Demography of the Giant Barrel Sponge Xestospongia Muta in the Florida Keys

Total Page:16

File Type:pdf, Size:1020Kb

Demography of the Giant Barrel Sponge Xestospongia Muta in the Florida Keys DEMOGRAPHY OF THE GIANT BARREL SPONGE XESTOSPONGIA MUTA IN THE FLORIDA KEYS Steven E. McMurray A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Biology and Marine Biology University of North Carolina Wilmington 2008 Approved by Advisory Committee Thomas E. Lankford Martin H. Posey Joseph R. Pawlik Chair Accepted by ______________________________ Dean, Graduate School TABLE OF CONTENTS ABSTRACT ................................................................................................................................ iv ACKNOWLEDGEMENTS.......................................................................................................... vii DEDICATION............................................................................................................................. viii LIST OF TABLES......................................................................................................................... ix LIST OF FIGURES ....................................................................................................................... xi LIST OF APPENDICES..............................................................................................................xiv CHAPTER 1. DEMOGRAPHICS OF INCREASING POPULATIONS OF THE GIANT BARREL SPONGE XESTOSPONGIA MUTA IN THE FLORIDA KEYS.....................................................................................................1 Abstract................................................................................................................................1 Introduction..........................................................................................................................2 Methods................................................................................................................................5 Study sites and monitoring............................................................................. 5 Demographic modeling.................................................................................. 6 Data analysis ................................................................................................ 10 Results................................................................................................................................13 Transition matrices....................................................................................... 16 Discussion..........................................................................................................................23 Population dynamics and structure .............................................................. 23 Cause of increasing populations .................................................................. 30 Implications of increasing populations and changing population structure. 33 Literature cited...................................................................................................................36 CHAPTER 2. REDWOOD OF THE REEF: GROWTH AND AGE OF THE GIANT BARREL SPONGE XESTOSPONGIA MUTA IN THE FLORIDA KEYS...................................................................................................65 Abstract..............................................................................................................................65 Introduction........................................................................................................................66 Materials and methods .......................................................................................................67 Study sites and monitoring........................................................................... 68 Field measurements ..................................................................................... 68 Digital image measurements........................................................................ 70 Growth models............................................................................................. 72 Results................................................................................................................................75 Growth rates................................................................................................. 75 Spongocoel volume...................................................................................... 77 Scaling.......................................................................................................... 77 Growth models............................................................................................. 78 Discussion..........................................................................................................................79 Redwood of the reef?................................................................................... 79 Growth rates................................................................................................. 80 Spongocoel volume...................................................................................... 84 ii Scaling.......................................................................................................... 85 gVBGF and Tanaka growth models ............................................................ 86 Implications for conservation and management .......................................... 88 References..........................................................................................................................90 CHAPTER 3. BLEACHING OF THE GIANT BARREL SPONGE XESTOSPONGIA MUTA IN THE FLORIDA KEYS .........................................106 Abstract............................................................................................................................106 Introduction......................................................................................................................106 Materials and methods .....................................................................................................108 Results and discussion .....................................................................................................109 References........................................................................................................................113 CHAPTER 4. A NOVEL TECHNIQUE FOR THE REATTACHMENT OF LARGE CORAL REEF SPONGES ....................................................................120 Abstract............................................................................................................................120 Introduction......................................................................................................................120 Methods............................................................................................................................121 Results..............................................................................................................................123 Discussion........................................................................................................................124 Implications for Practice..................................................................................................125 Literature cited.................................................................................................................126 APPENDIX ..............................................................................................................................131 iii ABSTRACT Coral reefs are in decline worldwide, prompting research toward a better understanding of the demographics of dominant organisms that comprise reef communities. Sponges are an especially abundant and diverse group on Caribbean coral reefs that perform key community functions, however little is known about sponge demography. The giant barrel sponge Xestospongia muta a particularly important species; populations constitute a significant amount of overall reef biomass, are an important component of habitat heterogeneity, and filter large amounts of seawater. Since 1997, the Pawlik laboratory has monitored permanent transects on reefs off Key Largo, Florida, to study the demography of X. muta. This long-term dataset was used, along with experimental approaches, to address topics on the demography, growth, bleaching, and conservation of X. muta. In the first chapter, I examined the population dynamics and structure of X. muta on reefs off the Florida Keys. Population densities of X. muta were found to significantly increase over 6 years at sites on Conch and Pickles Reefs. To explore the demographic processes behind the population increase and determine future population growth under present reef conditions, a size- based matrix modeling approach was used. Variable recruitment pulses and mortality events were hypothesized to be large determinants of the demographic patterns observed for X. muta. Elasticity and life table response analysis revealed that survival of individuals in the largest size class has the greatest effect on population growth. Projections indicate that populations of X. muta will continue to increase under present conditions, and therefore maintain the alternate reef community. While populations of X. muta remain resilient to current coral reef degradation, population growth may be negatively affected by continued mortality of the largest individuals from a recently described pathogenic syndrome. iv Xestospongia muta has been called
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Caribbean Wildlife Undersea 2017
    Caribbean Wildlife Undersea life This document is a compilation of wildlife pictures from The Caribbean, taken from holidays and cruise visits. Species identification can be frustratingly difficult and our conclusions must be checked via whatever other resources are available. We hope this publication may help others having similar problems. While every effort has been taken to ensure the accuracy of the information in this document, the authors cannot be held re- sponsible for any errors. Copyright © John and Diana Manning, 2017 1 Angelfishes (Pomacanthidae) Corals (Cnidaria, Anthozoa) French angelfish 7 Bipinnate sea plume 19 (Pomacanthus pardu) (Antillogorgia bipinnata) Grey angelfish 8 Black sea rod 20 (Pomacanthus arcuatus) (Plexaura homomalla) Queen angelfish 8 Blade fire coral 20 (Holacanthus ciliaris) (Millepora complanata) Rock beauty 9 Branching fire coral 21 (Holacanthus tricolor) (Millepora alcicornis) Townsend angelfish 9 Bristle Coral 21 (Hybrid) (Galaxea fascicularis) Elkhorn coral 22 Barracudas (Sphyraenidae) (Acropora palmata) Great barracuda 10 Finger coral 22 (Sphyraena barracuda) (Porites porites) Fire coral 23 Basslets (Grammatidae) (Millepora dichotoma) Fairy basslet 10 Great star coral 23 (Gramma loreto) (Montastraea cavernosa) Grooved brain coral 24 Bonnetmouths (Inermiidae) (Diploria labyrinthiformis) Boga( Inermia Vittata) 11 Massive starlet coral 24 (Siderastrea siderea) Bigeyes (Priacanthidae) Pillar coral 25 Glasseye snapper 11 (Dendrogyra cylindrus) (Heteropriacanthus cruentatus) Porous sea rod 25 (Pseudoplexaura
    [Show full text]
  • Prokaryotic Communities of Indo-Pacific Giant Barrel Sponges Are More Strongly Influenced by Geography Than Host Phylogeny
    FEMS Microbiology Ecology, 94, 2018, fiy194 doi: 10.1093/femsec/fiy194 Advance Access Publication Date: 4 October 2018 Research Article RESEARCH ARTICLE Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny TSwierts1,2,*, DFR Cleary3 and NJ de Voogd1,2 1Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands, 2Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands and 3Departamento de Biologia CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal ∗Corresponding author: Marine Biodiversity, Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands. Tel: +31 (0)71 7519615. E-mail: [email protected] One sentence summary: The prokaryotic communities of multiple giant barrel sponge species in the Indo-Pacific are more strongly influenced by geography than host phylogeny. Editor: Julie Olson ABSTRACT Sponges harbor complex communities of microorganisms that carry out essential roles for the functioning and survival of their hosts. In some cases, genetically related sponges from different geographic regions share microbes, while in other cases microbial communities are more similar in unrelated sponges collected from the same location. To better understand how geography and host phylogeny cause variation in the prokaryotic community of sponges, we compared the prokaryotic community of 44 giant barrel sponges (Xestospongia spp.). These sponges belonged to six reproductively isolated genetic groups from eight areas throughout the Indo-Pacific region. Using Illumina sequencing, we obtained 440 000 sequences of the 16S rRNA gene V3V4 variable region that were assigned to 3795 operational taxonomic units (OTUs).
