Seafood Watch Consulting Researcher
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rockfish (Sebastes) That Are Evolutionarily Isolated Are Also
Biological Conservation 142 (2009) 1787–1796 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Rockfish (Sebastes) that are evolutionarily isolated are also large, morphologically distinctive and vulnerable to overfishing Karen Magnuson-Ford a,b, Travis Ingram c, David W. Redding a,b, Arne Ø. Mooers a,b,* a Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 b IRMACS, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 c Department of Zoology and Biodiversity Research Centre, University of British Columbia, #2370-6270 University Blvd., Vancouver, Canada V6T 1Z4 article info abstract Article history: In an age of triage, we must prioritize species for conservation effort. Species more isolated on the tree of Received 23 September 2008 life are candidates for increased attention. The rockfish genus Sebastes is speciose (>100 spp.), morpho- Received in revised form 10 March 2009 logically and ecologically diverse and many species are heavily fished. We used a complete Sebastes phy- Accepted 18 March 2009 logeny to calculate a measure of evolutionary isolation for each species and compared this to their Available online 22 April 2009 morphology and imperilment. We found that evolutionarily isolated species in the northeast Pacific are both larger-bodied and, independent of body size, morphologically more distinctive. We examined Keywords: extinction risk within rockfish using a compound measure of each species’ intrinsic vulnerability to Phylogenetic diversity overfishing and categorizing species as commercially fished or not. Evolutionarily isolated species in Extinction risk Conservation priorities the northeast Pacific are more likely to be fished, and, due to their larger sizes and to life history traits Body size such as long lifespan and slow maturation rate, they are also intrinsically more vulnerable to overfishing. -
Southwest Guide: Your Use to Word
BEST CHOICES GOOD ALTERNATIVES AVOID How to Use This Guide Arctic Char (farmed) Clams (US & Canada wild) Bass: Striped (US gillnet, pound net) Bass (US farmed) Cod: Pacific (Canada & US) Basa/Pangasius/Swai Most of our recommendations, Catfish (US) Crab: Southern King (Argentina) Branzino (Mediterranean farmed) including all eco-certifications, Clams (farmed) Lobster: Spiny (US) Cod: Atlantic (gillnet, longline, trawl) aren’t on this guide. Be sure to Cockles Mahi Mahi (Costa Rica, Ecuador, Cod: Pacific (Japan & Russia) Cod: Pacific (AK) Panama & US longlines) Crab (Asia & Russia) check out SeafoodWatch.org Crab: King, Snow & Tanner (AK) Oysters (US wild) Halibut: Atlantic (wild) for the full list. Lobster: Spiny (Belize, Brazil, Lionfish (US) Sablefish/Black Cod (Canada wild) Honduras & Nicaragua) Lobster: Spiny (Mexico) Salmon: Atlantic (BC & ME farmed) Best Choices Mahi Mahi (Peru & Taiwan) Mussels (farmed) Salmon (CA, OR & WA) Octopus Buy first; they’re well managed Oysters (farmed) Shrimp (Canada & US wild, Ecuador, Orange Roughy and caught or farmed responsibly. Rockfish (AK, CA, OR & WA) Honduras & Thailand farmed) Salmon (Canada Atlantic, Chile, Sablefish/Black Cod (AK) Squid (Chile & Peru) Norway & Scotland) Good Alternatives Salmon (New Zealand) Squid: Jumbo (China) Sharks Buy, but be aware there are Scallops (farmed) Swordfish (US, trolls) Shrimp (other imported sources) Seaweed (farmed) Tilapia (Colombia, Honduras Squid (Argentina, China, India, concerns with how they’re Shrimp (US farmed) Indonesia, Mexico & Taiwan) Indonesia, -
Seafood Watch Seafood Report
Seafood Watch Seafood Report U.S. Farmed Hybrid Striped Bass Morone chrysops X Morone saxatilis (Photo by Gerald Ludwig, Courtesy of USDA-ARS) Final Report August 31, 2005 Brendan O’Neill Private Consultant Seafood Watch® Farmed Hybrid Striped Bass Report August 31, 2005 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices”, “Good Alternatives” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability. -
Chilean Salmon Farming on the Horizon Of
11 Chilean Salmon Farming on the Horizon of Sustainability: Review of the Development of a Highly Intensive Production, the ISA Crisis and Implemented Actions to Reconstruct a More Sustainable Aquaculture Industry Pablo Ibieta1, Valentina Tapia1, Claudia Venegas1, Mary Hausdorf1 and Harald Takle1,2 1AVS Chile SA, Puerto Varas 2Nofima, Ås 1Chile 2Norway 1. Introduction Historically the Chilean economy has been based in exports accounting for 35% of the gross domestic product and mining is the main export income in the country. However, since 1980s as a part of a promotion the Chilean economy has diversified in part away from its dangerous over-reliance on copper exports. The growth of earnings in the fruit, wine, wood and forestry, fisheries and aquaculture sectors in particular, has been rapid since the early 1980s as Chile has exploited its comparative advantage in environmental endowment and low labour costs on the global market (Barton, 1997; Barton & Murray, 2009). The salmonid cultivation is restricted to regions with particular water temperature ranges in both fresh and seawater environments, sheltered waters and critically excellent water quality. Thus, salmonid aquaculture has become an important activity and the main development gear in the southern regions of Chile. The Chilean salmon industry has shown a fast development over the last 20 years and, therefore; today, Chile is the largest producer of farmed rainbow trout and Coho salmon, and the second worldwide of Atlantic salmon. This situation is the result from the application of innovation and development of value added products, which produced an average annual growth rate of 22% from 1990 to 2007 and an increase of exports from USD 159 million in 1991 to USD 2,242 million in 2007 (SalmonChile, 2007a). -
