The Rebirth of the Russian Space Program 50 Years After Sputnik, New Frontiers Brian Harvey

Total Page:16

File Type:pdf, Size:1020Kb

The Rebirth of the Russian Space Program 50 Years After Sputnik, New Frontiers Brian Harvey The Rebirth of the Russian Space Program 50 Years After Sputnik, New Frontiers Brian Harvey The Rebirth of the Russian Space Program 50 Years After Sputnik, New Frontiers J^K. Published in association with s~ y? <£J Springer Praxis Publishing PRAXIS Chichester, UK Mr Brian Harvey Terenure Dublin 6W Ireland SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason, M.Sc, B.Sc, Ph.D. ISBN 978-0-387-71354-0 Springer Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springer.com) Library of Congress Control Number: 2007922812 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. © Praxis Publishing Ltd, Chichester, UK, 2007 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Project management: Originator Publishing Services Ltd, Gt Yarmouth, Norfolk, UK Printed on acid-free paper Contents Author's preface ix Acknowledgments xi About the book xii List of figures xiii List of maps xix List of tables xxi List of abbreviations and acronyms xxiii 1 Almost the end 1 The admiration of the world 5 The collapse 7 Back on Mir: the long recovery 11 Almost the end: conclusions 16 2 Building the International Space Station 17 Origins of ISS 17 Paving the way for ISS: the last phases of Mir 19 Winding Mir down: "grief in our hearts" 25 The mark of Cassandra 29 Building the ISS 35 Waiting for Mir 2 37 Delay, delay and delay 39 Zvezda, 12th July 2000 40 Soyuz as lifeboat 43 Space station routine 46 vi Contents Space station depends on Russia 57 Completing the space station 67 Building the International Space Station: conclusions 74 References 75 3 Scientific and applications programs 77 Comsats: the Soviet inheritance 77 Comsats: the new generation 83 Weather satellites 87 Earth resources: Resurs DK, Sich M, Monitor 89 Materials-processing: Foton 94 Science: Koronas, Spektr 96 Small satellites 100 The unmanned program: conclusions 101 References 103 4 Military programs 105 Photo-reconnaissance 106 Close-look: Yantar 4K2 Kobalt 109 Mapping: Yantar 1KFT Kometa 110 Instant intelligence: Yantar 4KS2 Neman Ill Orlets and the rivers: Don and Yenisey 112 Space telescope: Araks 114 Electronic intelligence: Tselina 116 Maritime electronic intelligence: US P Legenda 118 Military communications: Strela, Gonetz, Potok 121 Navigation satellites: Parus, Nadezhda 124 Navigation: GLONASS 127 Military early warning system: Oko, Prognoz 132 The military space program: conclusions 136 References 138 5 Launchers and engines 139 Old reliable 139 New upper stages: Ikar, Fregat 142 Rus program 144 Cosmos 3M 151 Proton and Proton M 155 Proton M 160 Tsyklon 164 Zenit 167 Ukrainian rockets to the Pacific: Zenit 3SL, the Sea Launch 170 Rockot 175 Strela rocket 179 START 180 Contents vii Dnepr 182 Volna, Shtil and relatives 185 New rocket: Angara 187 Russian rocket engines 192 GDL/Energomash: the most powerful rockets in the world 193 RD-180 powers the Atlas 196 Kosberg bureau/KBKhA in Voronezh 199 Isayev bureau/KhimMash 200 And from history, Kuznetsov's NK-33 201 Future launch vehicle and engine programs: Ural, Barzugin 201 Reliability 203 Conclusions: rockets and rocket engines 205 References 205 6 Launch sites 207 Baikonour 208 Plesetsk 221 Svobodny-Blagoveshensk 227 Dombarovska/Yasny 229 Soyuz a Kourou, French Guyana 229 Kapustin Yar: the Volgograd station 234 Alcantara 235 Recovery zones 237 De-orbit zones 244 Other ground facilities 246 Star Town, TsPK 246 Mission control Korolev: TsUP 254 Military mission control 257 Tracking and control 257 Cosmodromes and ground facilities: conclusions 262 References 263 7 The design bureaus 265 Energiya—premier design bureau 266 Chelomei's bureau and derivatives 269 NPO Lavochkin 270 NPO Yuzhnoye: missile lines "like sausages" 273 NPO PM, builder of comsats 276 KB Arsenal: the oldest design bureau 277 TsSKB Samara: continuous production from 1957 277 NPO Polyot 279 Organization of the space program 279 New space agency 281 Russia's space budget 283 From commercialization to space tourism 285 viii Contents Participation in the global commercial space community 293 Cooperation: rogue states 302 Cooperation: China 306 Cooperation: India 310 Organization: conclusions 312 References 313 8 Resurgent—the new projects 315 The federal space plan 317 Replacing the Soyuz: Kliper 318 Return to the moon: Luna Glob 325 Return to Mars: Phobos Grunt 326 Mars 500: no girls please, we're going to Mars 330 Final remarks 334 References 335 Appendix: Launchings 2000-06 337 Index 345 Author's preface The rebirth of the Russian space program marks an important event: 50 years since the first Sputnik was launched on 4th October 1957. At that time, few could have imagined the dramatic events that lay head. The Soviet Union achieved all the great firsts in cosmonautics—the first satellite in orbit, the first animal in orbit, the first laboratory in orbit, the first probe to the Moon, the first probe to photograph its far side, the first soft landing on the moon, the first man in space, the first woman in space, the first spacewalk. Except one, the first human landing on the Moon. In 1964, the Soviet Union decided to contest the decision of the United States to put the first person on the Moon. The Soviet Union engaged in that