CDH-Price-List.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

CDH-Price-List.Pdf 2015 2016 PRICE LIST PL-34 OCHJ O 2C 2O H at a glance... Rich experience of more than 30 years Highly qualified and experienced team Professional management ISO 9001:2008 OHSAS 18001:2007 WHO GMP CERTIFIED DUNS NO 92-028-4838 your partner in research since 1981 Dear Customers, We are glad to release our new catalogue and it is our pleasure to thank you all for your kind patronage and support which makes us more stronger every year to serve you with bests of our capabilities.. Idea Innovation and invention are the part of our company policy and this year has come with the several consolidation of all . We are pleased to inform you that introduces new products every year with the growing demand and meet your requirements and be a part of your research always. Now has expanded the production capacity by setting second state-of-the-art manufacturing facility at Dahej– Gujarat place which competes all the International Industrial hubs across the Asia. The area is spread over 35000 sqm nearly 8.6 acres of land in compliance to GMP with ultra modern infrastructure. We would utilize the 6000 litres state-of-the-art for high purity solvents with the storage capacity of 300000 litres of solvents. Every year we add on Super Stockists / Distributors / Stockists to ensure availability at your door step, we have two company operated stock points at Bhiwandi (Mumbai) and Vadodara (Gujarat )with the well settled team of technicians marketing, administration and operation is our main power to serve our valued customers over the years with the efficient management of the company. Team - Production Unit and R&D Center W E I V D 3 PRODUCTION CAPABILITIES SOLVENTS CDH has the complete in house production facilities. We have highly sophisticated facilities for distillation and purification of different kind of solvents. CDH offers the most comprehensive range of solvents from HPLC to Electronic grade to Dry solvents. We utilize over 7000 liters state of the art distillation reactors of both SS / GLR for high purity solvents. Our storage capacity is over 140000 liters with our current capacity, we can increase our production and packaging capability to meet the requirements of our customers worldwide. EQUIPMENTS CAPACITY S. S. Distillation unit cum reactor 1000L S. S. Distillation unit cum reactor 230L Glasslined reactor with Distillation unit 600L Glasslined reactor with Distillation unit 1600L Glasslined reactor with Distillation unit 200L Glass Distillation cum reactor 100L Glass Distillation unit 50L Glass Distillation unit 20L Our tireless efforts to maintain consistent quality SOLIDS CDH is recognized as a benchmark for wide range of products of high purity. Our Analytical Reagent grade is in compliance to the specification of IP, BP, USP and EP grades. We also produce MB (Molecular Biology Reagents), Reagents for Microbiology, Reagents for Biochemistry, etc. using superior quality raw material. During manufacturing our team of engineers ensures that the quality and purity of each product is as per specification by conducting series of tests at different stages of production. Environmental & Safety concerns are also taken into account. Our production operation offers a wide range of products under one roof. Our engineers and chemists employ variety of ultra modern techniques for the development of new products. EQUIPMENTS CAPACITY S.S. Evaporating pan jacketed 1000L S.S. Evaporating pan jacketed 750L S.S. Jacketed crystalliser pan 500L Glasslined Jacketed evaporating pan 500L Glasslined Jacketed evaporating pan 50L S.S. Evaporating pan jacketed 50L S.S. 316 High pressure autoclave 10L S.S Vibrator / Shifter S.S. Centrifuge Basket size dia 24, 18, 10 S.S 316 Nutsche filter 250 L S.S 316 Nutsche filter 130 L Steam heated tray dryer 12 tray Steam heated tray dryer 24 tray Steam / Electric heated tray dryer 48 tray CDH ensures all the products have clearly defined specifications guranteed by careful and sophisticated quality control with compliance to the international standard requirements. Our Q C and R & D departments