Angular Momentum in Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Angular Momentum in Chemistry Angular Momentum in Chemistry Jan C. A. Boeyens Unit for Advanced Studies, University of Pretoria, South Africa Reprint requests to J. C. A. Boeyens. E-mail: [email protected] Z. Naturforsch. 2007, 62b, 373 – 385; received October 19, 2006 Dedicated to Prof. Helgard G. Raubenheimer on the occassion of his 65th birthday Noting that current chemical theory is based almost exclusively on electronic energy and spin variables the equal importance of orbital angular momentum is explored in this paper. From its clas- sical definition the angular momentum of electrons in an atom is shown to obey Laplace’s equation, which automatically leads to discrete values in terms of spherical harmonics. This analysis assumes a continuous distribution of electronic charge, which resembles a fluid at equilibrium. It serves to elucidate the success and failure of Bohr’s conjecture and the origin of wave-particle duality. Applied to atoms, minimization of orbital angular momentum leads to Hund’s rules. The orientation of angu- lar momenta in lower-symmetry molecular environments follows from the well-known Jahn-Teller theorem. Key words: Bohr Conjecture, Laplace’s Equation Introduction chemical bonding that gained universal recognition in chemistry. Study of the physical world is made possible by the recognition of several fundamental symmetries. Ac- cording to Noether’s theorem each symmetry leads to Angular Momentum the recognition of a conservation law [1]. In dynamical Angular momentum in classical mechanics is a vec- systems conservation of mass, energy, momentum and tor quantity that describes rotational motion and must angular momentum derive from the assumed homo- be of obvious importance for the understanding of geneity and isotropy of space-time. Together with the electronic motion in atoms and molecules. The angular conservation of electronic charge, which arises from momentum vector that quantifies circular rotation of a the internal symmetry of the electromagnetic field, all particle about an axis is defined as the moment of the of these conservation laws are of basic importance in linear momentum, L = r × p, i. e. the vector product of the theoretical understanding of chemistry. the linear momentum and the radius vector from the The conservation laws of mass and energy are the point of rotation. It is directed along the axis of rota- cornerstones of the theories of chemical composition tion, perpendicular to the plane of rotation, and is pos- and thermodynamics. The kinetic theory of gases re- itive in the direction that drives a right-handed screw lies on the conservation of linear momentum and the (Fig. 1). conservation of electronic charge underpins all mod- els of chemical transformation. In contrast, the con- servation of angular momentum is largely ignored, except by reference to electron spin, which is only one quantum-mechanical aspect of the total angular momentum of an electron. This omission leaves an unbridgeable gap in the theory of molecular struc- ture and conformation, which has been a source of endless frustration for almost a century. The reason for this state of affairs can be traced to the uncrit- Fig. 1. Definition of the angular ical embrace of an unreasonable model of directed momentum vector. 0932–0776 / 07 / 0300–0373 $ 06.00 © 2007 Verlag der Zeitschrift f¨ur Naturforschung, T¨ubingen · http://znaturforsch.com 374 J. C. A. Boeyens · Angular Momentum in Chemistry The classical angular momentum vector decom- The mystery of Bohr’s conjecture and the calcula- poses into cartesian components. From the definition tion of Rydberg’s constant, based on this conjecture, of has never been resolved satisfactorily. The mystery ( ) consists therein that the quantum number n ,which iijjjkk quantifies the angular momentum L = r × p = xyz = rpsinα (1) px py pz mvr = nh¯ (6) simple vector algebra [2] defines the components of L is combined with the Coulomb potential V = eφ = 2 as −e /4πε0r to yield the total energy L = yp − zp , (2) Ry x z y E = − (7) n2 Ly = zpx − xpz, (3) of the hydrogen ground-state electron in rydberg units. Lz = xpy − ypx (4) In reality however, the ground state requires values of n =0andn = 1 in eq. (6) and (7) respectively. The and confusion arises from the fact that the quantum num- L · L = L2 = L2 + L2 + L2. (5) ber of eq. (6) is the azimuthal quantum number ml, x y z whereas n of eq. (7) is the principal quantum number, The moment of the force, or torque associated with and both of these are integers. The wrong assumption temporal change of angular momentum, N = ∂L/∂t,is is that (6) refers to the hydrogen ground state. In fact, also defined as a vector product, N = r × (dp/dt),in it simply defines the smallest unit of non-zero orbital / the same way as the angular momentum. angular momentum,h ¯ = mvr ml, as equivalent to the On analyzing the angular momenta of electrons in angular momentum of a point particle of mass m and an atom another important factor comes into play. With linear velocity v, in a circular orbit of radius r, about the total positive charge concentrated at the point-like a fixed point. The energy of such a hypothetical point nucleus the electron density is considered to be in a particle on a stable orbit defines the corresponding ryd- central Coulomb field with rotation about a fixed point berg unit of energy, rather than an axis. In the absence of external torque, me4 me4 e. g. a magnetic field, the electronic charge on an atom Ry = = . ε2 2 ( πε )2 2 constitutes a stable mechanical system. With all forces 8 0 h 2 4 0 h¯ and torques in balance the angular momentum L there- The Bohr model introduced the enduring concept of fore satisfies an equation like that of Laplace. Allowed stationary quantum states and first defined fundamental rotational modes appear as the solutions to the angular- concepts such as the bohr magneton, µ = eh¯/2mc and dependent part of the equation, the precise details of B the fine-structure constant, α = v /c = e2/hc¯ 1/137, which depend on the assumed nature of the extranu- 1 still in common use. However, inability to extend the clear electrons. description to more complex atoms made it unaccept- able as a chemical model. The unphysical definition The Bohr conjecture of the stationary state in terms of an accelerated elec- The most advanced model, that of quantum field the- tron that fails to radiate, remained the major objection ory, defines the electron as a zero-dimensional point against the model. particle. Its properties of mass, charge and spin are Although this major problem could not be resolved considered to be of mathematical significance only. Ef- Sommerfeld [3] extended the Bohr treatment to give forts to form a physical picture of the electrons are con- reasonable accounts of atomic structure in general, the sidered meaningless. Nevertheless, the first successful formation of chemical bonds and the periodic table of account of atomic structure was based on such a parti- the elements. This was achieved by the introduction cle model and Bohr’s conjecture that the angular mo- of elliptic orbits in line with Kepler’s laws of plane- mentum of an orbiting electron is quantized in units tary motion and widening of Bohr’s conjecture by the ofh ¯. formulation of quantum rules for periodic systems in J. C. A. Boeyens · Angular Momentum in Chemistry 375 idea of defining tetrahedral orbitals by hybridization is an obvious attempt to emulate the attractive Sommer- feld construct, albeit at the expense of the fundamental principle of angular momentum conservation. Fig. 2. Sommerfeld model of the The need to introduce half-integer quantum num- neon atom in terms of four elliptic bers can now be seen to have arisen from inappropriate and four circular orbits, both types use of Bohr’s conjecture, assuming non-zero angular in tetrahedral array. momentum for electrons in s-states. This dilemma sig- nalled the ultimate failure of Sommerfeld’s model. terms of action integrals such as pkdqk = nkh, k = 1,2,.., n = integer, where q and p are generalized coor- The unsuccessful Bohr-Sommerfeld model was dinates and their canonically conjugate momenta. Use based on the assumption that an orbiting particle pro- of these rules enabled the assignment of electronic, vi- vided the only possible source of electronic orbital an- brational and rotational molecular spectra and predicts gular momentum in an atom. A valid alternative is de- Bragg’s law for the interpretation of diffraction phe- fined by a hydrodynamic model that pictures the elec- nomena. tron as an ideal compressible fluid that surrounds the Success of the Sommerfeld model was due to the nucleus. At equilibrium, in a stationary state, the fluid introduction of two additional quantum numbers, re- appears incompressible, in accord with one of the pi- quired to describe elliptic orbits. The scheme is illus- oneering interpretations [4] of the Schr¨odinger func- trated by the electronic structure that it proposed for tion, which has never been fully appreciated. In this the neon atom. Ten electrons, as shown in Fig. 2, are model angular momentum derives from the hydrody- distributed over two shells, or energy levels, on sets namic circulation, or vorticity, of the fluid, which is of two and eight orbits respectively. The inner shell subject to the central Coulombic attraction [5] and be- accommodates two electrons1 while the second shell comes observable in an applied magnetic field. The consists of four elliptic and four circular orbits, ar- components of vorticity, at equilibrium, are defined in ranged in space, such that the total electronic angular terms of the components of flux, u, v, w as: momentum is quenched.
