Polymorphic with Efficiency, of the Opinion That a Terminology Peculiar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OSA News, February 2017, Volume 41, Number 5
orchids alberta.com Orchid Society of Alberta February 2017 Volume 41, Number 5 President’s Message FOCUS ON PHALAENOPSIS SOMETHING TO CELEBRATE This year we are celebrating our 40th Our hard-working Show Committee has ✦ Patrick van Adrichem knows annual show and sale. Orchid Fair will been busy behind the scenes getting Phals – come and share the once again be held in the beautiful, warm everything in place. You the dedicated joy of growing these most and sunny Moon Flower Room at the volunteer make Orchid Fair possible, so rewarding of orchids! Enjoy Centre in St. Albert. The focus of be sure to sign up for a job or two at the the show is to display your orchids for next meeting. If you can’t make the judging, so start grooming those blooming meeting, you can sign up by contacting INSIDE THIS ISSUE plants for display. Every plant counts, so if our show volunteer coordinator, Yp (that’s you are not entering your own display pronounced “Eep”) de Boer, at ypentom@ February Meeting ........ 2 please bring your plants for the Society telusplanet.net. In addition to earning you Coming Events ........... 3 display. If you only have a few show- free admission to the show, volunteering is worthy orchids, make sure to attend this great fun and a wonderful opportunity to Meeting Calendar ........ 3 month’s culture session, which will present socialize and contribute to the success of Orchid Fair 2017 .......... 4 ideas for making small displays with five our Society. or fewer plants. ...continues on page 5 Membership Matters .... -
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
Creating Jobs, Protecting Forests?
Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements The Wilderness Society. 2020, Creating Jobs, Protecting Forests? The State of the Nation’s RFAs, The Wilderness Society, Melbourne, Australia Table of contents 4 Executive summary Printed on 100% recycled post-consumer waste paper 5 Key findings 6 Recommendations Copyright The Wilderness Society Ltd 7 List of abbreviations All material presented in this publication is protected by copyright. 8 Introduction First published September 2020. 9 1. Background and legal status 12 2. Success of the RFAs in achieving key outcomes Contact: [email protected] | 1800 030 641 | www.wilderness.org.au 12 2.1 Comprehensive, Adequate, Representative Reserve system 13 2.1.1 Design of the CAR Reserve System Cover image: Yarra Ranges, Victoria | mitchgreenphotos.com 14 2.1.2 Implementation of the CAR Reserve System 15 2.1.3 Management of the CAR Reserve System 16 2.2 Ecologically Sustainable Forest Management 16 2.2.1 Maintaining biodiversity 20 2.2.2 Contributing factors to biodiversity decline 21 2.3 Security for industry 22 2.3.1 Volume of logs harvested 25 2.3.2 Employment 25 2.3.3 Growth in the plantation sector of Australia’s wood products industry 27 2.3.4 Factors contributing to industry decline 28 2.4 Regard to relevant research and projects 28 2.5 Reviews 32 3. Ability of the RFAs to meet intended outcomes into the future 32 3.1 Climate change 32 3.1.1 The role of forests in climate change mitigation 32 3.1.2 Climate change impacts on conservation and native forestry 33 3.2 Biodiversity loss/resource decline 33 3.2.1 Altered fire regimes 34 3.2.2 Disease 35 3.2.3 Pest species 35 3.3 Competing forest uses and values 35 3.3.1 Water 35 3.3.2 Carbon credits 36 3.4 Changing industries, markets and societies 36 3.5 International and national agreements 37 3.6 Legal concerns 37 3.7 Findings 38 4. -
Seidenfaden Malaysia: 0.65 These Figures Are Surprisingly High, They Apply to Single Only. T