race far too late, with divided organization, and made a gallant but doomed challenge to Apollo. Undaunted, the Soviet Union rebuilt its space program around orbiting stations, building the first one, Salyut, and then the first permanent home in space, Mir. The Soviet Union still achieved many more firsts: the first lunar rover, the first soft landing on Venus, the first soft landing on Mars, the first recovery of samples from the Moon by automatic spacecraft. The original book in this series Race into space—a history of the Soviet space programme (1988) was written during the heyday of the Soviet space program, when the Soviet Union was launching over a hundred satellites a year and had a vast program for the manned and unmanned exploration of space and its application for practical benefits on Earth. The second book in the series, The new Russian space program (1995) was compiled during the shock adjustment of the former Soviet space program to the strained economic realities of life in the Russian Federation. The new Russian space program took advantage of all the new information that had come to light about Soviet history: thanks to the policy of openness (glasnost) begun by the last president of the Soviet Union, Mikhail Gorbachev, we were now at last able to learn about what had really taken place during the time of the Soviet period, as secrets emerged into the light of day. The third book of this series, Russia in space—the failed frontier? (2001) looked at the Russian space program in the period from 1992, when x Author's preface the Russian Federation came into existence. The title of course posed a question: Had the Russian romance with cosmonautics run its course and "failed"? This book chronicled the decline and difficulties of the 1990s, but also showed how the program had adapted, survived and, sometimes grimly, held on. Now, the fourth book in the series, The rebirth of the Russian space program looks at the Russian space program at a convenient marking point, fifty years after Sputnik. It chronicles developments since the turn of the century, takes a look at the Russian program as it is now and looks toward the future. This account focuses on the years 2000 to 2006. Readers who wish to study the earlier history should return to Race into space (for the Soviet period), The new Russian space programme (for the transition) and Russia in space—the failed frontier? (for the 1990s). By way of definitions, this book covers primarily the Russian Federation—but it does take in those parts of the Ukrainian space program rooted in the old Soviet program. The rebirth of the Russian space program coincides not only with Sputnik but with the announcement by the government of the federation of a space plan to last to 2015, an attempt to reinstitute goal-orientated planning in the program. If one looks at the number of launches per year, Russia remains the leading spacefaring nation in the world. At the same time, it is obvious that the Russian Federation's space program has none of the ambition of the American space program, which has now sent extra­ ordinary missions to all the corners of the solar system and plans to return astronauts to the Moon and send them onward to Mars. Unlike the 1960s and 1980s, present-day Russia has neither the capacity nor the will to challenge American leadership of space exploration (the Chinese probably do, but that is another story). At the same time, Russia will remain one of the world's space superpowers, a builder of space stations, a formidable contributor to the world space industry and science. As this book shows, the Russian space program is full of activity and life.
Recommended publications
  • Aerospace Dimensions Leader's Guide
    Leader Guide www.capmembers.com/ae Leader Guide for Aerospace Dimensions 2011 Published by National Headquarters Civil Air Patrol Aerospace Education Maxwell AFB, Alabama 3 LEADER GUIDES for AEROSPACE DIMENSIONS INTRODUCTION A Leader Guide has been provided for every lesson in each of the Aerospace Dimensions’ modules. These guides suggest possible ways of presenting the aerospace material and are for the leader’s use. Whether you are a classroom teacher or an Aerospace Education Officer leading the CAP squadron, how you use these guides is up to you. You may know of different and better methods for presenting the Aerospace Dimensions’ lessons, so please don’t hesitate to teach the lesson in a manner that works best for you. However, please consider covering the lesson outcomes since they represent important knowledge we would like the students and cadets to possess after they have finished the lesson. Aerospace Dimensions encourages hands-on participation, and we have included several hands-on activities with each of the modules. We hope you will consider allowing your students or cadets to participate in some of these educational activities. These activities will reinforce your lessons and help you accomplish your lesson out- comes. Additionally, the activities are fun and will encourage teamwork and participation among the students and cadets. Many of the hands-on activities are inexpensive to use and the materials are easy to acquire. The length of time needed to perform the activities varies from 15 minutes to 60 minutes or more. Depending on how much time you have for an activity, you should be able to find an activity that fits your schedule.
