Microbial Degradation of Chemical Compounds Used in Onshore Gas Production in the SE of South Australia

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Degradation of Chemical Compounds Used in Onshore Gas Production in the SE of South Australia Australia’s National Science Agency Microbial degradation of chemical compounds used in onshore gas production in the SE of South Australia GISERA W.15 Nai Tran‐Dinh, Tania J Vergara, Richard Schinteie, Carla Mariani, Paul Greenfield and David J Midgley Report number EP196935 27 September 2019 GISERA CSIRO Energy ISBN (print): 978‐1‐4863‐1411‐9 ISBN (online): 978‐1‐4863‐1412‐6 Citation Tran‐Dinh N, Vergara TJ, Schinteie R, Mariani C & Midgley DJ (2019) Microbial degradation of chemical compounds used in onshore gas production in the SE of South Australia. CSIRO, Australia. Copyright © Commonwealth Scientific and Industrial Research Organisation 2019. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. Important disclaimer CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document please contact [email protected]. Microbial degradation of chemical compounds used in onshore gas production in the SE of South Australia | i Contents Acknowledgments ....................................................................................................................... vii Executive summary .................................................................................................................... viii Key findings .................................................................................................................... viii 1 Introduction .................................................................................................................... 11 Project goals and summary ................................................................................ 11 Chemicals associated with conventional onshore gas activities ......................... 11 Classification of microorganisms and taxonomic schemes ................................ 15 Soil microbiology ................................................................................................ 18 Aquifer microbiology .......................................................................................... 19 Soils and aquifers of the Penola region, South Australia .................................... 20 Experimental design ........................................................................................... 21 Chemicals used in this study .............................................................................. 24 2 Aims ........................................................................................................................... 27 3 Methods .......................................................................................................................... 28 Task 1 ................................................................................................................. 28 Task 2 ................................................................................................................. 28 Task 3, 4 and 5 ................................................................................................... 33 4 Results ........................................................................................................................... 46 Soil and aquifer physicochemistry ..................................................................... 46 Measured degradation of chemical compounds ................................................ 54 Soil mimicking agar single compound degradation trials ................................... 59 Identification of fungal taxa that degrade target chemicals............................... 63 Identification of prokaryotic taxa that degrade target chemicals ...................... 79 Effect of chemical treatments on soil microbiomes and identification of indicator taxa .................................................................................................................. 93 Effect of chemical treatments on aquifer microbiomes and identification of indicator taxa ................................................................................................................ 113 5 Discussion ..................................................................................................................... 124 Acetic Acid ....................................................................................................... 128 Isothiazolinone biocides ................................................................................... 129 Ethanol, isopropanol and methanol ................................................................. 129 2‐aminoethanol................................................................................................ 131 Aliphatic‐type compounds – eicosane, pristane, 2‐ethylhexanol and polyacrylamide .............................................................................................................. 132 Glycols – ethylene, propylene glycols and 2‐butoxyethanol ............................ 134 Bronopol .......................................................................................................... 135 c12 alcohol ethoxylate ..................................................................................... 136 Diethylene glycol ethyl ether ........................................................................... 136 Polyoxypropylene diamine ............................................................................... 137 Triethanolamine ............................................................................................... 137 Xanthan gum .................................................................................................... 138 Glyoxal, glutaraldehyde and Hexahydro‐1,3,5‐tris (2‐hydroxyethyl)‐sym‐triazine ......................................................................................................................... 139 Aromatic compounds – naphthalene and o‐cresol .......................................... 