SILANES in SUSTAINABLE PROCESSES: APPLICATIONS in POLYMER GRAFTING, CARBON DIOXIDE CAPTURE, and GOLD NANOPARTICLE SYNTHESIS a Th
Total Page:16
File Type:pdf, Size:1020Kb
SILANES IN SUSTAINABLE PROCESSES: APPLICATIONS IN POLYMER GRAFTING, CARBON DIOXIDE CAPTURE, AND GOLD NANOPARTICLE SYNTHESIS A Thesis Presented to The Academic Faculty By Emily C. Nixon In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Chemistry Georgia Institute of Technology December, 2012 Copyright © Emily C. Nixon 2012 SILANES IN SUSTAINABLE PROCESSES: APPLICATIONS IN POLYMER GRAFTING, CARBON DIOXIDE CAPTURE, AND GOLD NANOPARTICLE SYNTHESIS Dr. Charles Liotta, co-advisor Dr. Leslie Gelbaum School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Charles Eckert, co-advisor Dr. Carson Meredith School of Chemical & Biomolecular School of Chemical & Biomolecular Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Stefan France School of Chemistry and Biochemistry Georgia Institute of Technology Date Approved: August 27, 2012 DEDICATION for Don Parkhurst who taught me to love chemistry ACKNOWLEDGEMENTS First and foremost, many thanks to my advisors, Dr. Charles Liotta and Dr. Charles Eckert, for giving me a chance. I would also like to thank the many professors I encountered during my time at Georgia Tech—some of the best classes I have ever taken have been here. I also greatly appreciate the input and feedback I’ve received from my committee members over the past few years; thank you to Dr. Stefan France, Dr. Les Gelbaum, and Dr. Carson Meredith. We all work together in this research group, and so I have many group members—former and present—to be grateful for. These include but are not limited to: Pam Pollet, Beth Cope, Elizabeth Biddinger, Steve Saunders, Amy Rohan, Wilmarie Medina- Ramos, Hillary Huttenhower, and Swetha Sivaswamy. You have smoothed my path considerably. Thank you as well to my mother and sister for being there for me. The past couple of years have been trying, but we seem to have made it through relatively intact. Bill Reuter, my grandfather, was always willing to talk shop. Fritz taught me to never give up. All my other family members, who smiled and nodded politely when I described what I was doing: thank you for being so patient. To my friends that I made while in grad school—I’m so very glad to have crossed your paths. Thanks to: Kyle Flack, Kristen Kitagawa Fisher, Oguz Karvan, Pasha Fedorenko, Mike Bayless, and Evan Davey. J.R. Johnson, thank you for all the food and libations. Natalie-Claire Woods, thank you for many hilarious meals (mostly at Ru San’s). Finally, to Ryan Hart: I couldn’t have done this without you. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS .......................................................................................................... iii LIST OF TABLES ........................................................................................................................... xi LIST OF FIGURES ........................................................................................................................ xii LIST OF ABBREVIATIONS ..................................................................................................... xxi SUMMARY .................................................................................................................................... xxvi References ............................................................................................................................... xxviii CHAPTER 1. INTRODUCTION ............................................................................................... 1 1.1 References ................................................................................................................................. 9 CHAPTER 2. A FUNDAMENTAL STUDY OF SILANE GRAFTING ONTO POLYETHYLENE ANALOGS ................................................................................................. 12 2.1 Introduction ............................................................................................................................ 12 2.2 Background ............................................................................................................................ 15 2.3 Experimental Section .......................................................................................................... 17 2.3.1 Materials ............................................................................................................................. 17 2.3.2 Experimental ..................................................................................................................... 17 2.3.2.1 Glassware Reactions ................................................................................................. 17 2.3.2.2 Parr Autoclave Reactions ......................................................................................... 18 2.3.2.3 Capping Agents ......................................................................................................... 19 2.3.2.4 Graft Analog Synthesis ............................................................................................. 19 2.3.2.5 Diluent Experiments ................................................................................................ 20 2.3.3 Instrumentation ................................................................................................................ 21 2.4 Results and Discussion ....................................................................................................... 22 2.4.1 Dodecane as Model Compound .................................................................................... 22 2.4.2 Capping Reaction with Phenyllithium ........................................................................... 26 iv 2.4.3 Heptane as Model Compound ....................................................................................... 32 2.4.4 Alternative Capping Agents ............................................................................................ 35 2.4.5 Graft Analog Synthesis .................................................................................................... 36 2.4.6 Theoretical Considerations ............................................................................................. 38 2.4.7 Separation and Analysis of Grafted Product Mixture ................................................. 43 2.4.7.1 DEPT 135 Analysis .................................................................................................. 43 2.4.7.2 Chromatotron Separations ....................................................................................... 45 2.4.7.3 Prep HPLC Separations ........................................................................................... 47 2.4.7.4 2D NMR Experiments: Di-Grafted Product Fraction ........................................ 49 2.4.7.5 Advanced NMR Experiments: Penta-Grafted Product Fraction ...................... 59 2.4.8 Diluent Experiments ........................................................................................................ 62 2.4.8.1 Dynamic Light Scattering ........................................................................................ 62 2.4.8.2 Non-Grafting Silanes ................................................................................................ 63 2.4.8.3 Carbon Dioxide ......................................................................................................... 69 2.5 Conclusions ............................................................................................................................ 70 2.6 References ............................................................................................................................... 71 CHAPTER 3. SYNTHESIS OF SILYLATED AMINES FOR POST- COMBUSTION CO2 CAPTURE ............................................................................................... 74 3.1 Introduction ............................................................................................................................ 74 3.2 Background ............................................................................................................................ 79 3.3 Experimental Section .......................................................................................................... 82 3.3.1 Materials ............................................................................................................................. 82 3.3.2 Experimental ..................................................................................................................... 83 3.3.2.1 (3-Aminopropyl)triethylsilane (TEtSA) ................................................................. 83 3.3.2.2 (3-Aminopropyl)tripropylsilane (TPSA) ................................................................ 84 3.3.2.3 (3-Aminopropyl)trihexylsilane (THSA) ................................................................. 85 v 3.3.2.4 (3-Aminopropyl)diisopropyl(1H,1H,2H,2H-perfluoropentyl)silane (FSA) ...... 86 3.3.2.5 (trans)-3-(Triethylsilyl)prop-2-en-1-amine (trans-TEtSA) ..................................... 86 3.3.2.6 2-Methyl-3-(triethylsilyl)propylamine (βMTEtSA) ............................................... 87 3.3.2.6.1 Overman Rearrangement .................................................................................. 87 3.3.2.6.2 Hydrosilylation ................................................................................................... 88 3.3.2.7 4-(Triethylsilyl)-butyl-2-amine