    [Show full text]
  • OUFTI-1 Environmental Impact Assessment
    Date: 11/02/2016 Issue: 1 Rev: 1 Page: 1 of 11 OUFTI-1 Environmental Impact Assessment Reference 3_OUF_ENV_IMPACT_1.0 Issue/Rev Issue 1 Rev 0 Date 11/02/2016 Distribution OUFTI-1 team OUFTI-1 Environmental Impact Assessment Date: 11/02/2016 Issue: 1 Rev: 1 Page: 2 of 11 AUTHORS Name Email Telephone X. Werner [email protected] +32 4 366 37 38 S. De Dijcker [email protected] +32 4 366 37 38 RECORD OF REVISIONS Iss/Rev Date Author Section/page Change description 1/0 11/02/2016 X.Werner, All Initial issue S. De Dijcker Copyright University of Liège [2016]. OUFTI-1 Environmental Impact Assessment Date: 11/02/2016 Issue: 1 Rev: 1 Page: 3 of 11 TABLE OF CONTENTS Authors ....................................................................................................................................... 2 Record of revisions ..................................................................................................................... 2 1. Activities and Objectives ................................................................................................... 4 1.1. Project description ....................................................................................................... 4 1.2. Soyuz launch vehicle ................................................................................................... 5 1.3. Arianespace ................................................................................................................. 7 1.4. Conclusion ..................................................................................................................
    [Show full text]
  • Annual Report of S.P
    ANNUAL REPORT OF S.P. KOROLEV ROCKET AND SPACE PUBLIC CORPORATION ENERGIA FOR 2019 This Annual Report of S.P.Korolev Rocket and Space Public Corporation Energia (RSC Energia) was prepared based upon its performance in 2019 with due regard for the requirements stated in the Russian Federation Government Decree of December 31, 2010 No. 1214 “On Improvement of the Procedure to Control Open Joint-Stock Companies whose Stock is in Federal Ownership and Federal State Unitary Enterprises”, and in accordance with the Regulations “On Information Disclosure by the Issuers of Outstanding Securities” No. 454-P approved by the Bank of Russia on December 30, 2014 Accuracy of the data contained in this Annual Report, including the Report on the interested-party transactions effected by RSC Energia in 2019, was confirmed by RSC Energia’s Auditing Committee Report as of 01.06.2020. This Annual Report was preliminary approved by RSC Energia’s Board of Directors on August 24, 2020 (Minutes No. 31). This Annual Report was approved at RSC Energia’s General Shareholders’ Meeting on September 28, 2020 (Minutes No 40 of 01.10.2020). 2 TABLE OF CONTENTS 1. BACKGROUND INFORMATION ABOUT RSC ENERGIA ............................. 6 1.1. Company background .........................................................................................................................6 1.2. Period of the Company operation in the industry ...............................................................................6 1.3. Information about the purchase and sale contracts for participating interests, equities, shares of business partnerships and companies concluded by the Company in 2019 ..............................................7 1.4. Information about the holding structure and the organizations involved ...........................................8 2. PRIORITY DIRECTIONS OF RSC ENERGIA OPERATION ........................ 11 2.1.
    [Show full text]
  • The International Space Station and the Space Shuttle
    Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17.
