains the full catalytic activity of wild-type PKA. ily B, member 1, DNAJB1, and the catalytic subunit of protein ki- This chimeric protein was found in 15 of 15 FLHCC patients nase A, PRKACA. The resulting chimeric transcript produces a (21) in the absence of any other recurrent mutations in the DNA fusion protein that retains kinase activity.
    [Show full text]
  • Chronic Exposure to Bisphenol a Reduces SULT1A1 Activity in the Human Placental Cell Line Bewo
    Chronic exposure to bisphenol A reduces SULT1A1 activity in the human placental cell line BeWo Pallabi Mitra Department of Pharmaceutical Chemistry University of Kansas October 27, 2006 Outline ▪ Placental structure and models ▪ Placental permeation ▪ Placental metabolism and regulation (induction/inhibition) ▪ Sulfotransferase enzymes in trophoblast ▪ Bisphenol A ▪ Effects of bisphenol A on SULT1A1 ▪ Conclusions The placental barrier The placental barrier Mother’s blood •Trophoblasts and syncytiotrophoblasts line the maternal villar surface in a monolayer- like fashion. •Constitute the rate limiting barrier to exchange between the maternal and fetal blood. Syme et al., Drug transfer and metabolism by the human placenta, Clin Pharmacokinet 2004: 43(8): 487-514 Models of the human placenta ▪ In vivo models – Anatomical and functional differences between mammalian placentas makes it difficult to extrapolate animal studies to humans. ▪ In vitro models ▪ Perfused placental cotyledon ▪ Isolated trophoblast plasma membrane ▪ Isolated transporters and receptors ▪ Villous explants ▪ Primary cultures (cytotrophoblasts) ▪ Immortalized cell lines (BeWo, JAr, JEG, HRP-1, etc.) Refn. Bode et al. In Vitro models for studying trophoblast transcellular transport, Methods Mol Med. 2006;122:225-39 Sastry, B.V., Adv Drug Deliv Rev., 1999 Jun 14. 38(1): p. 17-39. Placental permeation - Factors Efflux Carrier-mediated Passive diffusion transport Metabolism A A X A A Maternal side A X-OH A Fetal side Placental metabolism ▪ Though enzyme expression is much more restricted than hepatic metabolism, those that are functional metabolize xenobiotics as well as hormones. ▪ Placental enzymes CYP1A1/1A2, CYP19 (aromatase), GST, UGT, SULT ▪ Maternal blood-borne chemicals (drugs/polychlorinated biphenyls/pesticides) alter expression and activity. • Altered steroid metabolism.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • Regulation of Xenobiotic and Bile Acid Metabolism by the Anti-Aging Intervention Calorie Restriction in Mice
    REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE By Zidong Fu Submitted to the Graduate Degree Program in Pharmacology, Toxicology, and Therapeutics and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Dissertation Committee ________________________________ Chairperson: Curtis Klaassen, Ph.D. ________________________________ Udayan Apte, Ph.D. ________________________________ Wen-Xing Ding, Ph.D. ________________________________ Thomas Pazdernik, Ph.D. ________________________________ Hao Zhu, Ph.D. Date Defended: 04-11-2013 The Dissertation Committee for Zidong Fu certifies that this is the approved version of the following dissertation: REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE ________________________________ Chairperson: Curtis Klaassen, Ph.D. Date approved: 04-11-2013 ii ABSTRACT Calorie restriction (CR), defined as reduced calorie intake without causing malnutrition, is the best-known intervention to increase life span and slow aging-related diseases in various species. However, current knowledge on the exact mechanisms of aging and how CR exerts its anti-aging effects is still inadequate. The detoxification theory of aging proposes that the up-regulation of xenobiotic processing genes (XPGs) involved in phase-I and phase-II xenobiotic metabolism as well as transport, which renders a wide spectrum of detoxification, is a longevity mechanism. Interestingly, bile acids (BAs), the metabolites of cholesterol, have recently been connected with longevity. Thus, this dissertation aimed to determine the regulation of xenobiotic and BA metabolism by the well-known anti-aging intervention CR. First, the mRNA expression of XPGs in liver during aging was investigated.