140 d‐limonene ....................................................................................................... 141 Adsorption vs microbial degradation ............................................................... 142 Conceptual model ............................................................................................ 143 6 Recommendations ........................................................................................................ 145 Chemical analyses ............................................................................................ 147 Sequencing data ............................................................................................... 158 Glossary 159 References 161 ii Figures Figure 1‐1: A phylogenetic tree of life. ........................................................................................ 16 Figure 1‐2: Examples of taxonomic lineages for groups from the three domains of life. ............ 17 Figure 1‐3: Schematic representation of bacterial and fungal ribosomal gene regions. Variable regions of ribosomal genes are labelled (V1‐9 in bacteria and ITS1 and ITS2 in fungi). .............. 18 Figure 1‐4: Indicative cross‐section in the onshore Otway Basin, showing major stratigraphy and location of hydrocarbon targets. ................................................................................................. 21 Figure 1‐5: Geographic location of sampling. Copyright ©Google Maps 2019. .......................... 22 Figure 1‐6: Schematic of workflow for onshore gas production chemical compound testing. .... 23 Figure 1‐7: Structures of chemicals used in this project .............................................................. 26 Figure 3‐1: Sampling locations in Penola, South Australia. Copyright ©Google Maps 2019. ...... 29 Figure 3‐2: Showing microcosms (with loose lids) stored in snap‐lock, polypropylene containers with open vessels of a saturated NH4NO3 for humidity. ............................................................. 34 Figure 3‐3: A schematic of the artificial chimeric amplicon used in the present study. .............. 42 Figure 3‐4: PCR primers used in the present study. .................................................................... 43 Figure 4‐1: Compound concentration measurements in various treatments over time (34‐36 days of incubation) for acetic acid. See full description in caption of Figure 4‐2. ....................... 55 Figure 4‐2: Compound concentration measurements in various treatments over time (34‐36 days of incubation). ..................................................................................................................... 56 Figure 4‐3: Anomalous compound concentration measurements
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Estudio Molecular De Poblaciones De Pseudomonas Ambientales
    Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES T E S I S D O C T O R A L DAVID SÁNCHEZ BERMÚDEZ DIRECTORA: ELENA GARCÍA-VALDÉS PUKKITS Departamento de Biología Universitat de les Illes Balears Palma de Mallorca, Septiembre 2013 Universitat de les Illes Balears ESTUDIO MOLECULAR DE POBLACIONES DE PSEUDOMONAS AMBIENTALES Tesis Doctoral presentada por David Sánchez Bermúdez para optar al título de Doctor en el programa Microbiología Ambiental y Biotecnología, de la Universitat de les Illes Balears, bajo la dirección de la Dra. Elena García-Valdés Pukkits. Vo Bo Director de la Tesis El doctorando DRA. ELENA GARCÍA-VALDÉS PUKKITS DAVID SÁNCHEZ BERMÚDEZ Catedrática de Universidad Universitat de les Illes Balears PALMA DE MALLORCA, SEPTIEMBRE 2013 III IV Index Agradecimientos .................................................................................................... IX Resumen ................................................................................................................ 1 Abstract ................................................................................................................... 3 Introduction ............................................................................................................ 5 I.1. The genus Pseudomonas ............................................................................................ 7 I.1.1. Definition ................................................................................................................ 7 I.1.2.
    [Show full text]
  • Niche Differentiation Among Sulfur-Oxidizing Bacterial Populations in Cave Waters
    The ISME Journal (2008) 2, 590–601 & 2008 International Society for Microbial Ecology All rights reserved 1751-7362/08 $30.00 www.nature.com/ismej ORIGINAL ARTICLE Niche differentiation among sulfur-oxidizing bacterial populations in cave waters Jennifer L Macalady1, Sharmishtha Dattagupta1, Irene Schaperdoth1, Daniel S Jones1, Greg K Druschel2 and Danielle Eastman2 1Department of Geosciences, Pennsylvania State University, Pennsylvania, PA, USA and 2Department of Geology, University of Vermont, Burlington, VT, USA The sulfidic Frasassi cave system affords a unique opportunity to investigate niche relationships among sulfur-oxidizing bacteria, including epsilonproteobacterial clades with no cultivated representatives. Oxygen and sulfide concentrations in the cave waters range over more than two orders of magnitude as a result of seasonally and spatially variable dilution of the sulfidic groundwater. A full-cycle rRNA approach was used to quantify dominant populations in biofilms collected in both diluted and undiluted zones. Sulfide concentration profiles within biofilms were obtained in situ using microelectrode voltammetry. Populations in rock-attached streamers depended on the sulfide/oxygen supply ratio of bulk water (r ¼ 0.97; Po0.0001). Filamentous epsilonproteobacteria dominated at high sulfide to oxygen ratios (4150), whereas Thiothrix dominated at low ratios (o75). In contrast, Beggiatoa was the dominant group in biofilms at the sediment–water interface regardless of sulfide and oxygen concentrations or supply ratio. Our results
