Microcode Simulation

Total Page:16

File Type:pdf, Size:1020Kb

Microcode Simulation Fast Microcode Interpretation with Transactional Commit/Abort Jens Troger¨ Darek Mihockaˇ Pardo [email protected] [email protected] [email protected] Abstract Keywords: functional system simulation, microcode interpre- tation, binary translation, instrumentation This paper describes the design and implementation of a fast microcode interpreter for functional system simula- tion. While we primarily target architecture simulation, the 1. Introduction design principles can easily be applied to high-level and byte-code interpreters as well. System simulation allows for execution of system level A functional system simulator executes an entire guest software in a controlled software environment. The si- operating system stack and applications, inside a soft- mulator implements a ”guest” CPU architecture, physical ware simulated environment. Such simulators do not simu- memory, TLBs, optionally caches, and some essential de- late cycle accuracy, but run fast enough to run real-world vices like timers and serial I/O devices. The goal is to run workloads. System simulators depend on the architecture unmodified firmware and an operating system stack with of both guest and host, so are traditionally hand-written applications, ideally with the guest software unable to de- and tailored to the respective architectures. Performance tect it is not running on real hardware. The system simula- optimizations like dynamic compilation to host code or as- tor itself is an application that runs on the ”host” machine. sembly coding of key routines are common, but further System simulation has many applications. One com- increase host and guest dependency. The interpreter de- mon use is migration of legacy software to new and dif- scribed here is substantially independent of the host, is ferent host architectures. Architecture research and exper- easily retargeted to new guests, yet achieves performance imentation uses simulation to explore novel features with- competitive with much more hand-crafted simulators. out building hardware, and to collect detailed information Most functional simulators implement a traditional used to refine proposed new features. Simulators can sand- guest instruction set with simple and independent opera- box a guest software stack in a secure and controlled execu- tions such as loads, adds, and so on. In contrast, simu- tion environment for scalable cloud computing. Simulators lating microcode is difficult because each instruction has are also used for debugging low-level code where using a many sub-operations – which may depend on each other, debugger on real hardware is hard, and for developing and and which must atomically commit or abort as a single validating code where new hardware does not yet exist. Fi- transaction. This paper describes techniques for high- nally, a system simulator can observe, log, and manipulate performance transactional simulation. a guest software stack, thus collecting arbitrary informa- The paper measures real-world workloads like Win- tion about the dynamic behavior of the guest software and dows71 and Linux boot, and application runs of Office, web allowing performance analysis and tuning that is difficult browsers, and more. We also report very machine specific or impossible on real hardware. performance details using micro-benchmarks. We then use There are many approaches to simulation, depending that data as a guide for the design and implementation of on the desired accuracy. For example, cycle- and timing- an interpreter that achieves high performance, host porta- accurate simulators mimic low-level implementation de- bility via coding in ”plain” C++, and guest retargetability tails of guests. Performance data is accurate, but may cost via a machine-generated instruction parser and abstracted thousands or millions of host cycles to accurately simu- operations that are reused in retargeting. late bus contention, full-buffer stalls, and so on. The slow Initial results show execution on modern processors as speed usually limits what software can be run. Conversely, fast as a few tens of host cycles per simulated guest in- functional simulators hide many details of the guest, to im- struction, thus executing hundreds of millions operations prove simulation speed. As a result, functional simulators per second, and tens to hundreds of millions of guest in- can boot and run modern operating system stacks, execut- structions per second, depending on their complexity. ing billions of guest instructions in tens of seconds. 1Trade names in this paper are the property of their owners. Even among functional simulators, there are many ap- proaches. Decode-and-dispatch interpreters are often sim- • what common and dominant guest workloads users plest to build, but may take a thousand host cycles per will run; simulated guest instruction. Instruction decode cost often dominates simulation speed, so threaded-code simulators • what critical interpreter paths dominate performance that cache decoded results are often much faster. Dynamic of these guest workloads; and cross compilation is faster yet because it can reduce inter- • instruction simulation costs, but code generators are a sig- how these paths are best executed on a given host ma- nificant effort to build and retarget [EG03]. Finally, user- chine. level simulation often provides highest performance and For guest operations, it is important to measure large simplest implementation, but is only able to run limited workloads that are representative of what will be used software and cannot observe system details. in simulation, since ”inner loop” benchmarks often hide Most simulators in the