are equipped with highly modern and sophisticated facilities to attain precise results We at CDH feel that Quality is the most important aspect without any substitute. In addition to that we are constantly monitoring our sales and customer care services to build closer relation with our customers. Certification ! ISO 9001:2008 ! OHSAS 18001:2007 ! WHO GMP CERTIFIED [email protected] GHS Explosives L T Best before:Mfd.:BatchNo. Acute oxicity C a CONTR QU IMPORTANT : No liability accepted for accidents E R in handling or use. Packed for servicing industry ALITY b T (Including industrial quality control laboratories, I F OL academic & research institutions universities etc.) I e –Hazar E Customer care : [email protected] D www.cdhfinechemical.com l s Central DrugHouse(P)Ltd. p CAS NO:75-05-8 CH e CAS No. 3 CN formula molecular c i m mfg date Flammable Liquids Skin Corrosion e d Pictograms information hazardous n Y Acetonitrile 700630 product name O product code U batch no. R GHS NO M. W P A molecular .: 41.05 weight R T Oxidizing Liquids N Skin Irration E 7/28 V R Boiling Refractive Wt. Minimum than Description for HPLC&Spectroscopy ardaan House,Daryaganj,NewDelhi-1 I N per 10 range ml Hazen R assay at index E : 20 A S units Pack Size: O (GC) n C clear E 20 address D in A colour liquid, R C Compressed Gases Aspiration Hazard 0.780-0.783g pack size 1.343-1.345 . H CMR not 2.5Lit 81-83 S 99.7% more 1) I , STOT O N C C Acidity W Non-V Maximum 230 200 190 Max. 10002 (INDIA) ater E , nm nm nm 2) absorbance olatile (CH 1 - - - grade www 9 limits 3 COOH) matter 8 1 .cdhfinechemical.com of (1 impurities: cm Aquatic Environment Corrosive toMetals Hazardous tothe cell) : (UV -cut-off) 0.0005% specification 0.001% 0.05% 0.01 0.1 1.0 Co mpl PR ete a OD cces UC s to T onl IN Material Safety ine FO Data Sheet CO R A / M MA a SD TIO t ww S / N w.c SPE dhf CIF inec ICA hem TION ical .com Central Drug House (P) Ltd. Corp. Office : 7/28, Vardaan House, Ansari Road, Daryaganj, New Delhi-110002 (INDIA) Phone : +91-11- 49404040 (100 Lines) Fax : +91-11- 49404050 E-mail : [email protected] Website : www.cdhfinechemical.com Central Drug House (P) Ltd. AN ISO 9001:2008 CERTIFIED COMPANY Manufacturers of : Laboratory Fine Chemicals & Dehydrated Culture Media Central Drug House (P) Ltd. AN ISO 9001:2008 CERTIFIED COMPANY Manufacturers of : Laboratory Fine Chemicals & Dehydrated Culture Media Q UA CO ALI NT TY RO CE L RTIFIED QUALITY CONTROL D In compliance with standard specifications of CDH IFIE This COA has been generated electronically and it is valid without signature. CERT Corp. Office : 7/28, Vardaan House, Ansari Road, Phone : +91-11- 49404040 (100 Lines) E-mail : [email protected] Daryaganj, New Delhi-110002(India) Fax : +91-11-49404050, 23280932 Website : www.cdhfinechemical.com microgen Dehydrated Culture Media Corp. Office : 7/28, Vardaan House, Ansari Road, Phone : +91-11- 49404040 (100 Lines) E-mail : [email protected] / Base / Supplements / Discs Daryaganj, New Delhi-110002(India) Fax : +91-11-49404050, 23280932 Website : www.cdhfinechemical.com CE Certified ANALYTICAL REAGENT (AR) The Price-List covers many AR Products conforming to the highest international standards for Analytical and Research work of the most responsible character. The trace impurities in these Products are restricted to the lowest possible limits for the utmost precision in laboratory work. We have designed a lot of products to meet the analytical specifications of IP, BP, USP, EP to fulfill the requirements of Pharma Industry. FOR SYNTHESIS (LR & EP) General purpose reagents used in many potential applications in chemical laboratories, careful control ensures that a consistently high defined quality is maintained throughout. FOR MICROSCOPY M i c r o s c o p y s t a i n s a r e standardised by UV spectrum and c o n t ro l l e d b y T L C . T h e y Grades of correspond normally to the specifications given in H.J. Conn's Purity Biological Stain (1977). FOR BIOCHEMISTRY Highly Purified Reagents for use in Biochemical research and analysis. They are free from inhibits such as traces of heavy metals and tested with a view for Biochemical