BIOGEOGRAPHY OF MALESIAN ORCHIDACEAE 273 VIII. Biogeographyof Malesian Orchidaceae A. Schuiteman Rijksherbarium/Hortus Botanicus, P.O. Box 9514, 2300 RA Leiden, The Netherlands INTRODUCTION The Orchidaceae outnumber far other in Malesia. At how- by any plant family present, accurate estimate of the of Malesian orchid is difficult to make. ever, an number species Subtracting the numberofestablishedsynonyms from the numberof names attributed to Malesian orchid species results in the staggering figure of 6414 species, with a retention of 0.74. This is ratio (ratio of ‘accepted’ species to heterotypic names) undoubtedly a overestimate, of the 209 Malesian orchid have been revised gross as most genera never their entire from availablerevisions estimate realis- over range. Extrapolating to a more tic retention ratio is problematic due to the small number of modern revisions and the different of treated. If look for Malesian of nature the groups we comparison at species wide ofretention ratios: some recently revised groups, we encounter a range Bulbophylluw sect. Uncifera (Vermeulen, 1993): 0.24 Dendrobium sect. Oxyglossum (Reeve & Woods, 1989): 0.24 Mediocalcar (Schuiteman, 1997): 0.29 Pholidota (De Vogel, 1988): 0.29 Bulbophyllum sect. Pelma (Vermeulen, 1993): 0.50 Paphiopedilum (Cribb, 1987, modified): 0.57 Dendrobium sect. Spatulata (Cribb, 1986, modified): 0.60. Correspondingly, we find a wide rangeof estimates for the ‘real’ numberof known Male- sian orchid species: from 2050 to 5125. Another approach would be to look at a single area, and to compute the retention ratio for the orchid flora of that area. If we do this for Java (mainly based on Comber, 1990), Peninsular Malaysia & Singapore (Seidenfaden & Wood, 1992) and Sumatra (J.J. -
The Discovery of 2,5-Dialkylcyclohexan-1,3-Diones As a New Class of Natural Products
The discovery of 2,5-dialkylcyclohexan-1,3-diones as a new class of natural products S. Frankea, F. Ibarraa, C. M. Schulza, R. Twelea, J. Poldyb, R. A. Barrowb, R. Peakallc, F. P. Schiestld, and W. Franckea,1 aDepartment of Chemistry, Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany; bDepartment of Chemistry and cDepartment of Botany and Zoology, School of Biology, Australian National University, Canberra ACT 0200, Australia; and dInstitute of Systematic Botany, University of Zu¨rich, Zollikerstrasse 107, CH-8008 Zu¨rich, Switzerland Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved March 31, 2009 (received for review January 22, 2009) Orchids employing sexual deceit attract males of their pollinator candidate compounds, followed by coupled gas chromatography/ species through specific volatile signals that mimic female-released mass spectrometry (GC/MS) to determine their chemical struc- sex pheromones. One of these signals proved to be 2-ethyl-5- tures. Confirmation of biological activity with synthetic com- propylcyclohexan-1,3-dione (chiloglottone1), a new natural prod- pounds during field bioassays was the final essential step (11–13). uct that was shown to be most important in the relations between A milestone in the understanding of thynnine wasp phero- orchids of the genus Chiloglottis, native to Australia, and corre- mones and the attractive principles of orchids that mimic them sponding pollinator species. Systematic investigations on the mass has been the identification of 2-ethyl-5-propylcyclohexan-1,3- spectrometric fragmentation pattern of 2,5-dialkylcyclohexan-1,3- dione, chiloglottone1, formerly called chiloglottone, as the de- diones identified key ions providing information about the struc- cisive compound involved in the chemical mimicry used by tures of the substituents at positions 2 and 5. -
Jones Cross 2006 Index
AN INDEX AND ORCHID SPECIES CROSS REFERENCE TO JONES, D.L. (2006) A Complete Guide to Native Orchids of Australia including the Island Territories Compiled by David Gillingham - A.N.O.S. (Qld) Kabi Group Inc. Contents: Page 1: Contents Explanations/Introduction References General Comments Page 2: The Jones "Dendrobium Alliance" - Comments, Notes, Cross Index Page 3: The Jones "Bulbophyllum Alliance" - Cross Index Page 4: The Jones "Vanda Alliance" - Notes, Cross Index Page 5: The Jones "Miscellaneous Epiphytes" - Notes, Cross Index Page 6: The Dendrobium speciosum/Thelychiton speciosus Complex Explanations/Introduction: There can be little doubt that David Jones's (2006) book A Complete Guide to Native Orchids of Australia including the Island Territories provides probably the most current and most comprehensive coverage of Australia's native orchids available between one set of covers. However whether, and to what extent, the very substantial taxonomic restructure presented in the book is accepted