    [Show full text]
  • Criteria to Indicate Testosterone Administration
    Br. J. Sp. Med; Vol 24, No. 4 Br J Sports Med: first published as 10.1136/bjsm.24.4.253 on 1 December 1990. Downloaded from Criteria to indicate testosterone administration A.T. Kicman1, R.V. Brooks2, S.C. Collyere, D.A. Cowan', M.N. Nanjee2, G.J. Southan2 and M.J. Wheelee 'Drug Control and Teaching Centre, King's College, London University 2Department of Chemical Pathology, UMDS, London University A detection method for testosterone administration was was found to increase after an intramuscular injection developed using radioimmunoassay to measure the of testosterone heptanoate in all ten normal males, urinary ratios of testosterone (T) to epitestosterone (E) and although there was an overlap between the basal to luteinizing hormone (LH). A comparative study of the range and that obtained three days after injection. effect on these ratios of a single intramuscular injection of testosterone heptanoate followed by stimulation with The method used was radioimmunoassay as protein human chorionic gonadotrophin (HCG) in three normal hormones cannot be measured by gas liquid chroma- men was undertaken. To allow immediate investigation, a tography-mass spectrometry (GLC-MS). commercially supplied epitestosterone antiserum was In 1983, the International Olympic Committee used. This study showed that both T/E and T/LH ratios (IOC) adopted the ratio of urinary testosterone to could be used to detect testosterone administration, the epitestosterone (T/E) as the sole test for testosterone latter also being an indicator of HCG use due to doping as both these hormones could be convenient- cross-reactivity with the LH antiserum. Subsequently, an ly measured by GLC-MS.
    [Show full text]
  • I Copyright® Ariel R. Topletz, 2013
    Copyright® Ariel R. Topletz, 2013 i The Relative Importance of CYP26A1 and CYP26B1 in Mediating Retinoid Homeostasis: Studies on the Formation, Elimination and Biological Activity of All-trans-Retinoic Acid Metabolites Ariel R. Topletz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: Nina Isoherranen, Chair Jashvant D Unadkat Joanne Wang Program Authorized to Offer Degree: Department of Pharmaceutics ii University of Washington Abstract Ariel R. Topletz Chair of the Supervisory Committee: Associate Professor Nina Isoherranen Department of Pharmaceutics All-trans-retinoic acid (atRA), the active metabolite of Vitamin A (retinol), is an essential nutrient during both fetal development and adult life. The concentration of atRA within a cell is tightly regulated by the synthesis and elimination of atRA. One of the major elimination pathways for atRA is oxidation, predominantly by the cytochrome P450s CYP26A1 and CYP26B1 that efficiently hydroxylate atRA. The role of both CYP26A1 and CYP26B1 is believed to be to inactivate atRA, and both are essential for correct fetal development. It is not known whether both enzymes play crucial roles during adult life. In this work, the differences in the catalytic efficiency of CYP26A1 and CYP26B1 and the metabolites formed from atRA by CYP26A1 and CYP26B1 were explored. The subsequent metabolism and the activity of atRA metabolites were also evaluated. CYP26A1 was determined to form 4-OH-RA from atRA more efficiently (Km = 50 nM, Clint = 190 µL/min/pmoles P450) than CYP26B1 (Km = 19 nM, Clint = 43 µL/min/pmoles P450). In addition, formation of 4-OH-RA by CYP26A1 was stereoselective resulting in formation of (4S)-OH-RA whereas no significant stereoselectivity in 4-OH-RA formation by CYP26B1was observed.