    [Show full text]
  • Design for Demise Analysis for Launch Vehicles
    A first design for demise analysis for launch vehicles Henrik Simon, Stijn Lemmens Space debris: Inactive, manmade objects in space Source: ESA Overview Introduction Fundamentals Modelling approach Results and discussion Summary and outlook What is the motivation and task? INTRODUCTION Motivation . Mitigation: Prevention of creation and limitation of long-term presence . Guidelines: LEO removal within 25 years . LEO removal within 25 years after mission end . Casualty risk limit for re-entry: 1 in 10,000 Rising altitude Decay & re-entry above 2000 km Source: NASA Source: NASA Solution: Design for demise Source: ESA Scope of the thesis . Typical design of upper stages . General Risk assessment . Design for demise solutions to reduce the risk ? ? ? Risk A Risk B Risk C Source: CNES How do we assess the risk and simulate the re-entry? FUNDAMENTALS Fundamentals: Ground risk assessment Ah = + 2 Ai � ℎ = =1 � Source: NASA Source: NASA 3.5 m 5.0 m 2 2 ≈ ≈ Fundamentals: Re-entry simulation tools SCARAB: Spacecraft-oriented approach . CAD-like modelling . 6 DoF flight dynamics . Break-up / fragmentation computed How does a rocket upper stage look like? MODELLING Modelling approach . Research on typical design: . Elongated . Platform . Solid Rocket Motor . Lack of information: . Create common intersection . Deliberately stay top-level and only compare effects Modelling approach Modelling approach 12 Length [m] 9 7 5 3 2 150 300 500 700 800 1500 2200 Mass [kg] How much is the risk and how can we reduce it? SIMULATIONS Example of SCARAB re-entry simulation 6x Casualty risk of all reference cases Typical survivors Smaller Smaller fragments fragments Pressure tanks Pressure tanks Main tank Engine Main structure + tanks Design for Demise .
    [Show full text]
  • Enabling Interstellar Probe
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Acta Astronautica 68 (2011) 790–801 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Enabling interstellar probe Ralph L. McNutt Jr.a,n, Robert F. Wimmer-Schweingruber b,1, the International Interstellar Probe Team a The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, M/S MP3-E128, Laurel, MD 20723, USA b Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel, Germany article info abstract Article history: The scientific community has advocated a scientific probe to the interstellar medium for Received 15 February 2010 over 30 years. While the Voyager spacecraft have passed through the termination shock Received in revised form of the solar wind, they have limited lifetimes as their radioisotope power supplies 16 June 2010 decay. It remains unclear whether they can reach the heliopause, the boundary between Accepted 2 July 2010 shocked solar wind and interstellar plasmas, and, in any case, they will not reach the Available online 17 August 2010 undisturbed interstellar medium.
    [Show full text]
  • Post Increment Evaluation Report Increment 11 International Space
    SSP 54311 Baseline WWW.NASAWATCH.COM Post Increment Evaluation Report Increment 11 International Space Station Program Baseline June 2006 National Aeronautics and Space Administration International Space Station Program Johnson Space Center Houston, Texas Contract Number: NNJ04AA02C WWW.NASAWATCH.COM SSP 54311 Baseline - WWW.NASAWATCH.COM REVISION AND HISTORY PAGE REV. DESCRIPTION PUB. DATE - Initial Release (Reference per SSCD XXXXXX, EFF. XX-XX-XX) XX-XX-XX WWW.NASAWATCH.COM SSP 54311 Baseline - WWW.NASAWATCH.COM INTERNATIONAL SPACE STATION PROGRAM POST INCREMENT EVALUATION REPORT INCREMENT 11 CHANGE SHEET Month XX, XXXX Baseline Space Station Control Board Directive XXXXXX/(X-X), dated XX-XX-XX. (X) CHANGE INSTRUCTIONS SSP 54311, Post Increment Evaluation Report Increment 11, has been baselined by the authority of SSCD XXXXXX. All future updates to this document will be identified on this change sheet. WWW.NASAWATCH.COM SSP 54311 Baseline - WWW.NASAWATCH.COM INTERNATIONAL SPACE STATION PROGRAM POST INCREMENT EVALUATION REPORT INCREMENT 11 Baseline (Reference SSCD XXXXXX, dated XX-XX-XX) LIST OF EFFECTIVE PAGES Month XX, XXXX The current status of all pages in this document is as shown below: Page Change No. SSCD No. Date i - ix Baseline XXXXXX Month XX, XXXX 1-1 Baseline XXXXXX Month XX, XXXX 2-1 - 2-2 Baseline XXXXXX Month XX, XXXX 3-1 - 3-3 Baseline XXXXXX Month XX, XXXX 4-1 - 4-15 Baseline XXXXXX Month XX, XXXX 5-1 - 5-10 Baseline XXXXXX Month XX, XXXX 6-1 - 6-4 Baseline XXXXXX Month XX, XXXX 7-1 - 7-61 Baseline XXXXXX Month XX, XXXX A-1 - A-9 Baseline XXXXXX Month XX, XXXX B-1 - B-3 Baseline XXXXXX Month XX, XXXX C-1 - C-2 Baseline XXXXXX Month XX, XXXX D-1 - D-92 Baseline XXXXXX Month XX, XXXX WWW.NASAWATCH.COM SSP 54311 Baseline - WWW.NASAWATCH.COM INTERNATIONAL SPACE STATION PROGRAM POST INCREMENT EVALUATION REPORT INCREMENT 11 JUNE 2006 i SSP 54311 Baseline - WWW.NASAWATCH.COM SSCB APPROVAL NOTICE INTERNATIONAL SPACE STATION PROGRAM POST INCREMENT EVALUATION REPORT INCREMENT 11 JUNE 2006 Michael T.
