The Lutz-Nagell Theorem and Torsion Points
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Professor I Hemmelig Tjeneste
Professor i hemmelig tjeneste Matematikeren, datapioneren og kryptologen Ernst Sejersted Selmer Øystein Rygg Haanæs 1 Forord Denne populærvitenskapelige biografien er skrevet på oppdrag fra Universitetet i Bergen og Nasjonal sikkerhetsmyndighet for å markere at det er 100 år siden Ernst Sejersted Selmer ble født. La meg være helt ærlig. For ni måneder siden ante jeg ikke hvem Selmer var. Det gjorde nesten ingen av mine venner og bekjente heller. Jeg har faktisk mistanke om at svært få i Norge utenfor det matematiske miljøet kjenner til navnet. Det er en skam. Fra midten av forrige århundre ble høyere utdanning i Norge reformert og åpnet for massene. Universitetet i Bergen vokste ut av kortbuksene og begynte å begå virkelig seriøs vitenskap. De første digitale computerne ble bygd og tatt i bruk i forskning og forvaltning. Norge fikk en «EDB-politikk». Alle nordmenn fikk et permanent fødselsnummer. Forsvaret etablerte en kryptologitjeneste på høyt nivå, og norsk kryptoindustri ble kapabel til å levere utstyr til NATO-alliansen. Ernst Sejersted Selmer hadde minst én finger med i spillet i alle disse prosessene. Selmer hadde lange armer og stor rekkevidde. Han satte overveldende mange spor etter seg, og denne boken er et forsøk på å gå opp disse sporene og gi Selmer den oppmerksomheten han fortjener. Enda en innrømmelse når vi først er i gang. Jeg er ikke matematiker. Det har selvsagt sine sider når oppdraget er å skrive en biografi om nettopp en matematiker. Da jeg startet arbeidet, hadde jeg ikke det minste begrep om hva en diofantisk ligning eller et skiftregister var. Heldigvis har jeg fått uvurderlig hjelp av de tidligere Selmer-studentene Christoph Kirfel og Tor Helleseth. -
Kepler's Conjecture
KEPLER’S CONJECTURE How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World George G. Szpiro John Wiley & Sons, Inc. KEPLER’S CONJECTURE How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World George G. Szpiro John Wiley & Sons, Inc. This book is printed on acid-free paper.●∞ Copyright © 2003 by George G. Szpiro. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada Illustrations on pp. 4, 5, 8, 9, 23, 25, 31, 32, 34, 45, 47, 50, 56, 60, 61, 62, 66, 68, 69, 73, 74, 75, 81, 85, 86, 109, 121, 122, 127, 130, 133, 135, 138, 143, 146, 147, 153, 160, 164, 165, 168, 171, 172, 173, 187, 188, 218, 220, 222, 225, 226, 228, 230, 235, 236, 238, 239, 244, 245, 246, 247, 249, 250, 251, 253, 258, 259, 261, 264, 266, 268, 269, 274, copyright © 2003 by Itay Almog. All rights reserved Photos pp. 12, 37, 54, 77, 100, 115 © Nidersächsische Staats- und Universitätsbib- liothek, Göttingen; p. 52 © Department of Mathematics, University of Oslo; p. 92 © AT&T Labs; p. 224 © Denis Weaire No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted in any form or by any means, electronic, mechanical, photocopying, record- ing, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. -
Índice 1. Teoría De Cuerpos 1 1.1
REPRESENTACIONES DE GALOIS LUIS DIEULEFAIT, ARIEL PACETTI, AND FERNANDO RODRIGUEZ VILLEGAS Índice 1. Teoría de Cuerpos 1 1.1. Generalidades 1 1.2. Los números p-ádicos 3 1.3. Teoría de Galois en extensiones nitas 5 2. Representaciones de Artin 8 2.1. Introducción a las representaciones de Artin 8 2.2. Representaciones lineales de grupos nitos 8 2.3. Representaciones de permutación de grupos nitos 10 2.4. Tabla de caracteres 11 3. Aritmética en extensiones 13 3.1. Factorización en primos 13 3.2. Automorsmo de Frobenius 13 3.3. Un ejemplo. Teorema de Chebotarev 14 4. Series L de Artin 15 4.1. Factores de Euler 16 4.2. Ejemplo I: polinomios de grado cuatro 16 4.3. Ejemplo