Disertacija.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microhabitat Mosaics Are Key to the Survival of an Endangered Ground Beetle (Carabus Nitens) in Its Post-Industrial Refugia
Journal of Insect Conservation (2018) 22:321–328 https://doi.org/10.1007/s10841-018-0064-x ORIGINAL PAPER Microhabitat mosaics are key to the survival of an endangered ground beetle (Carabus nitens) in its post-industrial refugia Martin Volf1,2 · Michal Holec3 · Diana Holcová3 · Pavel Jaroš4 · Radek Hejda5 · Lukáš Drag1 · Jaroslav Blízek6 · Pavel Šebek1 · Lukáš Čížek1,7 Received: 12 September 2017 / Accepted: 27 April 2018 / Published online: 3 May 2018 © Springer International Publishing AG, part of Springer Nature 2018 Abstract Biota dependant on early seral stages or frequently disturbed habitats belong to the most rapidly declining components of European biodiversity. This is also the case for Carabus nitens, which is threatened across Western and Central Europe. We studied one of the last remaining populations of this ground beetle in the Czech Republic, which inhabits post-extraction peat bogs. In line with findings from previous studies, we show that C. nitens prefers patches characterized by higher light intensity and lower vegetation cover. Abundance of females was positively correlated with the cover of plant species requir- ing higher temperature. In addition, we demonstrate its preference for periodically moist, but not wet or inundated plots, suggesting that the transition between dry heathland and wet peat bog might be the optimal habitat for this species. This hypothesis is further supported by results showing a positive correlation between the abundance of C. nitens and vegetation cover comprising of a mix of species typical for heathland, peat bog, and boreal habitats. Our results show that C. nitens mobility is comparable to other large wingless carabids. -
Microhabitats and Fragmentation Effects on a Ground Beetle Community (Coleoptera: Carabidae) in a Mountainous Beech Forest Landscape
Turkish Journal of Zoology Turk J Zool (2016) 40: 402-410 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1404-13 Microhabitats and fragmentation effects on a ground beetle community (Coleoptera: Carabidae) in a mountainous beech forest landscape 1,2, 1,2 1 Slavčo HRISTOVSKI *, Aleksandra CVETKOVSKA-GJORGIEVSKA , Trajče MITEV 1 Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Macedonia 2 Macedonian Ecological Society, Skopje, Macedonia Received: 10.04.2014 Accepted/Published Online: 12.08.2015 Final Version: 07.04.2016 Abstract: The aim of this investigation was to analyze the effects of microhabitats and forest fragmentation on the composition and species abundance of a ground beetle community from three different beech forest patches on Mt. Osogovo (Macedonia), as well as to analyze the mobility (based on mark-recapture of individuals) and seasonal dynamics and sex ratio of the ground beetle community. The study site included three localities (A, B, C), one of them fragmented (A), with four microhabitats (open area, ecotone, forest stand, and forested corridor). Ground beetles were collected using pitfall traps during four sampling months (June–September 2009) that were operational for three continuous days per month. Species richness, abundance, diversity, homogeneity, and dominance were compared between the localities. Dissimilarities in carabid assemblages between localities and microhabitats were analyzed with Bray–Curtis UPGMA cluster analysis. In total 1320 carabid individuals belonging to 19 species were captured. The carabid assemblage structure of the continuous forest locality was substantially different from the other two smaller forest patches, indicating that microhabitat structure affects ground beetle communities through changes of species composition and richness. -
Comparison of Coleoptera Emergent from Various Decay Classes of Downed Coarse Woody Debris in Great Smoky Mountains National Park, USA