literature are for guests with rel- system-level behavior that in practice can dominate total atively simple instructions. Even ”complex” instructions, simulation cost. sin such as floating-point , are still conceptually orthogo- For host operations, it is important to measure processor nal and independent of other instructions. Microcode sim- performance in detail, to ensure the simulator makes good ulation is more complex, because each instruction is com- use of the hardware microarchitecture, since small differ- posed of sub-operations that may have interdependencies, ences in cost often have a big impact on running time. can give rise to several simultaneous exceptions, and which complete atomically. For example, a single microcode in- 2.1. Application Benchmarks struction may include memory, integer ALU, floating-point ALU, and branch sub-operations; a compare sub-operation We use guest workload data to discover what guest op- may be forwarded to conditional branch logic in the same erations are common or rare, and thus drive performance microinstruction; multiple units may give rise to excep- decisions in the simulator design. tions, which need to be prioritized; and results from all sub-operations follow atomic commit/abort semantics. Ex- A workload is the code executed and data consumed by isting simulator designs are poorly-suited to simulate such an application to solve a given problem. A benchmark ex- a machine. ercises one or several dedicated workloads. One widely- This paper discusses challenges implementing a used benchmark is SPEC [Cor10]. SPEC CPU, for in- portable and high performance functional system-level in- stance, is ”designed to provide performance measurements terpreter. The simulator is written in C++ and is easily ... used to compare compute-intensive workloads on differ- recompiled on different hosts. It avoids most direct host ent computer systems.” Other SPEC benchmarks focus on dependencies – for example, it avoids multiplexing guest power consumption, render speed and 3D workflows, par- condition codes on to host condition codes, and host/guest allel computation, server loads for virtual machines, and so endianess affects performance but not correctness. The forth. simulator is easily retargeted to different guest ISAs and Another common approach is to run real-world appli- gives good performance for both conventional macro in- cations concurrently so they compete with each other for struction sets and complex microcode. resources. One scenario, for example, is running a web Section 2 discusses different types of workloads and browser that renders media content, while also checking benchmarks, their application, and how they influence the email or playing a game. The data we used to design our design of our interpreter. Section 3 analyzes how design fast interpreter is largely from such real world scenarios, decisions of existing interpreters and dynamic compilers and less from benchmarks. for system simulators affect their performance. Section 4 describes our internal virtual microcode architecture, and 2.2. Micro-Benchmarks introduces the design and implementation of our fast and portable microcode interpreter. Finally, section 5 presents We use micro-benchmarks to understand performance initial performance results of our interpreter which demon- bottlenecks of a host CPU, and use that data to design the strate the feasibility and benefits of our design. data and code layout of our fast interpreter. A micro-benchmark is a short sequence of instructions that exercises one particular feature of the CPU. Listing 1 2. Workloads and Benchmarks shows a micro-benchmark we designed to measure la- tency of the x86 lahf instruction, an instruction often A fast simulator must run common operations quickly. used by interpreters and dynamic instrumentation tools to To design one, we need to understand: retrieve some host arithmetic
Recommended publications
  • Endian: from the Ground up a Coordinated Approach
    WHITEPAPER Endian: From the Ground Up A Coordinated Approach By Kevin Johnston Senior Staff Engineer, Verilab July 2008 © 2008 Verilab, Inc. 7320 N MOPAC Expressway | Suite 203 | Austin, TX 78731-2309 | 512.372.8367 | www.verilab.com WHITEPAPER INTRODUCTION WHat DOES ENDIAN MEAN? Data in Imagine XYZ Corp finally receives first silicon for the main Endian relates the significance order of symbols to the computers chip for its new camera phone. All initial testing proceeds position order of symbols in any representation of any flawlessly until they try an image capture. The display is kind of data, if significance is position-dependent in that regularly completely garbled. representation. undergoes Of course there are many possible causes, and the debug Let’s take a specific type of data, and a specific form of dozens if not team analyzes code traces, packet traces, memory dumps. representation that possesses position-dependent signifi- There is no problem with the code. There is no problem cance: A digit sequence representing a numeric value, like hundreds of with data transport. The problem is eventually tracked “5896”. Each digit position has significance relative to all down to the data format. other digit positions. transformations The development team ran many, many pre-silicon simula- I’m using the word “digit” in the generalized sense of an between tions of the system to check datapath integrity, bandwidth, arbitrary radix, not necessarily decimal. Decimal and a few producer and error correction. The verification effort checked that all other specific radixes happen to be particularly useful for the data submitted at the camera port eventually emerged illustration simply due to their familiarity, but all of the consumer.