    [Show full text]
  • Metagenomes of Native and Electrode-Enriched Microbial Communities from the Soudan Iron Mine Jonathan P
    Metagenomes of native and electrode-enriched microbial communities from the Soudan Iron Mine Jonathan P. Badalamenti and Daniel R. Bond Department of Microbiology and BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul, Minnesota, USA Twitter: @JonBadalamenti @wanderingbond Summary Approach - compare metagenomes from native and electrode-enriched deep subsurface microbial communities 30 Despite apparent carbon limitation, anoxic deep subsurface brines at the Soudan ) enriched 2 Underground Iron Mine harbor active microbial communities . To characterize these 20 A/cm µ assemblages, we performed shotgun metagenomics of native and enriched samples. enrich ( harvest cells collect inoculate +0.24 V extract 10 Follwing enrichment on poised electrodes and long read sequencing, we recovered Soudan brine electrode 20° C from DNA biodreactors current electrodes from the metagenome the closed, circular genome of a novel Desulfuromonas sp. 0 0 10 20 30 40 filtrate PacBio RS II Illumina HiSeq with remarkable genomic features that were not fully resolved by short read assem- extract time (d) long reads short reads TFF DNA unenriched bly alone. This organism was essentially absent in unenriched Soudan communities, 0.1 µm retentate assembled metagenomes reconstruct long read return de novo complete genome(s) assembly indicating that electrodes are highly selective for putative metal reducers. Native HGAP assembly community metagenomes suggest that carbon cycling is driven by methyl-C me- IDBA_UD 1 hybrid tabolism, in particular methylotrophic methanogenesis. Our results highlight the 3 µm prefilter assembly N4 binning promising potential for long reads in metagenomic surveys of low-diversity environ- borehole N4 binning read trimming and filtering brine de novo ments.
    [Show full text]
  • Microbial Communities in Placentas from Term Normal Pregnancy Exhibit Spatially Variable Profiles Lindsay A
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2017 Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles Lindsay A. Parnell Washington University School of Medicine in St. Louis Catherine M. Briggs Washington University School of Medicine in St. Louis Bin Cao Washington University School of Medicine in St. Louis Omar Delannoy-Bruno Washington University School of Medicine in St. Louis Andrew E. Schrieffer Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Parnell, Lindsay A.; Briggs, Catherine M.; Cao, Bin; Delannoy-Bruno, Omar; Schrieffer, Andrew E.; and Mysorekar, Indira U., ,"Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles." Scientific Reports.7,. (2017). https://digitalcommons.wustl.edu/open_access_pubs/6175 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Lindsay A. Parnell, Catherine M. Briggs, Bin Cao, Omar Delannoy-Bruno, Andrew E. Schrieffer, and Indira U. Mysorekar This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/6175 www.nature.com/scientificreports OPEN Microbial communities in placentas from term normal pregnancy exhibit spatially variable profles Received: 30 January 2017 Lindsay A. Parnell1, Catherine M. Briggs1, Bin Cao1, Omar Delannoy-Bruno1, Andrew E. Accepted: 24 August 2017 Schriefer2 & Indira U. Mysorekar 1,3 Published: xx xx xxxx The placenta is the principal organ nurturing the fetus during pregnancy and was traditionally considered to be sterile.
    [Show full text]
  • Uneven Distribution of Cobamide Biosynthesis and Dependence in Bacteria Predicted by Comparative Genomics
    The ISME Journal (2018) 13:789–804 https://doi.org/10.1038/s41396-018-0304-9 ARTICLE Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics 1 1 1 1,2 3,4 3 Amanda N. Shelton ● Erica C. Seth ● Kenny C. Mok ● Andrew W. Han ● Samantha N. Jackson ● David R. Haft ● Michiko E. Taga1 Received: 7 June 2018 / Revised: 14 September 2018 / Accepted: 4 October 2018 / Published online: 14 November 2018 © The Author(s) 2018. This article is published with open access Abstract The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families, but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced 1234567890();,: 1234567890();,: by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways, yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway.
    [Show full text]
  • Chlorate Reduction by an Acetogenic Bacterium, Sporomusa Sp., Isolated from an Underground Gas Storage
    Appl Microbiol Biotechnol (2010) 88:595–603 DOI 10.1007/s00253-010-2788-8 ENVIRONMENTAL BIOTECHNOLOGY (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage Melike Balk & Farrakh Mehboob & Antonie H. van Gelder & W. Irene C. Rijpstra & Jaap S. Sinninghe Damsté & Alfons J. M. Stams Received: 12 March 2010 /Revised: 16 July 2010 /Accepted: 16 July 2010 /Published online: 3 August 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract A mesophilic bacterium, strain An4, was isolated Keywords Sporomusa sp. Perchlorate . from an underground gas storage reservoir with methanol Underground gas storage as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5– 0.8 μm in diameter, and 2–8 μm in length, growing as Introduction single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted Perchlorate and chlorate are used in a wide range of various alcohols, organic acids, fructose, acetoin, and applications. Chlorate is used as an herbicide or defoliant. H2/CO2 to acetate, usually as the only product. Succinate Perchlorate salts have been manufactured in large quantities was decarboxylated to propionate. The isolate was able to and used as ingredients in solid rocket fuels, highway safety respire with (per)chlorate, nitrate, and CO2. The G+C flares, air bag inflators, fireworks, and matches (Renner content of the DNA was 42.6 mol%. Based on the 16S 1998; Logan 2001; Motzer 2001). Perchlorate is chemically rRNA gene sequence analysis, strain An4 was most closely very stable and has low reactivity even in highly reducing related to Sporomusa ovata (98% similarity).