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 11-30-2012 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA Michael L. Ferro Louisiana State Arthropod Museum, [email protected] Matthew L. Gimmel Louisiana State University AgCenter, [email protected] Kyle E. Harms Louisiana State University, [email protected] Christopher E. Carlton Louisiana State University Agricultural Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Ferro, Michael L.; Gimmel, Matthew L.; Harms, Kyle E.; and Carlton, Christopher E., "Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA" (2012). Insecta Mundi. 773. https://digitalcommons.unl.edu/insectamundi/773 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA A Journal of World Insect Systematics MUNDI 0260 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains Na- tional Park, USA Michael L. Ferro Louisiana State Arthropod Museum, Department of Entomology Louisiana State University Agricultural Center 402 Life Sciences Building Baton Rouge, LA, 70803, U.S.A. [email protected] Matthew L. Gimmel Division of Entomology Department of Ecology & Evolutionary Biology University of Kansas 1501 Crestline Drive, Suite 140 Lawrence, KS, 66045, U.S.A. -
A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics. -
Coleoptera: Carabidae) by Laboulbenialean Fungi in Different Habitats
Eur. J. Entomol. 107: 73–79, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1511 ISSN 1210-5759 (print), 1802-8829 (online) Incidence of infection of carabid beetles (Coleoptera: Carabidae) by laboulbenialean fungi in different habitats SHINJI SUGIURA1, KAZUO YAMAZAKI 2 and HAYATO MASUYA1 1Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan; e-mail: [email protected] 2Osaka City Institute of Public Health and Environmental Sciences, Osaka 543-0026, Japan Key words. Coleoptera, Carabidae, ectoparasitic fungi, Ascomycetes, Laboulbenia, microhabitat, overwintering sites Abstract. The prevalence of obligate parasitic fungi may depend partly on the environmental conditions prevailing in the habitats of their hosts. Ectoparasitic fungi of the order Laboulbeniales (Ascomycetes) infect arthropods and form thalli on the host’s body sur- face. Although several studies report the incidence of infection of certain host species by these fungi, quantitative data on laboulbe- nialean fungus-host arthropod interactions at the host assemblage level are rarely reported. To clarify the effects of host habitats on infection by ectoparasitic fungi, the incidence of infection by fungi of the genus Laboulbenia (Laboulbeniales) of overwintering carabid beetles (Coleoptera: Carabidae) in three habitats, a riverside (reeds and vines), a secondary forest and farmland (rice and vegetable fields), were compared in central Japan. Of the 531 adults of 53 carabid species (nine subfamilies) collected in the three habitats, a Laboulbenia infection of one, five and one species of the carabid subfamilies Pterostichinae, Harpalinae and Callistinae, respectively, was detected. Three species of fungus were identified: L. coneglanensis, L. pseudomasei and L. fasciculate. The inci- dence of infection by Laboulbenia was higher in the riverside habitat (8.97% of individuals; 14/156) than in the forest (0.93%; 2/214) and farmland (0%; 0/161) habitats. -
Západočeské Entomologické Listy, 2014, Ročník 5
ročník 5 | 2014 internetový časopis Západočeské Entomologické Listy vydává Západočeská pobočka České společnosti entomologické v Plzni ISSN 1804-3062 pouze on-line verze Západočeské entomologické listy (2014), 5: 1–11 ISSN 1804-3062 Brouci (Coleoptera) Žihle a okolí. 8. část. Elateridae, Eucnemidae, Throscidae Václav Týr Žihle 119, 331 65 Žihle; e-mail: [email protected] Týr V. 2014: Brouci (Coleoptera) Žihle a okolí. 