    [Show full text]
  • THE SOVIET MOON PROGRAM in the 1960S, the United States Was Not the Only Country That Was Trying to Land Someone on the Moon and Bring Him Back to Earth Safely
    AIAA AEROSPACE M ICRO-LESSON Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee. THE SOVIET MOON PROGRAM In the 1960s, the United States was not the only country that was trying to land someone on the Moon and bring him back to Earth safely. The Union of Soviet Socialist Republics, also called the Soviet Union, also had a manned lunar program. This lesson describes some of it. Next Generation Science Standards (NGSS): ● Discipline: Engineering Design ● Crosscutting Concept: Systems and System Models ● Science & Engineering Practice: Constructing Explanations and Designing Solutions GRADES K-2 K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. Have you ever been busy doing something when somebody challenges you to a race? If you decide to join the race—and it is usually up to you whether you join or not—you have to stop what you’re doing, get up, and start racing. By the time you’ve gotten started, the other person is often halfway to the goal. This is the sort of situation the Soviet Union found itself in when President Kennedy in 1961 announced that the United States would set a goal of landing a man on the Moon and returning him safely to the Earth before the end of the decade.
    [Show full text]
  • Features of Legal Support of Space Activities in Ukraine
    Features of Legal Support of Space Activities in Ukraine Dmytro Zhuravlov1 Doctor of Law, Professor. First Deputy Director of the Institute of Law and Postgraduate Education of the Ministry of Justice of Ukraine (Kyiv, Ukraine) E-mail: [email protected] https://orcid.org/0000-0002-2045-9631 Andrii Halunko2 Ph. D. in Law. Inspector of the public order department of the DPA HNPU in Kherson region (Kherson, Ukraine) E-mail: [email protected] https://orcid.org/0000-0002-1842-2506 In the article, the authors reveal the historical and legal aspects of space activities in Ukraine. The historical and legal acts of the Ukrainian SSR and the Soviet Union, regulating the space industry, are analyzed. Considerable attention was paid to the peculiarities of legal regulation of the activities of the main space design bureaus of the time. It is concluded that the space activities of the USSR — in general and the Ukrainian SSR were provided on the basis of sublegislative normative legal acts (resolutions of the Council of Ministers and orders of the Central bodies of the Communist party). However, the lack of the national space law was offset by systematic and full funding of space activities, resulting in the Soviet Union having a powerful space industry. In the conditions of modern development, Ukraine has all the opportunities to achieve significant development of the space industry, using the positive experience of the USSR and opening access to space activities of private investment. Keywords: space activities, law, space law, space technologies, private investments, Soviet regime, launch vehicles Received: September 11, 2019; accepted: October 07, 2019 Advanced Space Law, Volume 4, 2019: 116-124.
    [Show full text]
  • Tokyo Shortly to Decide on Participation in Russian Kliper Project 14 October 2005
    Tokyo Shortly To Decide On Participation In Russian Kliper Project 14 October 2005 Tokyo intends to decide already this year on its participation in the Russian project to build a non- expendable manned spacecraft, which will be called Kliper. It is expected to replace the American shuttles that are now being used to fly crews and cargoes to the International Space Station, reports Itar-Tass. A special team has already been formed here to look into the problem. Kiioshi Higuchi, member of the Board of Directors of the Japanese National Aerospace Exploration Agency (JAXA), heads the team, the Kyodo Tsushin News Agency reported on Thursday. The European Space Agency, Ukraine, Belarus and Kazakhstan had previously evinced interest in their participation in the new Russian space project. In considering the problem, Tokyo is proceeding primarily from the fact that the United States is determined to discontinue all flights of its shuttles by 2010 and to concentrate its efforts on the preparation of expeditions to the Moon and Mars. The Kliper project will give Russia, the EU countries, and Japan a chance to make effective use of the International Space Station even without America's active participation. A Kliper spacecraft will be able to carry six people and to take to the ISS and bring back five hundred kilograms of cargoes. A rocket will be used to boost it into outer space. A Kliper will be able to fly autonomously for fifteen days running. Its non-expendable recovery capsule is designed for twenty-five flights. The spacecraft will have a service life of ten years.
    [Show full text]
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]