    [Show full text]
  • 169 2016 Interim Meeting Science and Public Health - 1
    169 2016 Interim Meeting Science and Public Health - 1 REPORTS OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH The following reports, 1–4, were presented by S. Bobby Mukkamala, MD, Chair: 1. URINE DRUG TESTING Reference committee hearing: see report of Reference Committee K. HOUSE ACTION: RECOMMENDATIONS ADOPTED AS FOLLOWS REMAINDER OF REPORT FILED See Policies H-95.985 and D-120.936 INTRODUCTION Over the past two decades, the rate of opioid prescribing, especially for patients with chronic non-cancer pain, has increased dramatically. It is estimated that between 9.6 and 11.5 million Americans are currently being prescribed long-term opioid therapy.1 The overall increase in prescribing has been associated with a parallel increase in unintentional overdoses and deaths from prescription opioids.2 In 2014, a total of 47,055 drug overdose deaths occurred in the United States; 61% of these involved some type of opioid, including heroin. Overdose deaths from heroin have quadrupled in recent years, and the majority of past year users of heroin report they used opioids in a nonmedical fashion prior to heroin initiation; hence, the availability of pharmaceutical opioids is relevant to the national heroin use and overdose death epidemics. In the most recent available report, benzodiazepines were involved in 31% of the opioid-related overdoses.3 Despite clinical recommendations to the contrary, the rate of opioid and benzodiazepine co-prescribing also continues to rise.3-5 Identifying patients at risk for drug misuse is a challenge. There is no definitive way for physicians to predict which of their patients will develop misuse problems with controlled substances.
    [Show full text]
  • The Transcriptomic Landscape of Prostate Cancer Development and Progression: an Integrative Analysis
    cancers Article The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis Jacek Marzec 1,† , Helen Ross-Adams 1,*,† , Stefano Pirrò 1 , Jun Wang 1 , Yanan Zhu 2, Xueying Mao 2, Emanuela Gadaleta 1 , Amar S. Ahmad 3, Bernard V. North 3, Solène-Florence Kammerer-Jacquet 2, Elzbieta Stankiewicz 2, Sakunthala C. Kudahetti 2, Luis Beltran 4, Guoping Ren 5, Daniel M. Berney 2,4, Yong-Jie Lu 2 and Claude Chelala 1,6,* 1 Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; [email protected] (J.M.); [email protected] (S.P.); [email protected] (J.W.); [email protected] (E.G.) 2 Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; [email protected] (Y.Z.); [email protected] (X.M.); solenefl[email protected] (S.-F.K.-J.); [email protected] (E.S.); [email protected] (S.C.K.); [email protected] (D.M.B.); [email protected] (Y.-J.L.) 3 Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK; [email protected] (A.S.A.); [email protected] (B.V.N.) 4 Department of Pathology, Barts Health NHS, London E1 F1R, UK; [email protected] 5 Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310058, China; [email protected] 6 Centre for Computational Biology, Life Sciences Initiative, Queen Mary University London, London EC1M 6BQ, UK * Correspondence: [email protected] (H.R.-A.); [email protected] (C.C.) † These authors contributed equally to this work.
    [Show full text]
  • Pharmaceutical and Veterinary Compounds and Metabolites
    PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES High quality reference materials for analytical testing of pharmaceutical and veterinary compounds and metabolites. lgcstandards.com/drehrenstorfer [email protected] LGC Quality | ISO 17034 | ISO/IEC 17025 | ISO 9001 PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES What you need to know Pharmaceutical and veterinary medicines are essential for To facilitate the fair trade of food, and to ensure a consistent human and animal welfare, but their use can leave residues and evidence-based approach to consumer protection across in both the food chain and the environment. In a 2019 survey the globe, the Codex Alimentarius Commission (“Codex”) was of EU member states, the European Food Safety Authority established in 1963. Codex is a joint agency of the FAO (Food (EFSA) found that the number one food safety concern was and Agriculture Office of the United Nations) and the WHO the misuse of antibiotics, hormones and steroids in farm (World Health Organisation). It is responsible for producing animals. This is, in part, related to the issue of growing antibiotic and maintaining the Codex Alimentarius: a compendium of resistance in humans as a result of their potential overuse in standards, guidelines and codes of practice relating to food animals. This level of concern and increasing awareness of safety. The legal framework for the authorisation, distribution the risks associated with veterinary residues entering the food and control of Veterinary Medicinal Products (VMPs) varies chain has led to many regulatory bodies increasing surveillance from country to country, but certain common principles activities for pharmaceutical and veterinary residues in food and apply which are described in the Codex guidelines.
    [Show full text]