8. část. Elateridae, Eucnemidae, Throscidae (Beetles (Coleoptera) in the surroundings of Žihle. Part 8. Elateridae, Eucnemidae, Throscidae). – Západočeské entomologické listy, 5: 1–11. Online: http://www.zpcse.cz/entolisty/entolisty.html, 17-2-2014. Abstract. Results of the faunistic research of Coleoptera in the surroundings of Žihle (northern part of the Plzeň regi- on) are presented. The eighth part contains data on the families Elateridae, Eucnemidae, and Throscidae. Altogether 72 species of Elateridae, 2 species of Eucnemidae, and 6 species of Throscidae have been recorded from the study area. The most interesting species from the faunistic point of view are: Lacon lepidopterus (Panzer, 1801), Cardiophorus gra- mineus (Scopoli, 1763), C. nigerrimus Erichson, 1840, Athous austriacus Desbrochers des Loges, 1873, A. zebei Bach, 1854, Crepidophorus mutilatus (Rosenhauer, 1847), Stenagostus rufus (DeGeer, 1774), Cidnopus aeruginosus (Olivier, 1790), Anostirus gracilicollis (Stierlin, 1896), Calambus bipustulatus (Linnaeus, 1767), Paraphotistus impressus impres- sus (Fabricius, 1792), P. nigricornis (Panzer, 1799), Selatosomus -
Laufkäfer Und Heuschrecken Osttirols Und Des Nationalparks Hohe Tauern: Aus Der Sammlung Dr
Laufkäfer und Heuschrecken Osttirols und des Nationalparks Hohe Tauern: aus der Sammlung Dr. Alois Kofler (Lienz) Endbericht Auftraggeber: Tiroler Nationalparkfonds Hohe Tauern Kirchplatz 2 Matrei i. O., A-9971 Auftragnehmer: Tiroler Landesmuseen Betriebsgesellschaft mbH. Museumstraße 15 Innsbruck, A-6020 Fachbearbeitung: Mag. Andreas Eckelt Naturwissenschaftliche Sammlungen Tiroler Landesmuseen Betriebsgesellschaft mbH. Feldstraße 11a Innsbruck, A-6020 Titelbild: Drypta dentata (Coleoptera, Carabidae), das Foto wurde dankenswerterweise von Ortwin Bleich, Deutsch- land., zu Verfügung gestellt (www.eurocarbidae.de). Inhalt Allgemeiner Teil 1. Dr. Alois Kofler.............................................................................. 3 Teil 1. Laufkäfer (Carabidae) 2. Artenvielfalt................................................................................... 4 3. Entwicklung und Lebensweisen der Laufkäfer.............. 4 4. Endemismus........................................................................................ 6 5. Lebensräume aus Sicht der Laufkäfer................................. 8 6. Naturschutzfachlich bedeutsame Arten.......................... 10 7. Steckbriefe zu den Arten............................................................ 11 8. Literatur............................................................................................ 294 Teil 2. Heuschrecken (Orthoptera) 9. Artenliste & Gefährdungseinstufung................................ 296 10. Verbreitungskarten....................................................................302 -
Coleoptera: Carabidae) Peter W
30 THE GREAT LAKES ENTOMOLOGIST Vol. 42, Nos. 1 & 2 An Annotated Checklist of Wisconsin Ground Beetles (Coleoptera: Carabidae) Peter W. Messer1 Abstract A survey of Carabidae in the state of Wisconsin, U.S.A. yielded 87 species new to the state and incorporated 34 species previously reported from the state but that were not included in an earlier catalogue, bringing the total number of species to 489 in an annotated checklist. Collection data are provided in full for the 87 species new to Wisconsin but are limited to county occurrences for 187 rare species previously known in the state. Recent changes in nomenclature pertinent to the Wisconsin fauna are cited. ____________________ The Carabidae, commonly known as ‘ground beetles’, with 34, 275 described species worldwide is one of the three most species-rich families of extant beetles (Lorenz 2005). Ground beetles are often chosen for study because they are abun- dant in most terrestrial habitats, diverse, taxonomically well known, serve as sensitive bioindicators of habitat change, easy to capture, and morphologically pleasing to the collector. North America north of Mexico accounts for 2635 species which were listed with their geographic distributions (states and provinces) in the catalogue by Bousquet and Larochelle (1993). In Table 4 of the latter refer- ence, the state of Wisconsin was associated with 374 ground beetle species. That is more than the surrounding states of Iowa (327) and Minnesota (323), but less than states of Illinois (452) and Michigan (466). The total count for Minnesota was subsequently increased to 433 species (Gandhi et al. 2005). Wisconsin county distributions are known for 15 species of tiger beetles (subfamily Cicindelinae) (Brust 2003) with collection records documented for Tetracha virginica (Grimek 2009). -