work. FOR MICROBIOLOGY Products which have been specially purified and tested for their microbiological applications. PURE, PURIFIED DIAGNOSTIC REAGENTS Purified commercial These are specially products used in many produced for the use of chemical laboratories. various hospitals, clinical & pathological laboratories for diagnostic purpose. HPLC GRADE C o n t i n u i n g advances in the use of HPLC have DRY SOLVENTS led to an increased These solvents are d e m a n d f o r p r o c e s s e d & s o l v e n t s a n d distilled with drying reagents in wider agents to obtain a r a n g e o f minimum possible application areas, particularly for biomolecular and ion moisture content separation. Key parameters such as UV absorbance, a n d a r e m o s t transmittance, non-volatile matter, moisture content, suitable for Moisture fluorescence impurities and assay are very carefully Sensitive Reactions. controlled. SPECTROSCOPY GRADE BUFFERS These are solvents of high optical Suitable for purity for UV / Visible / IR / working where pH Fluorescence / NMR and Mass varies in the field of spectroscopy. The certificate of Biochemistry / guarantee includes assay, Biotechnology.
Recommended publications
  • Energy Efficiency And
    Progress with The Energy Policy Review: A Perspective OIES Seminars 7 October 2003 John Bower Overview What the White Paper Said Reality Dawns An alternative 20:20 Vision John Bower Progress on UK Energy White Paper 2 What the White Paper Said UKEWP refocused energy policy away from a UK driven liberalisation agenda… GOALS AND POLICIES 1. Reduce CO2 emissions by 60% by 2050 Reduce amount of energy we consume Central to future market and policy will be emissions trading Raise efficiency standards in home appliances and housing Encourage low carbon fuels and renewables through grants and subsidy 2. Maintain reliability of energy supplies Right infrastructure / regulatory systems in UK and liberalisation of Europe Pursue regional stability and economic reform in producing areas Promote understanding of markets and conditions for FDI in producing areas Forward prices will signal the need for investment Improve contingency planning in dealing with major incidents John Bower Progress on UK Energy White Paper 3 What the White Paper Said …. towards an EU driven multifaceted agenda GOALS AND POLICIES 3. Promote competitive markets in UK and beyond Raise rate of sustainable economic growth Support business and competitiveness through reliable / affordable energy Encourage firms to innovate, reduce cost, deliver better goods and services Use market based instruments to deliver policy goals Work with business to prepare them for the low carbon economy of the future 4. Ensure that every home is adequately and affordably heated Reduce poverty by lowering prices and raising social security payments Improve quality of housing stock via insulation and energy efficiency grants John Bower Progress on UK Energy White Paper 4 What the White Paper Said UKEWP relied on carbon trading and uneconomic/unproven technology… ENERGY SYSTEM IN 2020 1.
    [Show full text]
  • Chemical Analysis of Extracting Transition Metal Oxides from Polymetallic Ore by Sulphate Process
    EPJ Web of Conferences 140, 13004 (2017) DOI: 10.1051/ epjconf/201714013004 Powders & Grains 2017 Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process Otgon-Uul Enkh-Uyanga1, Baatar Munkhtsetseg 1*, Urtnasan Urangoo2, Enkhtur Tserendulam1 and Davaadorj Agiimaa1 1 Chemistry Department, Ulaanbaatar State University, 13343, U1aanbaatar , Mongolia 2 Charles Sturt University, Canberra 2602 ACT, Australia Abstract. In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis. Keywords: polymetallic ore, anatase, brookite, hematite, rare earth oxides Introduction: Mongolia is a country rich in process at various degrees of water whereas transition polymetallic ores. There is an increased demand for metal sulphates solubility differ. research of the processing polymetallic ores by removing There are certain solutes, which have independently fair impurities and forming refined minerals as transition degree of solubility to temperature change.