by the professional botanical community, only time will tell. In the meantime, while many orchid growers will enthusiastically embrace these new taxonomies, many others will exercise their valid right to continue labelling their orchids using the older taxa, waiting for the dust to settle on the scientific debate. In either regard there are difficulties for users of Jones's book, in their attempt to relate many of these new taxa to older species descriptors. The individual species entries in the text provide no prior taxonomic information whatever; and the index is of limited assistance, and far from complete regarding taxonomic descriptors commonly used over the past decade or so. -
WHO Country Cooperation Strategy for the Commonwealth of the Northern Mariana Islands 2013-2017
WHO Country Cooperation Strategy for the Commonwealth of the Northern Mariana Islands 2013-2017 WHO Country Cooperation Strategy for the Commonwealth of the Northern Mariana Islands 2013-2017 © World Health Organization 2012 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). For WHO Western Pacific Regional Publications, request for permission to reproduce should be addressed to the Publications Office, World Health Organization, Regional Office for the Western Pacific, P.O. Box 2932, 1000, Manila, Philippines, (fax: +632 521 1036, e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
Pollia Condensata Has an Extraordinary Blue Fruit Known for Its High Intensity Reflectivity, and Glittery Appearance
LIVING LIGHT 2018 3 CONTENTS Introduction ....................................................... 3 Scientific commitee ............................................. 4 Local organising commitee ................................... 4 Graphics ............................................................ 4 History .............................................................. 5 Timetable .......................................................... 6 Find us .............................................................11 Abstracts, invited lectures ...................................13 Abstracts, lectures .............................................21 Abstracts, posters ..............................................67 List of participants .............................................92 Contacts...........................................................96 Sponsors ..........................................................97 Notes ...............................................................98 4 5 INTRODUCTION Dear Living Light 2018 Participant, It is an honour for us to host such an exciting meeting in Cambridge and we thank you for joining us! We designed the meeting with the intention of maximising interaction between the participants and with the hope that you will go back home with a new set of collaborators and friends which are as passionate as you are about working at the interface between biology, chemistry, physics, and engineering! We truly hope that you will enjoy the conference and we ask for your collaboration to keep the meeting -
Supplementary Material Saving Rainforests in the South Pacific
Australian Journal of Botany 65, 609–624 © CSIRO 2017 http://dx.doi.org/10.1071/BT17096_AC Supplementary material Saving rainforests in the South Pacific: challenges in ex situ conservation Karen D. SommervilleA,H, Bronwyn ClarkeB, Gunnar KeppelC,D, Craig McGillE, Zoe-Joy NewbyA, Sarah V. WyseF, Shelley A. JamesG and Catherine A. OffordA AThe Australian PlantBank, The Royal Botanic Gardens and Domain Trust, Mount Annan, NSW 2567, Australia. BThe Australian Tree Seed Centre, CSIRO, Canberra, ACT 2601, Australia. CSchool of Natural and Built Environments, University of South Australia, Adelaide, SA 5001, Australia DBiodiversity, Macroecology and Conservation Biogeography Group, Faculty of Forest Sciences, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany. EInstitute of Agriculture and Environment, Massey University, Private Bag 11 222 Palmerston North 4474, New Zealand. FRoyal Botanic Gardens, Kew, Wakehurst Place, RH17 6TN, United Kingdom. GNational Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia. HCorresponding author. Email: [email protected] Table S1 (below) comprises a list of seed producing