(Coleoptera, Carabidae) and Rove Beetles (Coleoptera, Staphylinidae, Pselaphinae) in the Highlands of Ecuador
Clemson University TigerPrints All Dissertations Dissertations August 2018 Diversification and Speciation atternsP of Ground Beetles (Coleoptera, Carabidae) And Rove Beetles (Coleoptera, Staphylinidae, Pselaphinae) in the Highlands of Ecuador Sofia Isabel Muñoz Tobar Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Muñoz Tobar, Sofia Isabel, "Diversification and Speciation Patterns of Ground Beetles (Coleoptera, Carabidae) And Rove Beetles (Coleoptera, Staphylinidae, Pselaphinae) in the Highlands of Ecuador" (2018). All Dissertations. 2552. https://tigerprints.clemson.edu/all_dissertations/2552 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. DIVERSIFICATION AND SPECIATION PATTERNS OF GROUND BEETLES (COLEOPTERA, CARABIDAE) AND ROVE BEETLES (COLEOPTERA, STAPHYLINIDAE, PSELAPHINAE) IN THE HIGHLANDS OF ECUADOR A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Entomology by Sofía Isabel Muñoz Tobar August 2018 Accepted by: Dr. Michael S. Caterino, Committee Chair Dr. Peter Adler Dr. Antonio Baeza Dr. Sarah DeWalt ABSTRACT The tropical Andes are a biodiversity hotspot for numerous evolutionary lineages. Allopatric speciation and paleoclimatical events are the major drivers for species diversification in the tropics, especially for páramo species which show high diversity and endemicity. This dissertation elucidates speciation and diversification patterns of widely distributed species of beetles from isolated páramo patches across Ecuador, to provide insight into basic evolutionary processes for Andean insect species. Sampling targeted 17 sites in the páramo ecosystem (3500 – 4000 m), with pitfall trapping, hand collecting and leaf litter sampling. -
Simon Grove Tabled Paper
RESOURCES PROJECT NUMBER: PNC142-0809 OCTOBER 2012 Persistence of mature forest biodiversity elements in a production forest landscape managed under a Regional Forest Agreement This report can also be viewed on the FWPA website www.fwpa.com.au FWPA Level 4, 10-16 Queen Street, Melbourne VIC 3000, Australia T +61 (0)3 9927 3200 F +61 (0)3 9927 3288 E [email protected] W www.fwpa.com.au Persistence of mature-forest biodiversity elements in a production-forest landscape managed under a Regional Forest Agreement Prepared for Forest & Wood Products Australia By Tim Wardlaw, Simon Grove, Jayne Balmer, Andrew Hingston, Lynette Forster, Christina Schmuki and Steve Read Publication: Persistence of mature forest biodiversity elements in a production forest landscape managed under a Regional Forest Agreement Project No: PNC142-0809 © 2012 Forest & Wood Products Australia Limited. All rights reserved. Forest & Wood Products Australia Limited (FWPA) makes no warranties or assurances with respect to this publication including merchantability, fitness for purpose or otherwise. FWPA and all persons associated with it exclude all liability (including liability for negligence) in relation to any opinion, advice or information contained in this publication or for any consequences arising from the use of such opinion, advice or information. This work is copyright and protected under the Copyright Act 1968 (Cth). All material except the FWPA logo may be reproduced in whole or in part, provided that it is not sold or used for commercial benefit and its source (Forest & Wood Products Australia Limited) is acknowledged. Reproduction or copying for other purposes, which is strictly reserved only for the owner or licensee of copyright under the Copyright Act, is prohibited without the prior written consent of Forest & Wood Products Australia Limited. -