Recommended publications
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values
    268 A Textbook of Physical Chemistry – Volume I Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values The Schrodinger wave equation for hydrogen and hydrogen-like species in the polar coordinates can be written as: 1 휕 휕휓 1 휕 휕휓 1 휕2휓 8휋2휇 푍푒2 (406) [ (푟2 ) + (푆푖푛휃 ) + ] + (퐸 + ) 휓 = 0 푟2 휕푟 휕푟 푆푖푛휃 휕휃 휕휃 푆푖푛2휃 휕휙2 ℎ2 푟 After separating the variables present in the equation given above, the solution of the differential equation was found to be 휓푛,푙,푚(푟, 휃, 휙) = 푅푛,푙. 훩푙,푚. 훷푚 (407) 2푍푟 푘 (408) 3 푙 푘=푛−푙−1 (−1)푘+1[(푛 + 푙)!]2 ( ) 2푍 (푛 − 푙 − 1)! 푍푟 2푍푟 푛푎 √ 0 = ( ) [ 3] . exp (− ) . ( ) . ∑ 푛푎0 2푛{(푛 + 푙)!} 푛푎0 푛푎0 (푛 − 푙 − 1 − 푘)! (2푙 + 1 + 푘)! 푘! 푘=0 (2푙 + 1)(푙 − 푚)! 1 × √ . 푃푚(퐶표푠 휃) × √ 푒푖푚휙 2(푙 + 푚)! 푙 2휋 It is obvious that the solution of equation (406) contains three discrete (n, l, m) and three continuous (r, θ, ϕ) variables. In order to be a well-behaved function, there are some conditions over the values of discrete variables that must be followed i.e. boundary conditions. Therefore, we can conclude that principal (n), azimuthal (l) and magnetic (m) quantum numbers are obtained as a solution of the Schrodinger wave equation for hydrogen atom; and these quantum numbers are used to define various quantum mechanical states. In this section, we will discuss the properties and significance of all these three quantum numbers one by one. Principal Quantum Number The principal quantum number is denoted by the symbol n; and can have value 1, 2, 3, 4, 5…..∞.
    [Show full text]
  • Vibrational Quantum Number
    Fundamentals in Biophotonics Quantum nature of atoms, molecules – matter Aleksandra Radenovic [email protected] EPFL – Ecole Polytechnique Federale de Lausanne Bioengineering Institute IBI 26. 03. 2018. Quantum numbers •The four quantum numbers-are discrete sets of integers or half- integers. –n: Principal quantum number-The first describes the electron shell, or energy level, of an atom –ℓ : Orbital angular momentum quantum number-as the angular quantum number or orbital quantum number) describes the subshell, and gives the magnitude of the orbital angular momentum through the relation Ll2 ( 1) –mℓ:Magnetic (azimuthal) quantum number (refers, to the direction of the angular momentum vector. The magnetic quantum number m does not affect the electron's energy, but it does affect the probability cloud)- magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field-Zeeman effect -s spin- intrinsic angular momentum Spin "up" and "down" allows two electrons for each set of spatial quantum numbers. The restrictions for the quantum numbers: – n = 1, 2, 3, 4, . – ℓ = 0, 1, 2, 3, . , n − 1 – mℓ = − ℓ, − ℓ + 1, . , 0, 1, . , ℓ − 1, ℓ – –Equivalently: n > 0 The energy levels are: ℓ < n |m | ≤ ℓ ℓ E E 0 n n2 Stern-Gerlach experiment If the particles were classical spinning objects, one would expect the distribution of their spin angular momentum vectors to be random and continuous. Each particle would be deflected by a different amount, producing some density distribution on the detector screen. Instead, the particles passing through the Stern–Gerlach apparatus are deflected either up or down by a specific amount.