    [Show full text]
  • Giant Barrel Sponge) Population on the Southeast Florida Reef Tract Alanna D
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 7-25-2019 Spatial and temporal trends in the Xestospongia muta (giant barrel sponge) population on the Southeast Florida Reef Tract Alanna D. Waldman student, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Alanna D. Waldman. 2019. Spatial and temporal trends in the Xestospongia muta (giant barrel sponge) population on the Southeast Florida Reef Tract. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (514) https://nsuworks.nova.edu/occ_stuetd/514. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Thesis of Alanna D. Waldman Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology Nova Southeastern University Halmos College of Natural Sciences and Oceanography July 2019 Approved: Thesis Committee Major Professor: David Gilliam, Ph.D. Committee Member: Jose Lopez, Ph.D. Committee Member: Charles Messing, Ph.D. This thesis is available at NSUWorks: https://nsuworks.nova.edu/occ_stuetd/514 HALMOS COLLEGE OF NATURAL SCIENCES AND OCEANOGRAPHY Spatial and temporal trends in the Xestospongia muta (giant barrel sponge) population on the Southeast Florida Reef Tract By Alanna Denbrook Waldman Submitted to the Faculty of Halmos College of Natural Sciences and Oceanography in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University August 2019 Table of Contents List of Figures ...............................................................................................................................
    [Show full text]
  • Geographical Variability in Antibacterial Chemical Defenses of the Caribbean Sponge Xestospongia Muta
    University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2019 Geographical Variability in Antibacterial Chemical Defenses of the Caribbean Sponge Xestospongia muta Coleman Sisson University of Mississippi, [email protected] Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Sisson, Coleman, "Geographical Variability in Antibacterial Chemical Defenses of the Caribbean Sponge Xestospongia muta" (2019). Honors Theses. 1032. https://egrove.olemiss.edu/hon_thesis/1032 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. Geographical Variability in Antibacterial Chemical Defenses of the Caribbean Sponge Xestospongia muta by Coleman Riley Sisson A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2019 Approved by ____________________________________ Advisor: Dr. Deborah Gochfeld ____________________________________ Reader: Dr. Marc Slattery ____________________________________ Reader: Dr. T. Kris Harrell ã 2019 Coleman Riley Sisson ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS Thank you to the Sally McDonnell Barksdale Honors College for all of the opportunities and learning that you have provided during my time at this university. You have helped to make my experience a memorable one and I wouldn’t change anything. Thank you to my advisors Dr. Deborah Gochfeld and Dr. Marc Slattery for your guidance and patience. Your support through this process means so much to me and allowed me to create a work that I can be proud of.
    [Show full text]
  • Chemical and Bioactive Diversities of Marine Sponge Neopetrosia Mini
    A Journal of the Bangladesh Pharmacological Society (BDPS) Bangladesh J Pharmacol 2016; 11: 433-452 Journal homepage: www.banglajol.info Abstracted/indexed in Academic Search Complete, Asia Journals Online, Bangladesh Journals Online, Biological Abstracts, BIOSIS Previews, CAB Abstracts, Current Abstracts, Directory of Open Access Journals, EMBASE/Excerpta Medica, Google Scholar, HINARI (WHO), International Pharmaceutical Abstracts, Open J-gate, Science Citation Index Expanded, SCOPUS and Social Sciences Citation Index; ISSN: 1991-0088 review - Chemical and bioactive diversities of marine sponge Neopetrosia Mini Haitham Qaralleh Department of Medical Support, Al-Balqa Applied University, Al-Karak University College, Al-Karak, Jordan. Article Info Abstract Received: 26 January 2016 The marine sponge Neopetrosia contains about 27 species that is highly Accepted: 21 March 2016 distributed in Indian Ocean, Atlantic Ocean (Caribbean Sea) and Pacific Available Online: 3 April 2016 Ocean. It has proven to be valuable to the discovery of medicinal products DOI: 10.3329/bjp.v11i2.26611 due to the presence of various types of compounds with variable bio- activities. More than 85 compounds including alkaloids, quinones, sterols and terpenoids were isolated from this genus. Moreover, the crude extracts and Cite this article: the isolated compounds revealed activities such as antimicrobial, anti-fouling, Qaralleh H. Chemical and bioactive anti-HIV, cytotoxic, anti-tumor, anti-oxidant, anti-protozoal, anti-inflamma- diversities of the marine sponge Neo- tory. Because only 9 out of 27 species of the genus Neopetrosia have been petrosia. Bangladesh J Pharmacol. chemically studied thus far, there are significant opportunities to find out new 2016; 11: 433-52. chemical constituents from this genus.