Defensive Production of Formic Acid (80%) by a Carabid Beetle (Galerita Lecontei) (Predation͞chemical Defense͞secretory Rate͞carabidae)
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 6792–6797, June 1997 Ecology Defensive production of formic acid (80%) by a carabid beetle (Galerita lecontei) (predationychemical defenseysecretory rateyCarabidae) CARMEN ROSSINI*, ATHULA B. ATTYGALLE†,ANDRE´S GONZA´LEZ*, SCOTT R. SMEDLEY*, MARIA EISNER*, JERROLD MEINWALD†, AND THOMAS EISNER*‡ *Section of Neurobiology and Behavior and †Department of Chemistry, Cornell University, Ithaca, NY 14853 Contributed by Thomas Eisner, April 14, 1997 ABSTRACT The carabid beetle Galerita lecontei has a pair near Lake Placid, Highlands County, FL. The few G. janus that of abdominal defensive glands that secrete a mixture of formic were also used were collected under rocks near streams in acid, acetic acid, and lipophilic components (long-chain hy- Ithaca, Tompkins County, NY. The beetles were kept in drocarbons and esters). Formic acid, at the concentration of groups in containers with soil, and maintained for weeks on 80%, is the principal constituent. The beetle ejects the secre- freshly cut up mealworms (larvae of Tenebrio molitor) and tion as a spray, which it aims accurately toward parts of the water. Body mass of G. lecontei males (n 5 10) and females body subjected to assault. At full capacity, the glands store 4.5 (n 5 4) was found to be 156 6 18 mg and 159 6 27 mg, mg of formic acid (3% of body mass), enough for upward of six respectively. ejections. The beetle reloads the glands at a rate of 126 mgof Gland Anatomy. For gross anatomical study of the glands, formic acid per day. For the approximately 500 secretory cells beetles were dissected under saline solution. -
Trachelipus Species (Crustacea, Isopoda, Oniscidea) in Romanian Fauna: Morphology, Ecology, and Geographic Distribution
NORTH-WESTERN JOURNAL OF ZOOLOGY 11 (Supplement 1): S1-S106 ©NwjZ, Oradea, Romania, 2015 Article No.: e150301 http://biozoojournals.ro/nwjz/index.html Trachelipus species (Crustacea, Isopoda, Oniscidea) in Romanian fauna: morphology, ecology, and geographic distribution Nicolae TOMESCU1*, Lucian Alexandru TEODOR1, Sára FERENȚI2, 3 and Severus-Daniel COVACIU-MARCOV2 1. “Babeş-Bolyai” University, Faculty of Biology and Geology, Department of Biology, Gheorghe Bilaşcu (Republicii) str. 44; 400015 Cluj-Napoca, Romania. 2. University of Oradea, Faculty of Sciences, Department of Biology, Universității str. 1, 410087 Oradea, Romania. 3. “Iosif Vulcan” National College, Jean Calvin str. 3, Oradea, Romania. *Corresponding author`s e-mail: [email protected] Received: 12. September 2014 / Accepted: 10. March 2015 / Available online: 15. December 2015 / Printed: December 2015 Abstract. Specific morphological characters are re-described in 12 species of Trachelipus genus, found in Romanian fauna: T. trilobatus (Stein, 1859), T. ater (Budde-Lund, 1896), T. varae (Radu, 1949), T. ratzeburgii (Brandt, 1833), T. bujori (Radu, 1950), T. difficilis (Radu, 1950), T. affinis (Koch, 1841) = T. wächtleri (Strouhal, 1851), T. arcuatus (Budde-Lund, 1885), T. rathkii (Brandt, 1833), T. pleonglandulatus (Radu, 1950), T. nodulosus (Koch, 1838), T. squamuliger (Verhoeff, 1907). Descriptions are illustrated with figures for all characters. The species, which were synonymised in the past, are described comparatively (T. varae and T. ater, T. bujori and T. ratzeburgii, T. difficilis and T. affinis = T. wächtleri, T. pleonglandulatus and T. rathkii). The comparative descriptions emphasize that the synonymised species are valid. The variations of some morphological characters and morphological anomalies observed on the studied specimens are noted in each species.