    [Show full text]
  • Chapter 5 the Relativistic Point Particle
    Chapter 5 The Relativistic Point Particle To formulate the dynamics of a system we can write either the equations of motion, or alternatively, an action. In the case of the relativistic point par- ticle, it is rather easy to write the equations of motion. But the action is so physical and geometrical that it is worth pursuing in its own right. More importantly, while it is difficult to guess the equations of motion for the rela- tivistic string, the action is a natural generalization of the relativistic particle action that we will study in this chapter. We conclude with a discussion of the charged relativistic particle. 5.1 Action for a relativistic point particle How can we find the action S that governs the dynamics of a free relativis- tic particle? To get started we first think about units. The action is the Lagrangian integrated over time, so the units of action are just the units of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the units of action are L2 ML2 [S]=M T = . (5.1.1) T 2 T Recall that the action Snr for a free non-relativistic particle is given by the time integral of the kinetic energy: 1 dx S = mv2(t) dt , v2 ≡ v · v, v = . (5.1.2) nr 2 dt 105 106 CHAPTER 5. THE RELATIVISTIC POINT PARTICLE The equation of motion following by Hamilton’s principle is dv =0. (5.1.3) dt The free particle moves with constant velocity and that is the end of the story.
    [Show full text]
  • The Quantum Mechanical Model of the Atom
    The Quantum Mechanical Model of the Atom Quantum Numbers In order to describe the probable location of electrons, they are assigned four numbers called quantum numbers. The quantum numbers of an electron are kind of like the electron’s “address”. No two electrons can be described by the exact same four quantum numbers. This is called The Pauli Exclusion Principle. • Principle quantum number: The principle quantum number describes which orbit the electron is in and therefore how much energy the electron has. - it is symbolized by the letter n. - positive whole numbers are assigned (not including 0): n=1, n=2, n=3 , etc - the higher the number, the further the orbit from the nucleus - the higher the number, the more energy the electron has (this is sort of like Bohr’s energy levels) - the orbits (energy levels) are also called shells • Angular momentum (azimuthal) quantum number: The azimuthal quantum number describes the sublevels (subshells) that occur in each of the levels (shells) described above. - it is symbolized by the letter l - positive whole number values including 0 are assigned: l = 0, l = 1, l = 2, etc. - each number represents the shape of a subshell: l = 0, represents an s subshell l = 1, represents a p subshell l = 2, represents a d subshell l = 3, represents an f subshell - the higher the number, the more complex the shape of the subshell. The picture below shows the shape of the s and p subshells: (notice the electron clouds) • Magnetic quantum number: All of the subshells described above (except s) have more than one orientation.
    [Show full text]
  • Magnetic Quantum Number: Describes the Orbital of the Subshell  Ms Or S - Spin Quantum Number: Describes the Spin QUANTUM NUMBER VALUES
    ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION STUDY MATERIAL FOR CHEMISTRY (CLASS-11) TOPIC- STRUCTURE OF ATOM SUBTOPIC- QUANTUM NUMBERS PREPARED BY: MR. ARNAB PAUL CHOWDHURY SET NUMBER-03 DATE: 07.07.2020 ------------------------------------------------------------------------------------------------------------------------------- In chemistry and quantum physics, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. In the case of electrons, the quantum numbers can be defined as "the sets of numerical values which give acceptable solutions to the Schrödinger wave equation for the hydrogen atom". How many quantum numbers exist? A quantum number is a value that is used when describing the energy levels available to atoms and molecules. An electron in an atom or ion has four quantum numbers to describe its state and yield solutions to the Schrödinger wave equation for the hydrogen atom. There are four quantum numbers: n - principal quantum number: describes the energy level ℓ - azimuthal or angular momentum quantum number: describes the subshell mℓ or m - magnetic quantum number: describes the orbital of the subshell ms or s - spin quantum number: describes the spin QUANTUM NUMBER VALUES According to the Pauli Exclusion Principle, no two electrons in an atom can have the same set of quantum numbers. Each quantum number is represented by either a half-integer or integer value. The principal quantum number is an integer that is the number of the electron's shell. The value is 1 or higher (never 0 or negative). The angular momentum quantum number is an integer that is the value of the electron's orbital (for example, s=0, p=1).