    [Show full text]
  • Repeated Anaerobic Microbial Redox Cycling of Iron †
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 2011, p. 6036–6042 Vol. 77, No. 17 0099-2240/11/$12.00 doi:10.1128/AEM.00276-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Repeated Anaerobic Microbial Redox Cycling of Ironᰔ† Aaron J. Coby,1‡ Flynn Picardal,2 Evgenya Shelobolina,1 Huifang Xu,1 and Eric E. Roden1* Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706,1 and School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 474052 Received 7 February 2011/Accepted 28 June 2011 Some nitrate- and Fe(III)-reducing microorganisms are capable of oxidizing Fe(II) with nitrate as the electron acceptor. This enzymatic pathway may facilitate the development of anaerobic microbial communities that take advantage of the energy available during Fe-N redox oscillations. We examined this phenomenon in synthetic Fe(III) oxide (nanocrystalline goethite) suspensions inoculated with microflora from freshwater river floodplain sediments. Nitrate and acetate were added at alternate intervals in order to induce repeated cycles of microbial Fe(III) reduction and nitrate-dependent Fe(II) oxidation. Addition of nitrate to reduced, acetate- depleted suspensions resulted in rapid Fe(II) oxidation and accumulation of ammonium. High-resolution transmission electron microscopic analysis of material from Fe redox cycling reactors showed amorphous coatings on the goethite nanocrystals that were not observed in reactors operated under strictly nitrate- or Fe(III)-reducing conditions. Microbial communities associated with N and Fe redox metabolism were assessed using a combination of most-probable-number enumerations and 16S rRNA gene analysis. The nitrate- reducing and Fe(III)-reducing cultures were dominated by denitrifying Betaproteobacteria (e.g., Dechloromonas) and Fe(III)-reducing Deltaproteobacteria (Geobacter), respectively; these same taxa were dominant in the Fe cycling cultures.
    [Show full text]
  • Bacterial Community Dynamics During the Early Stages of Biofilm Formation
    Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration DOUTERELO, I., SHARPE, Rebecca <http://orcid.org/0000-0002-2783-9215> and BOXALL, J. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/9517/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version DOUTERELO, I., SHARPE, Rebecca and BOXALL, J. (2014). Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration. Journal of applied microbiology, 117 (1), 286-301. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk Journal of Applied Microbiology ISSN 1364-5072 ORIGINAL ARTICLE Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration I. Douterelo1, R. Sharpe2 and J. Boxall1 1 Pennine Water Group, Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK 2 School of Civil and Building Engineering, Loughborough University, Loughborough, UK Keywords Abstract 16s rRNA sequencing, bacterial community structure, biofilm development, Aims: To characterize bacterial communities during the early stages of biofilm discolouration, drinking water distribution formation and their role in water discolouration in a fully representative, systems, terminal restriction fragment length chlorinated, experimental drinking water distribution systems (DWDS). polymorphism. Methods and Results: Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic Correspondence conditions to simulate pipe burst, cleaning or other system conditions.