    [Show full text]
  • Characterization of Strychnine Binding Sites in the Rodent
    CHARACTERIZATION OF STRYCHNINE BINDING SITES IN THE RODENT SPINAL CORD BY VINCENT MAURICE O’CONNOR UNIVERSITY COLLEGE LONDON A thesis submitted for the degree of Doctor of Philosophy from the University of London, 1992. I ProQuest Number: 10608898 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10608898 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 This thesis is dedicated to the select band o f people, including the most recent arrivals and the sorely missed departed, that I hold closest in my affections. "At the end of the day" they make It all worthwhile. Remember, in the words of the famous actor whose name at present escapes me; "Nobody said it would be easy". Although my own feeling is that Nobody was probably wrong. II Thesis abstract The convulsant alkaloid strychnine is a selective and highly potent antagonist at postsynaptic receptor for the inhibitory neurotransmitter glycine . These properties have led to the extensive use of strychnine as a ligand to probe the postsynaptic glycine receptor. Despite the recent increased understanding of the molecular structure of this receptor protein there is still much dispute as to the nature of the interaction between glycine and strychnine.
    [Show full text]
  • MI4A Vaccine Purchase Data for Countries This Note Is Intended to Guide Countries in Their Use of the MI4A Vaccine Purchase Data
    MI4A Vaccine Purchase Data for Countries This note is intended to guide countries in their use of the MI4A vaccine purchase data. What data is available? new vaccine introductions, but also for product switches – and to understand the status of product The WHO vaccine market intelligence database registrations. Fifty-six Member States responded compiles vaccine purchase (product, price and to these new questions. procurement) data as reported by countries via the WHO/UNICEF Joint Reporting Form (JRF) over the This information is essential to WHO’s efforts to period of 2013–2018. While country names are not improve global market forecasts and inform displayed, data is publicly available on the MI4A suppliers’ and global policy-makers’ investment website and provides information by country decisions. WHO encourages all countries to characteristics (e.g. region, income group…) by report information on new introduction plans and vaccine and by year of purchase, along with price planned product changes as well as to respond to per dose (USD), procurement mechanism and questions related to registration. annual volumes. 1 The number of countries reporting vaccine How can my country use this data? purchase data through the JRF continues to Countries can use the vaccine purchase data in increase year after year, with 182 Member States several different ways, such as to: (93%) reporting some vaccine procurement information in 2019 – including 158 (81%) fully • Understand how the price of vaccines in their reporting on vaccine purchase data. Price reporting immunization schedule relate to other this year marks a 3% increase from last year and products on the market, or compare the more than triple the reporting from 2016.
    [Show full text]
  • NON-HAZARDOUS CHEMICALS May Be Disposed of Via Sanitary Sewer Or Solid Waste
    NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste (+)-A-TOCOPHEROL ACID SUCCINATE (+,-)-VERAPAMIL, HYDROCHLORIDE 1-AMINOANTHRAQUINONE 1-AMINO-1-CYCLOHEXANECARBOXYLIC ACID 1-BROMOOCTADECANE 1-CARBOXYNAPHTHALENE 1-DECENE 1-HYDROXYANTHRAQUINONE 1-METHYL-4-PHENYL-1,2,5,6-TETRAHYDROPYRIDINE HYDROCHLORIDE 1-NONENE 1-TETRADECENE 1-THIO-B-D-GLUCOSE 1-TRIDECENE 1-UNDECENE 2-ACETAMIDO-1-AZIDO-1,2-DIDEOXY-B-D-GLYCOPYRANOSE 2-ACETAMIDOACRYLIC ACID 2-AMINO-4-CHLOROBENZOTHIAZOLE 2-AMINO-2-(HYDROXY METHYL)-1,3-PROPONEDIOL 2-AMINOBENZOTHIAZOLE 2-AMINOIMIDAZOLE 2-AMINO-5-METHYLBENZENESULFONIC ACID 2-AMINOPURINE 2-ANILINOETHANOL 2-BUTENE-1,4-DIOL 2-CHLOROBENZYLALCOHOL 2-DEOXYCYTIDINE 5-MONOPHOSPHATE 2-DEOXY-D-GLUCOSE 2-DEOXY-D-RIBOSE 2'-DEOXYURIDINE 2'-DEOXYURIDINE 5'-MONOPHOSPHATE 2-HYDROETHYL ACETATE 2-HYDROXY-4-(METHYLTHIO)BUTYRIC ACID 2-METHYLFLUORENE 2-METHYL-2-THIOPSEUDOUREA SULFATE 2-MORPHOLINOETHANESULFONIC ACID 2-NAPHTHOIC ACID 2-OXYGLUTARIC ACID 2-PHENYLPROPIONIC ACID 2-PYRIDINEALDOXIME METHIODIDE 2-STEP CHEMISTRY STEP 1 PART D 2-STEP CHEMISTRY STEP 2 PART A 2-THIOLHISTIDINE 2-THIOPHENECARBOXYLIC ACID 2-THIOPHENECARBOXYLIC HYDRAZIDE 3-ACETYLINDOLE 3-AMINO-1,2,4-TRIAZINE 3-AMINO-L-TYROSINE DIHYDROCHLORIDE MONOHYDRATE 3-CARBETHOXY-2-PIPERIDONE 3-CHLOROCYCLOBUTANONE SOLUTION 3-CHLORO-2-NITROBENZOIC ACID 3-(DIETHYLAMINO)-7-[[P-(DIMETHYLAMINO)PHENYL]AZO]-5-PHENAZINIUM CHLORIDE 3-HYDROXYTROSINE 1 9/26/2005 NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste 3-HYDROXYTYRAMINE HYDROCHLORIDE 3-METHYL-1-PHENYL-2-PYRAZOLIN-5-ONE
    [Show full text]
  • Arsinothricin, an Arsenic-Containing Non-Proteinogenic Amino Acid Analog of Glutamate, Is a Broad-Spectrum Antibiotic
    ARTICLE https://doi.org/10.1038/s42003-019-0365-y OPEN Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic Venkadesh Sarkarai Nadar1,7, Jian Chen1,7, Dharmendra S. Dheeman 1,6,7, Adriana Emilce Galván1,2, 1234567890():,; Kunie Yoshinaga-Sakurai1, Palani Kandavelu3, Banumathi Sankaran4, Masato Kuramata5, Satoru Ishikawa5, Barry P. Rosen1 & Masafumi Yoshinaga1 The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich’s salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits gluta- mine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the per- vasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors. 1 Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA. 2 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán T4001MVB, Argentina. 3 SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
    [Show full text]
  • Pp-03-25-New Dots.Qxd 10/23/02 2:38 PM Page 379
    pp-03-25-new dots.qxd 10/23/02 2:38 PM Page 379 HYDROGEN SULFIDE 379 HYDROGEN SULFIDE [7783-06-4] Formula: H2S; MW 34.08 Synonyms: sulfur hydride; sulfureted hydrogen Occurrence and Uses Hydrogen sulfide occurs in natural gas. It also is found in many sewer gases. It is a by-product of many industrial processes. Trace amounts of dis- solved H2S are found in wastewaters in equilibrium with dissolved sulfides and hydrosulfides. It also is found in volcanic eruptions, hot springs and in troposphere. The average concentration of H2S in the air is about 0.05 ppb. The most important applications of hydrogen sulfide involve the production of sodium sulfide and other inorganic sulfides. Hydrogen sulfide obtained as a by-product often is converted into sulfuric acid. It also is used in organic syn- thesis to make thiols or mercaptans. Other applications are in metallurgy for extracting nickel, copper, and cobalt as sulfides from their minerals; and in classical qualitative analytical methods for precipitation of many metals (see Reactions). It also is used in producing heavy water for nuclear reactors. Physical Properties Colorless gas; characteristic odor of rotten eggs; odor threshold 1ppm; sweetish taste; fumes in air; flammable gas, burns with a pale blue flame; refractive index at 589.3nm, 1.000644 at 0°C and 1 atm; density 1.539 g/L at 0°C; critical temperature 100.4°C; critical pressure 88.9 atm; liquefies at –60.7°C; solidifies at –85.5°C; velocity of sound 289 m/sec in H2S gas; slightly soluble in water (0.4% at 20°C); pH of a saturated aqueous solution 4.5; slight- ly acidic; diffusivity in water at 16°C, 1.77x105 cm2/sec; soluble in carbon disulfide, methanol, acetone; very soluble in N-methylpyrrolidinone and alka- nolamines (salt formation occurs: salt dissociates on heating); liquid H2S dis- solves sulfur and SO2.