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • SPEED MANAGEMENT ACTION PLAN Implementation Steps
    SPEED MANAGEMENT ACTION PLAN Implementation Steps Put Your Speed Management Plan into Action You did it! You recognized that speeding is a significant Figuring out how to implement a speed management plan safety problem in your jurisdiction, and you put a lot of time can be daunting, so the Federal Highway Administration and effort into developing a Speed Management Action (FHWA) has developed a set of steps that agency staff can Plan that holds great promise for reducing speeding-related adopt and tailor to get the ball rolling—but not speeding! crashes and fatalities. So…what’s next? Agencies can use these proven methods to jump start plan implementation and achieve success in reducing speed- related crashes. Involve Identify a Stakeholders Champion Prioritize Strategies for Set Goals, Track Implementation Market the Develop a Speed Progress, Plan Management Team Evaluate, and Celebrate Success Identify Strategy Leads INVOLVE STAKEHOLDERS In order for the plan to be successful, support and buy-in is • Outreach specialists. needed from every area of transportation: engineering (Federal, • Governor’s Highway Safety Office representatives. State, local, and Metropolitan Planning Organizations (MPO), • National Highway Transportation Safety Administration (NHTSA) Regional Office representatives. enforcement, education, and emergency medical services • Local/MPO/State Department of Transportation (DOT) (EMS). Notify and engage stakeholders who were instrumental representatives. in developing the plan and identify gaps in support. Potential • Police/enforcement representatives. stakeholders may include: • FHWA Division Safety Engineers. • Behavioral and infrastructure funding source representatives. • Agency Traffic Operations Engineers. • Judicial representatives. • Agency Safety Engineers. • EMS providers. • Agency Pedestrian/Bicycle Coordinators. • Educators. • Agency Pavement Design Engineers.
    [Show full text]
  • Outline of Physical Science
    Outline of physical science “Physical Science” redirects here. It is not to be confused • Astronomy – study of celestial objects (such as stars, with Physics. galaxies, planets, moons, asteroids, comets and neb- ulae), the physics, chemistry, and evolution of such Physical science is a branch of natural science that stud- objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explo- ies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a “physical sions, gamma ray bursts, and cosmic microwave background radiation. science”, together called the “physical sciences”. How- ever, the term “physical” creates an unintended, some- • Branches of astronomy what arbitrary distinction, since many branches of physi- cal science also study biological phenomena and branches • Chemistry – studies the composition, structure, of chemistry such as organic chemistry. properties and change of matter.[8][9] In this realm, chemistry deals with such topics as the properties of individual atoms, the manner in which atoms form 1 What is physical science? chemical bonds in the formation of compounds, the interactions of substances through intermolecular forces to give matter its general properties, and the Physical science can be described as all of the following: interactions between substances through chemical reactions to form different substances. • A branch of science (a systematic enterprise that builds and organizes knowledge in the form of • Branches of chemistry testable explanations and predictions about the • universe).[1][2][3] Earth science – all-embracing term referring to the fields of science dealing with planet Earth. Earth • A branch of natural science – natural science science is the study of how the natural environ- is a major branch of science that tries to ex- ment (ecosphere or Earth system) works and how it plain and predict nature’s phenomena, based evolved to its current state.