Seafood Watch® Standard for Fisheries
1 Seafood Watch® Standard for Fisheries Table of Contents Table of Contents ............................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Seafood Watch Guiding Principles ...................................................................................................... 3 Seafood Watch Criteria and Scoring Methodology for Fisheries ........................................................... 5 Criterion 1 – Impacts on the Species Under Assessment ...................................................................... 8 Factor 1.1 Abundance .................................................................................................................... 9 Factor 1.2 Fishing Mortality ......................................................................................................... 19 Criterion 2 – Impacts on Other Capture Species ................................................................................ 22 Factor 2.1 Abundance .................................................................................................................. 26 Factor 2.2 Fishing Mortality ......................................................................................................... 27 Factor 2.3 Modifying Factor: Discards and Bait Use .................................................................... 29 Criterion -
Seafood Watch Seafood Report
Seafood Watch Seafood Report Farmed Crayfish Procambarus clarkii (Photo: James W. Fetzner, Jr.) Southeast Region Final Report 8/17/05 Patricia Halpin, PhD Independent Consultant Marine Science Institute UC Santa Barbara Halpin_Crayfish_farmed_ZB_8-17-05.doc 8/18/2005 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choice,” “Good Alternative,” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability. -
Standard for Aquaculture Species
1 Seafood Watch® Standard for Aquaculture Introduction ................................................................................................................ 2 Seafood Watch Guiding Principles for Aquaculture ....................................................... 3 Seafood Watch Criteria and Scoring Methodology for Aquaculture ............................... 4 Criterion 1 - Data ................................................................................................................ 5 Criterion 2 - Effluent ............................................................................................................ 8 Effluent: Evidence-Based Assessment (based on good data availability and quality) ........... 12 Effluent: Risk-Based Assessment (based on poor data availability or quality) ...................... 13 Effluent: Factor 2.1 – Waste discharged per ton of fish ......................................................... 14 Effluent: Factor 2.2 – Management of farm-level and cumulative impacts ........................... 16 Criterion 3 – Habitat .......................................................................................................... 19 Habitat: Factor 3.1 – Habitat conversion and function .......................................................... 23 Habitat: Factor 3.2 – Farm siting regulation and management ............................................. 25 Criterion 4 – Chemical Use................................................................................................. 27 Criterion 5 - Feed -
Food from the Sea Raised in Coastal Waters And, Therefore, the Pollution Generated by the Farm Flows Into the Coastal Water
Food from the Sea raised in coastal waters and, therefore, the pollution generated by the farm flows into the coastal water . According to Leviticus 11:9-12, any fish that has fins and Large numbers of salmon are kept in a pen, resulting scales is kosher . These criterion rule out seafood such in diseases and parasites, which can easily spread to as eels, shellfish, and catfish . Fish is considered pareve wild salmon swimming nearby . It is not uncommon and can be eaten with either milk or meat . There is no for the farmed salmon to break out of these pens and particular method of slaughter required for fish and, compete with wild salmon populations . Additionally, therefore, any fresh fish with fins and scales is kosher . farm raised salmon require approximately 3 pounds of wild fish to produce 1 pound of farmed salmon, which Fish are the last group of wild animals that are hunted is an unsustainable ratio . The most sustainable options for large scale consumption . As worldwide demand for farmed fish include those which are herbivores for fish has increased, wild fish populations can’t keep or omnivores . Some of the best farm raised options up with our appetites, and find themselves threatened include: arctic char, striped bass, and U .S . raised by overfishing (harvesting at faster rates than the barramundi, cobia, tilapia, and rainbow trout . population can reproduce) and by-catch (accidental death caused by trawls, dredges, long-lining, purse seining, and gill-netting) . Scientists suspect that due HOW YOUR INSTITUTION CAN SOURCE AND to overfishing and by-catch, 90% of the large predatory USE SUSTAINABLE FISH: fish populations have been depleted . -