    [Show full text]
  • Environmental Protection Agency § 117.3
    Environmental Protection Agency § 117.3 (4) Applicability date. This paragraph TABLE 117.3—REPORTABLE QUANTITIES OF (i) is applicable beginning on February HAZARDOUS SUBSTANCES DESIGNATED PUR- 6, 2020. SUANT TO SECTION 311 OF THE CLEAN (j) Process waste water means any WATER ACT—Continued water which, during manufacturing or Cat- RQ in pounds processing, comes into direct contact Material egory (kilograms) with or results from the production or use of any raw material, intermediate Ammonium benzoate ...................... D ...... 5,000 (2,270) Ammonium bicarbonate .................. D ...... 5,000 (2,270) product, finished product, byproduct, Ammonium bichromate ................... A ....... 10 (4.54) or waste product. Ammonium bifluoride ...................... B ....... 100 (45.4) Ammonium bisulfite ......................... D ...... 5,000 (2,270) [44 FR 50776, Aug. 29, 1979, as amended at 58 Ammonium carbamate .................... D ...... 5,000 (2,270) FR 45039, Aug. 25, 1993; 65 FR 30904, May 15, Ammonium carbonate ..................... D ...... 5,000 (2,270) 2000; 80 FR 37112, June 29, 2015; 83 FR 5208, Ammonium chloride ........................ D ...... 5,000 (2,270) Feb. 6, 2018] Ammonium chromate ...................... A ....... 10 (4.54) Ammonium citrate dibasic ............... D ...... 5,000 (2,270) Ammonium fluoborate ..................... D ...... 5,000 (2,270) § 117.2 Abbreviations. Ammonium fluoride ......................... B ....... 100 (45.4) NPDES equals National Pollutant Ammonium hydroxide ..................... C
    [Show full text]
  • Wednesday May 26, 1999
    5±26±99 Vol. 64 No. 101 Wednesday Pages 28333±28712 May 26, 1999 federal register 1 VerDate 06-MAY-99 21:29 May 25, 1999 Jkt 183247 PO 00000 Frm 00001 Fmt 4710 Sfmt 4710 E:\FR\FM\26MYWS.XXX pfrm03 PsN: 26MYWS II Federal Register / Vol. 64, No. 101 / Wednesday, May 26, 1999 The FEDERAL REGISTER is published daily, Monday through SUBSCRIPTIONS AND COPIES Friday, except official holidays, by the Office of the Federal Register, National Archives and Records Administration, PUBLIC Washington, DC 20408, under the Federal Register Act (44 U.S.C. Subscriptions: Ch. 15) and the regulations of the Administrative Committee of Paper or fiche 202±512±1800 the Federal Register (1 CFR Ch. I). The Superintendent of Assistance with public subscriptions 512±1806 Documents, U.S. Government Printing Office, Washington, DC 20402 is the exclusive distributor of the official edition. General online information 202±512±1530; 1±888±293±6498 Single copies/back copies: The Federal Register provides a uniform system for making available to the public regulations and legal notices issued by Paper or fiche 512±1800 Federal agencies. These include Presidential proclamations and Assistance with public single copies 512±1803 Executive Orders, Federal agency documents having general FEDERAL AGENCIES applicability and legal effect, documents required to be published Subscriptions: by act of Congress, and other Federal agency documents of public Paper or fiche 523±5243 interest. Assistance with Federal agency subscriptions 523±5243 Documents are on file for public inspection in the Office of the Federal Register the day before they are published, unless the issuing agency requests earlier filing.