    [Show full text]
  • The Principal Quantum Number the Azimuthal Quantum Number The
    To completely describe an electron in an atom, four quantum numbers are needed: energy (n), angular momentum (ℓ), magnetic moment (mℓ), and spin (ms). The Principal Quantum Number This quantum number describes the electron shell or energy level of an atom. The value of n ranges from 1 to the shell containing the outermost electron of that atom. For example, in caesium (Cs), the outermost valence electron is in the shell with energy level 6, so an electron incaesium can have an n value from 1 to 6. For particles in a time-independent potential, as per the Schrödinger equation, it also labels the nth eigen value of Hamiltonian (H). This number has a dependence only on the distance between the electron and the nucleus (i.e. the radial coordinate r). The average distance increases with n, thus quantum states with different principal quantum numbers are said to belong to different shells. The Azimuthal Quantum Number The angular or orbital quantum number, describes the sub-shell and gives the magnitude of the orbital angular momentum through the relation. ℓ = 0 is called an s orbital, ℓ = 1 a p orbital, ℓ = 2 a d orbital, and ℓ = 3 an f orbital. The value of ℓ ranges from 0 to n − 1 because the first p orbital (ℓ = 1) appears in the second electron shell (n = 2), the first d orbital (ℓ = 2) appears in the third shell (n = 3), and so on. This quantum number specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles.
    [Show full text]
  • Thermodynamic Processes: the Limits of Possible
    Thermodynamic Processes: The Limits of Possible Thermodynamics put severe restrictions on what processes involving a change of the thermodynamic state of a system (U,V,N,…) are possible. In a quasi-static process system moves from one equilibrium state to another via a series of other equilibrium states . All quasi-static processes fall into two main classes: reversible and irreversible processes . Processes with decreasing total entropy of a thermodynamic system and its environment are prohibited by Postulate II Notes Graphic representation of a single thermodynamic system Phase space of extensive coordinates The fundamental relation S(1) =S(U (1) , X (1) ) of a thermodynamic system defines a hypersurface in the coordinate space S(1) S(1) U(1) U(1) X(1) X(1) S(1) – entropy of system 1 (1) (1) (1) (1) (1) U – energy of system 1 X = V , N 1 , …N m – coordinates of system 1 Notes Graphic representation of a composite thermodynamic system Phase space of extensive coordinates The fundamental relation of a composite thermodynamic system S = S (1) (U (1 ), X (1) ) + S (2) (U-U(1) ,X (2) ) (system 1 and system 2). defines a hyper-surface in the coordinate space of the composite system S(1+2) S(1+2) U (1,2) X = V, N 1, …N m – coordinates U of subsystems (1 and 2) X(1,2) (1,2) S – entropy of a composite system X U – energy of a composite system Notes Irreversible and reversible processes If we change constraints on some of the composite system coordinates, (e.g.
    [Show full text]
  • Newton's Third Law (Lecture 7) Example the Bouncing Ball You Can Move
    3rd Law Newton’s third law (lecture 7) • If object A exerts a force on object B, then object B exerts an equal force on object A For every action there is an in the opposite direction. equal and opposite reaction. B discuss collisions, impulse, A momentum and how airbags work B Æ A A Æ B Example The bouncing ball • What keeps the box on the table if gravity • Why does the ball is pulling it down? bounce? • The table exerts an • It exerts a downward equal and opposite force on ground force upward that • the ground exerts an balances the weight upward force on it of the box that makes it bounce • If the table was flimsy or the box really heavy, it would fall! Action/reaction forces always You can move the earth! act on different objects • The earth exerts a force on you • you exert an equal force on the earth • The resulting accelerations are • A man tries to get the donkey to pull the cart but not the same the donkey has the following argument: •F = - F on earth on you • Why should I even try? No matter how hard I •MEaE = myou ayou pull on the cart, the cart always pulls back with an equal force, so I can never move it. 1 Friction is essential to movement You can’t walk without friction The tires push back on the road and the road pushes the tires forward. If the road is icy, the friction force You push on backward on the ground and the between the tires and road is reduced.
    [Show full text]