    [Show full text]
  • Two New Haplosclerid Sponges from Caribbean Panama with Symbiotic Filamentous Cyanobacteria, and an Overview of Sponge-Cyanobacteria Associations
    PORIFERA RESEARCH: BIODIVERSITY, INNOVATION AND SUSTAINABILITY - 2007 31 Two new haplosclerid sponges from Caribbean Panama with symbiotic filamentous cyanobacteria, and an overview of sponge-cyanobacteria associations Maria Cristina Diaz'12*>, Robert W. Thacker<3), Klaus Rutzler(1), Carla Piantoni(1) (1) Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, USA. [email protected] (2) Museo Marino de Margarita, Blvd. El Paseo, Boca del Rio, Margarita, Edo. Nueva Esparta, Venezuela. [email protected] <3) Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA. [email protected] Abstract: Two new species of the order Haplosclerida from open reef and mangrove habitats in the Bocas del Toro region (Panama) have an encrusting growth form (a few mm thick), grow copiously on shallow reef environments, and are of dark purple color from dense populations of the cyanobacterial symbiont Oscillatoria spongeliae. Haliclona (Soestella) walentinae sp. nov. (Chalinidae) is dark purple outside and tan inside, and can be distinguished by its small oscules with radial, transparent canals. The interior is tan, while the consistency is soft and elastic. The species thrives on some shallow reefs, profusely overgrowing fire corals (Millepora spp.), soft corals, scleractinians, and coral rubble. Xestospongia bocatorensis sp. nov. (Petrosiidae) is dark purple, inside and outside, and its oscules are on top of small, volcano-shaped mounds and lack radial canals. The sponge is crumbly and brittle. It is found on live coral and coral rubble on reefs, and occasionally on mangrove roots. The two species have three characteristics that make them unique among the families Chalinidae and Petrosiidae: filamentous, multicellular cyanobacterial symbionts rather than unicellular species; high propensity to overgrow other reef organisms and, because of their symbionts, high rate of photosynthetic production.
    [Show full text]
  • Sponge Communities on Caribbean Coral Reefs Are Structured by Factors That Are Top-Down, Not Bottom-Up
    Sponge Communities on Caribbean Coral Reefs Are Structured by Factors That Are Top-Down, Not Bottom-Up Joseph R. Pawlik*, Tse-Lynn Loh, Steven E. McMurray, Christopher M. Finelli Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America Abstract Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.