    [Show full text]
  • Chemistry Inventory; Fall
    CHEMISTRY FALL 2005 MSDS Mfg.'s Name Chemical Name Quantity Stored Storage Conditions (on file = 9) Aluminum 9 1.5 kg Aluminum chloride, anhydrous, 98.5% 9 0.2 kg Aluminum chloride · 6H2O 9 0.5 kg Aluminum hydroxide 9 0.5 kg Aluminum nitrate 9 0.5 kg Aluminum sulfate 9 0.5 kg Ammonia, concentrated 9 4.0 L Ammonium acetate 9 0.2 kg Ammonium chloride 9 Ammonium dihydrogen phosphate (monobasic) 9 0.4 kg J.T. Baker Ammonium hydrogen phosphate (dibasic) No 0.5 kg Ammonium nitrate 9 2.5 kg Ammonium oxalate 9 0.7 kg Ammonium peroxydisulfate 9 0.5 kg Ammonium sulfate 9 0.2 kg Antimony 9 0.4 kg Barium chloride, anhydrous 9 2.5 kg Barium chloride · 2H2O 9 2.5 kg Barium nitrate 9 0.8 kg Bismuth 9 2.0 kg Boric Acid 9 0.4 kg Brass 9 Bromine 9 2.5 kg Cadmium 9 0.1 kg Cadmium nitrate 9 0.3 kg Calcium acetate · xH2O 9 0.5 kg Calcium carbide 9 1.0 kg Calcium carbonate 9 2.2 kg Calcium chloride 9 1.0 kg Calcium hydroxide 9 0.3 kg Calcium nitrate · 4H2O 9 1.0 kg Calcium oxide 9 0.3 kg Calcium sulfate · 2H2O 9 1.0 kg Carbon 9 0.1 kg Ceric ammonium nitrate 9 0.5 kg Cesium chloride 9 0.01 kg Chromium 9 0.01 kg Chromium chloride 9 0.5 kg Chromium nitrate 9 0.5 kg Cobalt 9 0.025 kg Cobalt chloride 9 0.7 kg Cobalt nitrate 9 0.6 kg Copper (assorted) 9 4.0 kg Copper acetate 9 0.05 kg Copper chloride 9 0.1 kg Copper nitrate 9 3.5 kg Copper oxide 9 0.4 kg Cupric sulfate, anhydrous 9 0.5 kg Cupric sulfate · 5H2O 9 2.75 kg EDTA 9 0.6 kg Iodine 9 2.0 kg Iron (assorted) 9 5.0 kg MSDS Mfg.'s Name Chemical Name Quantity Stored Storage Conditions (on file = 9) Ferric ammonium
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]
  • Multi-Residue Determination of Organic Arsenical Drugs in Feeds by LC-MS/MS
    Multi-Residue Determination of Organic Arsenical Drugs in Feeds by LC-MS/MS Geneviève Grenier, Melanie Titley & Lise-Anne Prescott AAFCO Laboratory Methods and Services Committee meeting 2016-01-18 Background • Animal Feed Division of CFIA identified a high priority need for the determination of three organic arsenicals (arsanilic acid, roxarsone and nitarsone) at residue levels in animal feed • These are withdrawal drugs and are priority food contaminants • Current test methods are at guarantee levels greater than 10% minimum use rate • Therefore, current methods not well suited for residue or traceback testing • Requested feed residue LOQ of 1 mg/kg for all three organic arsenicals 2 Background • UHPLC-PDA Challenges • Extract were very dirty • Tried sample clean-up using Oasis MAX SPE • Still very dirty • HPLC Challenges • Compounds elute too easily • Analytical column must : retain and separate compounds, and give good peak shape • Analytical column : Phenomenex Onyx Monolithic C18 100 X 3.0mm 3 Background • LC/MS/MS method (positive mode) • Column: Phenomenex Onyx Monolithic C18 100 X 3.0mm • Linearity problems with Internal Standard (IS) • Internal standard – 4-hydroxyphenylarsonic acid • Peak area of the internal standard increased with increasing analyte concentration • Cause • 4-hydroxyphenyl arsanic acid co-elute with Arsanilic acid and have similar m/z 4 New method - summary • Liquid chromatography combined with atomic and molecular mass spectrometry for speciation of arsenic in chicken liver. Peng et. al., Journal of Chromatography
    [Show full text]