II: polinomio de Trinks 19 5. Extensiones de cuerpos no nitas 20 5.1. Correspondencia de Galois 20 5.2. Grupo de descomposición y Frobenius en extensiones innitas 23 6. Representaciones de Galois 24 6.1. Series L asociadas a representaciones del grupo de Galois absoluto 29 7. Curvas algebraicas 30 7.1. Cónicas 31 7.2. Curvas Elípticas 34 7.3. Puntos de Torsión 38 8. Curvas Elípticas sobre cuerpos nitos 43 9. Acción del grupo de Galois en puntos de torsión 46 10. Puntos racionales en curvas de género mayor que 1 50 Referencias 51 1. Teoría de Cuerpos 1.1. Generalidades. Recordemos la siguiente denición. Date: Versión nal: 27 de diciembre de 2019. Estas notas corresponden al curso dictado por Ariel Pacetti, Fernando Rodríguez Villegas, y Luis Dieulefait en la escuela AGRA III, Aritmética, Grupos y Análisis, del 9 al 20 de Julio de 2018 en Córdoba, Argentina. -
Outline of Selberg's Proof
Analysis of the Prime-Number Theorem Kyle Aguilar Outline of Selberg's Proof To summarize Selberg's proof of the prime number theorem, Selberg divides the proof into four different sections. In the first section, Selberg introduces the prime number theorem as: θ(x) lim = 1 for x > 0 x!1 x He also defines the prime-number theorem through summation. This can be written as: X θ(x) = log p p≤x Generally speaking, Selberg invokes multiple definitions and formulas deduced from this form of the prime- number theorem and goes on to prove each individual part. He also makes a small side note that his first proof consisted of using the results from Erd¨os.One side note to mention: throughout this proof, p, q, and r are all denoted as prime numbers. As a result of all these basic formulas, he establishes that: X x θ(x)log x + θ( ) log p = 2xlog x + O(x) p≤x p In the second section of Selberg's prime number theorem, Selberg defines basic formulas and proves them. He applies summation and property of logarithms in order to expand the definition of the prime number theorem. Then, connecting each of the equations that he deduced to, he formulated the equation: 1 X x loglog x jR(x)j ≤ R + O(x ) log x n≤x n log x In the third part of the proof, Selberg defines some properties of R(x) that will help develop the proof even further. In this case: R(x) = θ(x) − x Overall, using R(x), Selberg establishes that on the interval (x; xek/δ) there are subintervals (y; yeδ=2) inside which jR(z)j < 4δz In the final section of the proof, with all the pieces put together, Selberg proves the prime number theorem by using the bootstrapping argument on how to estimate jR(x)j < ax. -
Axel Thue in Context Tome 27, No 2 (2015), P
Catherine GOLDSTEIN Axel Thue in context Tome 27, no 2 (2015), p. 309-337. <http://jtnb.cedram.org/item?id=JTNB_2015__27_2_309_0> © Société Arithmétique de Bordeaux, 2015, tous droits réservés. L’accès aux articles de la revue « Journal de Théorie des Nom- bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Journal de Théorie des Nombres de Bordeaux 27 (2015), 309–337 Axel Thue in context par Catherine GOLDSTEIN Résumé. Axel Thue en contexte. Les travaux d’Axel Thue, en particulier son célèbre article “Über Annäherungswerte algebraischer Zahlen”, sont d’ordinaire décrits comme des joyaux isolés dans les mathématiques de leur temps. Je montre ici qu’il est nécessaire de distinguer entre l’isolement personnel de Thue et les caractéristiques de sa pratique mathé- matique. Après une brève présentation de la biographie d’Axel Thue, je contextualise certains aspects de son travail (en parti- culier la conversion d’expressions sur des nombres en expressions sur des polynômes) à la lumière de son éducation mathématique spécifique et de l’état de l’art en approximation diophantienne au tournant du vingtième siècle.