Intrinsic Vulnerability in the Global Fish Catch
The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae -
Localized Depletion of Three Alaska Rockfish Species Dana Hanselman NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska
Biology, Assessment, and Management of North Pacific Rockfishes 493 Alaska Sea Grant College Program • AK-SG-07-01, 2007 Localized Depletion of Three Alaska Rockfish Species Dana Hanselman NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska Paul Spencer NOAA Fisheries, Alaska Fisheries Science Center, Resource Ecology and Fisheries Management (REFM) Division, Seattle, Washington Kalei Shotwell NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska Rebecca Reuter NOAA Fisheries, Alaska Fisheries Science Center, REFM Division, Seattle, Washington Abstract The distributions of some rockfish species in Alaska are clustered. Their distribution and relatively sedentary movement patterns could make localized depletion of rockfish an ecological or conservation concern. Alaska rockfish have varying and little-known genetic stock structures. Rockfish fishing seasons are short and intense and usually confined to small areas. If allowable catches are set for large management areas, the genetic, age, and size structures of the population could change if the majority of catch is harvested from small concentrated areas. In this study, we analyzed data collected by the North Pacific Observer Program from 1991 to 2004 to assess localized depletion of Pacific ocean perch (Sebastes alutus), northern rockfish S.( polyspinis), and dusky rockfish (S. variabilis). The data were divided into blocks with areas of approxi- mately 10,000 km2 and 5,000 km2 of consistent, intense fishing. We used two different block sizes to consider the size for which localized deple- tion could be detected. For each year, the Leslie depletion estimator was used to determine whether catch-per-unit-effort (CPUE) values in each 494 Hanselman et al.—Three Alaska Rockfish Species block declined as a function of cumulative catch. -
3Rd February 2015 Dear Sir/Madam the Monterey Bay Aquarium
3rd February 2015 Dear Sir/Madam The Monterey Bay Aquarium Seafood Watch program helps consumers and businesses make choices for healthy oceans. Our recommendations indicate which seafood items are "Best Choices," "Good Alternatives," and which ones you should "Avoid." Seafood Watch recommendations are science-based, peer reviewed, and use ecosystem-based criteria. Our response to this consultation reflects what we consider important additions to the Alaska Responsible Fisheries Management (RFM) Conformance Criteria that would ensure that fisheries certified to the standard could be supported by Seafood Watch in discussion with our business and consumer audiences. We thank Alaska Seafood Marketing Institute for the opportunity to comment on the RFM Conformance Criteria and welcome the increased transparency surrounding the standard and the assessment process. We do however feel that there is a need for further clarity on the assessment process, particularly regarding who performs the assessments, how these individual(s) are selected, and how stakeholders may engage in the assessment process. Rather than speak to individual conformance criterion, this response will focus on common areas of improvement which we believe would strengthen the standard and could be applied to several or all of the 6 key components. Inclusion of all Applicable FAO Guidelines The RFM Conformance Criteria is based on key FAO reference documents, yet there are additional FAO Guidelines and technical documents that have not been included and we believe that the -
Innovation in Small-Scale Aquaculture in Chile
Aquaculture Economics & Management ISSN: 1365-7305 (Print) 1551-8663 (Online) Journal homepage: http://www.tandfonline.com/loi/uaqm20 Innovation in small-scale aquaculture in Chile César Salazar, Marcela Jaime, Yanina Figueroa & Rodrigo Fuentes To cite this article: César Salazar, Marcela Jaime, Yanina Figueroa & Rodrigo Fuentes (2018): Innovation in small-scale aquaculture in Chile, Aquaculture Economics & Management, DOI: 10.1080/13657305.2017.1409293 To link to this article: https://doi.org/10.1080/13657305.2017.1409293 Published online: 01 Mar 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uaqm20 AQUACULTURE ECONOMICS & MANAGEMENT https://doi.org/10.1080/13657305.2017.1409293 none defined Innovation in small-scale aquaculture in Chile César Salazara, Marcela Jaimeb, Yanina Figueroac, and Rodrigo Fuentesd aDepartment of Economics and Finance and Applied Sectorial Economics Research Group, University of Bio-Bio, Concepción, Chile; bSchool of Business and Management and Research Nucleus on Environmental and Natural Resource Economics (NENRE), University of Concepción, Concepción, Chile; cInterdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; dSchool of Business and Management, University of Concepción, Concepción, Chile ABSTRACT KEYWORDS In light of the current depletion of extractive marine resources Innovation; microeconomic and the sustainability issues that have arisen in the aquaculture analysis; small-scale industry, the small-scale aquaculture sector has emerged as a aquaculture viable and sustainable alternative for generating income. To integrate the small-scale aquaculture sector into the food value chain, understanding the decision-making process to innovate becomes essential.