    [Show full text]
  • Florida Keys Species List
    FKNMS Species List A B C D E F G H I J K L M N O P Q R S T 1 Marine and Terrestrial Species of the Florida Keys 2 Phylum Subphylum Class Subclass Order Suborder Infraorder Superfamily Family Scientific Name Common Name Notes 3 1 Porifera (Sponges) Demospongia Dictyoceratida Spongiidae Euryspongia rosea species from G.P. Schmahl, BNP survey 4 2 Fasciospongia cerebriformis species from G.P. Schmahl, BNP survey 5 3 Hippospongia gossypina Velvet sponge 6 4 Hippospongia lachne Sheepswool sponge 7 5 Oligoceras violacea Tortugas survey, Wheaton list 8 6 Spongia barbara Yellow sponge 9 7 Spongia graminea Glove sponge 10 8 Spongia obscura Grass sponge 11 9 Spongia sterea Wire sponge 12 10 Irciniidae Ircinia campana Vase sponge 13 11 Ircinia felix Stinker sponge 14 12 Ircinia cf. Ramosa species from G.P. Schmahl, BNP survey 15 13 Ircinia strobilina Black-ball sponge 16 14 Smenospongia aurea species from G.P. Schmahl, BNP survey, Tortugas survey, Wheaton list 17 15 Thorecta horridus recorded from Keys by Wiedenmayer 18 16 Dendroceratida Dysideidae Dysidea etheria species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 19 17 Dysidea fragilis species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 20 18 Dysidea janiae species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 21 19 Dysidea variabilis species from G.P. Schmahl, BNP survey 22 20 Verongida Druinellidae Pseudoceratina crassa Branching tube sponge 23 21 Aplysinidae Aplysina archeri species from G.P. Schmahl, BNP survey 24 22 Aplysina cauliformis Row pore rope sponge 25 23 Aplysina fistularis Yellow tube sponge 26 24 Aplysina lacunosa 27 25 Verongula rigida Pitted sponge 28 26 Darwinellidae Aplysilla sulfurea species from G.P.
    [Show full text]
  • Microbial Community Assembly Found with Sponge Orange Band Disease in Xestospongia Muta (Giant Barrel Sponge)
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 8-1-2014 Microbial Community Assembly found with Sponge Orange Band Disease in Xestospongia muta (Giant Barrel Sponge) Rebecca Mulheron Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography Commons Share Feedback About This Item This Thesis has supplementary content. View the full record on NSUWorks here: https://nsuworks.nova.edu/occ_stuetd/18 NSUWorks Citation Rebecca Mulheron. 2014. Microbial Community Assembly found with Sponge Orange Band Disease in Xestospongia muta (Giant Barrel Sponge). Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (18) https://nsuworks.nova.edu/occ_stuetd/18. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. NOVA SOUTHEASTERN UNIVERSITY OCEANOGRAPHIC CENTER Microbial Community Assembly found with Sponge Orange Band Disease in Xestospongia muta (Giant Barrel Sponge). By Rebecca Mulheron Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Biological Sciences Nova Southeastern University Date: August 2014 Thesis of Rebecca Mulheron Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Biological Sciences Nova Southeastern University Oceanographic Center Approved: Thesis Committee Major Professor: ______________________________ Dr. Jose Lopez, Ph.D. Committee Member: ___________________________ Dr. Aurelien Tartar, Ph.D.
    [Show full text]
  • Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
    Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
    [Show full text]
  • Scientists Discover Bacteria in Marine Sponges Harvest Phosphorus for the Reef Community 23 February 2015
    Scientists discover bacteria in marine sponges harvest phosphorus for the reef community 23 February 2015 and Environmental Technology in Baltimore. "We have known for more than 100 years that water surrounding reefs is low in nitrogen and phosphorus. Charles Darwin even pointed out this paradox. This is an important step forward in understanding how you can have such incredible biodiversity even though the surrounding water is low in phosphorus." Marine sponges live on the bottom of the ocean and are an important component of a reef ecosystem. They are filter feeders and draw nutrients from the water column, processing thousands of gallons of seawater every day. This study opens up a new window on the role that sponges play in pulling nutrients out of the water and redistributing them to the reef, a basic and Cyanobacteria strains (Leptolyngbya) isolated from the critical role for the ecosystem's survival. black ball marine sponge (Ircinia strobilina) with intracellular polyphosphate granules in yellow fluorescence. Credit: University of Maryland Center of Sponges harbor many bacteria and microbes that Environmental Science/Fan Zhang rely on the sponge for survival, and vice versa. In fact, these microorganisms can account for up to 40% of the sponge's volume. The bacteria that live in sponges may help transfer nutrients from the Did you ever wonder why the water is so clear water to the sponge, and scientists have identified around coral reefs? Scientists have known for the mechanism for holding on to phosphorus for the years that sponges can filter water and gather first time. nutrients from the ocean, making it appear crystal clear.
    [Show full text]