    [Show full text]
  • Metagenomic Insights Into S(0) Precipitation in a Terrestrial Subsurface Lithoautotrophic Ecosystem
    ORIGINAL RESEARCH ARTICLE published: 08 January 2015 doi: 10.3389/fmicb.2014.00756 Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem Trinity L. Hamilton 1*, Daniel S. Jones 1,2, Irene Schaperdoth 1 and Jennifer L. Macalady 1* 1 Department of Geosciences, Penn State Astrobiology Research Center, The Pennsylvania State University, University Park, PA, USA 2 Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA Edited by: The Frasassi and Acquasanta Terme cave systems in Italy host isolated lithoautotrophic John R. Spear, Colorado School of ecosystems characterized by sulfur-oxidizing biofilms with up to 50% S(0) by mass. Mines, USA The net contributions of microbial taxa in the biofilms to production and consumption Reviewed by: of S(0) are poorly understood and have implications for understanding the formation Matthew Schrenk, Michigan State University, USA of geological sulfur deposits as well as the ecological niches of sulfur-oxidizing John R. Spear, Colorado School of autotrophs. Filamentous Epsilonproteobacteria are among the principal biofilm architects Mines, USA in Frasassi and Acquasanta Terme streams, colonizing high-sulfide, low-oxygen niches Takuro Nunoura, Japan Agency for relative to other major biofilm-forming populations. Metagenomic sequencing of eight Marine-Earth Science & Technology, Japan biofilm samples indicated the presence of diverse and abundant Epsilonproteobacteria. *Correspondence: Populations of Sulfurovum-like organisms were the most abundant Epsilonproteobacteria Trinity L. Hamilton and Jennifer L. regardless of differences in biofilm morphology, temperature, or water chemistry. After Macalady, Department of assembling and binning the metagenomic data, we retrieved four nearly-complete Geosciences, Penn State genomes of Sulfurovum-like organisms as well as a Sulfuricurvum spp.
    [Show full text]
  • Metagenomics Unveils the Attributes of the Alginolytic Guilds of Sediments from Four Distant Cold Coastal Environments
    Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments Marina N Matos1, Mariana Lozada1, Luciano E Anselmino1, Matías A Musumeci1, Bernard Henrissat2,3,4, Janet K Jansson5, Walter P Mac Cormack6,7, JoLynn Carroll8,9, Sara Sjöling10, Leif Lundgren11 and Hebe M Dionisi1* 1Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CONICET), Puerto Madryn, U9120ACD, Chubut, Argentina 2Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France 3INRA, USC 1408 AFMB, F-13288 Marseille, France 4Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia 5Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA 6Instituto Antártico Argentino, Ciudad Autónoma de Buenos Aires, C1064ABR, Argentina 7Instituto Nanobiotec, CONICET- Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1113AAC, Argentina 8Akvaplan-niva, Fram – High North Research Centre for Climate and the Environment, NO- 9296 Tromsø, Norway 9CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, UiT The Arctic University of Norway, N-9037 Tromsø, Norway 10School of Natural Sciences and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden 11Stockholm University, SE-106 91 Stockholm, Sweden This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1462-2920.13433 This article is protected by copyright. All rights reserved. Page 2 of 41 Running title: Alginolytic guilds from cold sediments *Correspondence: Hebe M.
    [Show full text]
  • The Genome Sequence of Methanohalophilus Mahii SLPT
    Hindawi Publishing Corporation Archaea Volume 2010, Article ID 690737, 16 pages doi:10.1155/2010/690737 Research Article TheGenomeSequenceofMethanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments Stefan Spring,1 Carmen Scheuner,1 Alla Lapidus,2 Susan Lucas,2 Tijana Glavina Del Rio,2 Hope Tice,2 Alex Copeland,2 Jan-Fang Cheng,2 Feng Chen,2 Matt Nolan,2 Elizabeth Saunders,2, 3 Sam Pitluck,2 Konstantinos Liolios,2 Natalia Ivanova,2 Konstantinos Mavromatis,2 Athanasios Lykidis,2 Amrita Pati,2 Amy Chen,4 Krishna Palaniappan,4 Miriam Land,2, 5 Loren Hauser,2, 5 Yun-Juan Chang,2, 5 Cynthia D. Jeffries,2, 5 Lynne Goodwin,2, 3 John C. Detter,3 Thomas Brettin,3 Manfred Rohde,6 Markus Goker,¨ 1 Tanja Woyke, 2 Jim Bristow,2 Jonathan A. Eisen,2, 7 Victor Markowitz,4 Philip Hugenholtz,2 Nikos C. Kyrpides,2 and Hans-Peter Klenk1 1 DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, CA 94598-1632, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545-001, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 5 Oak Ridge National Laboratory, Oak Ridge, TN 37830-8026, USA 6 HZI—Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany 7 Davis Genome Center, University of California, Davis, CA 95817, USA Correspondence should be addressed to Stefan Spring, [email protected] and Hans-Peter Klenk, [email protected] Received 24 August 2010; Accepted 9 November 2010 Academic Editor: Valerie´ de Crecy-Lagard´ Copyright © 2010 Stefan Spring et al.
    [Show full text]