genera occurring in rainforest in Australia and various island groups in the South Pacific, along with any available information on the seed storage behaviour of species in those genera. Note that the list of genera is not exhaustive and the absence of a genus from a particular island group simply means that no reference was found to its occurrence in rainforest habitat in the references used (i.e. the genus may still be present in rainforest or may occur in that locality in other habitats). As the definition of rainforest can vary considerably among localities, for the purpose of this paper we considered rainforests to be terrestrial forest communities, composed largely of evergreen species, with a tree canopy that is closed for either the entire year or during the wet season. -
Thynninorchis Nothofagicola Nothofagicola (Myrtle Elbow Orchid)
Listing ThynninorchisStatement for Thynninorchis nothofagicola nothofagicola (myrtle elbow orchid) myrtle elbow orchid T A S M A N I A N T H R E A T E N E D F L O R A L I S T I N G S T A T E M E N T Image by Les RubenachD Scientific name: Thynninorchis nothofagicola (D.L.Jones) D.L.Jones & M.A.Clem., Orchadian 13(10): 457 (2002) Common name: myrtle elbow orchid (Wapstra et al. 2005) Group: vascular plant, monocotyledon, family Orchidaceae Name History: Arthrochilus huntianus subsp. nothofagicola Status: rThreatened Species Protection Act 1995: endangered Environment Protection and Biodiversity Conservation Act 1999: Critically Endangered Distribution: Endemic status: Endemic to Tasmania Tasmanian NRM Region: South a f t Figure 1. Distribution of Thynninorchis nothofagicola, Plate 1. Thynninorchis nothofagicola flower showing Natural Resource Management regions. (image by Les Rubenach, 1995) Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Thynninorchis nothofagicola (myrtle elbow orchid) IDENTIFICATION AND ECOLOGY CONFUSING SPECIES Myrtle elbow orchid is so named because the There are no confusing species within similar labellum is jointed and elbow-like, and the habitat in Tasmania. Thynninorchis nothofagicola species grows in mixed forest where myrtle can be distinguished from the allied (Nothofagus cunninghamii) is the dominant Thynninorchis huntianus by its labellum hinge understorey species. Both species of which is only partially functional, and its fewer Thynninorchis in Tasmania, Thynninorchis and smaller flowers with a much reduced nothofagicola and Thynninorchis huntianus, are labellum callus with fewer shorter bristles leafless saprophytes that reproduce only from (Jones et al. -
Department of the Interior
Vol. 79 Wednesday, No. 190 October 1, 2014 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for 21 Species and Proposed Threatened Status for 2 Species in Guam and the Commonwealth of the Northern Mariana Islands; Proposed Rule VerDate Sep<11>2014 17:56 Sep 30, 2014 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\01OCP2.SGM 01OCP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 59364 Federal Register / Vol. 79, No. 190 / Wednesday, October 1, 2014 / Proposed Rules DEPARTMENT OF THE INTERIOR ES–2014–0038; Division of Policy and butterfly (Hypolimnas octocula Directives Management; U.S. Fish & mariannensis; NCN), the Mariana Fish and Wildlife Service Wildlife Headquarters, MS: BPHC, 5275 wandering butterfly (Vagrans egistina; Leesburg Pike, Falls Church, VA 22041– NCN), the Rota blue damselfly (Ischnura 50 CFR Part 17 3803. luta; NCN), the fragile tree snail [Docket No. FWS–R1–ES–2014–0038: We request that you send comments (Samoana fragilis; akaleha), the Guam 4500030113] only by the methods described above. tree snail (Partula radiolata; akaleha), We will post all comments on http:// the humped tree snail (Partula gibba; www.regulations.gov. This generally akaleha), and Langford’s tree snail RIN 1018–BA13 means that we will post any personal (Partula langfordi; akaleha)). Two plant species (Cycas micronesica (fadang) and Endangered and Threatened Wildlife information you provide us (see Public Tabernaemontana rotensis (NCN)) are and Plants; Proposed Endangered Comments below for more information). proposed for listing as threatened Status for 21 Species and Proposed FOR FURTHER INFORMATION CONTACT: species.