    [Show full text]
  • Real-Time Embedded Systems
    Real-Time Embedded Systems Ch3: Microprocessor Objectives Microprocessor Characteristics Von Neumann and Harvard architectures I/O Addressing Endianness Memory organization of some classic microprocessors ◦ PIC18F8720 ◦ Intel 8086 ◦ Intel Pentium ◦ Arm X. Fan: Real-Time Embedded Systems 2 Some microprocessors used in embedded systems 3 Microprocessor Architectures Von Neumann Architecture ◦ Data and instructions (executable code) are stored in the same address space. ◦ The processor interfaces to memory through a single set of address/data buses. Harvard Architecture ◦ Data and instructions (executable code) are stored in separate address spaces. ◦ There are two sets of address/data buses between processor and memory. Complex Instruction Set Computer (CISC) ◦ runs “complex instructions“ where a single instruction may execute several low-level operations Reduced Instruction Set Computer (RISC) ◦ runs compact, uniform instructions where the amount of work any single instruction accomplishes is reduced. 4 Other Stuff Processing Width ◦ Width ◦ Word I/O Addressing ◦ Special instruction vs memory mapped Reset Vector ◦ Intell – high end of address space ◦ PIC/ and Motorolla (Frescale, NXT….) low ◦ Arm definable ◦ Why put it on end or the other? X. Fan: Real-Time Embedded Systems 5 Endianness VS 6 Endianness Whether integers are presented from left to right or right to left ◦ Little-endian: the least significant byte stored at the lowest memory address ◦ Big-endian: the most significant byte stored at the lowest memory address 7 System Convention Be internally consistent ◦ Endianness ◦ Data formats ◦ Protocols ◦ Units Do conversion ASAP and ALAP ◦ On and off the wire X. Fan: Real-Time Embedded Systems 8 PIC18F8720 9 PIC18F8720: Memory organization 10 PIC18F8720: EMI Operating mode: Word Write Mode This mode allows instruction fetches and table reads from, and table writes to, all forms of 16-bit (word-wide) external memories.
    [Show full text]
  • Lecture #2 "Computer Systems Big Picture"
    18-600 Foundations of Computer Systems Lecture 2: “Computer Systems: The Big Picture” John P. Shen & Gregory Kesden 18-600 August 30, 2017 CS: AAP CS: APP ➢ Recommended Reference: ❖ Chapters 1 and 2 of Shen and Lipasti (SnL). ➢ Other Relevant References: ❖ “A Detailed Analysis of Contemporary ARM and x86 Architectures” by Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam . (2013) ❖ “Amdahl’s and Gustafson’s Laws Revisited” by Andrzej Karbowski. (2008) 8/30/2017 (©J.P. Shen) 18-600 Lecture #2 1 18-600 Foundations of Computer Systems Lecture 2: “Computer Systems: The Big Picture” 1. Instruction Set Architecture (ISA) a. Hardware / Software Interface (HSI) b. Dynamic / Static Interface (DSI) c. Instruction Set Architecture Design & Examples 2. Historical Perspective on Computing a. Major Epochs of Modern Computers b. Computer Performance Iron Law (#1) 3. “Economics” of Computer Systems a. Amdahl’s Law and Gustafson’s Law b. Moore’s Law and Bell’s Law 8/30/2017 (©J.P. Shen) 18-600 Lecture #2 2 Anatomy of Engineering Design SPECIFICATION: Behavioral description of “What does it do?” Synthesis: Search for possible solutions; pick best one. Creative process IMPLEMENTATION: Structural description of “How is it constructed?” Analysis: Validate if the design meets the specification. “Does it do the right thing?” + “How well does it perform?” 8/30/2017 (©J.P. Shen) 18-600 Lecture #2 3 [Gerrit Blaauw & Fred Brooks, 1981] Instruction Set Processor Design ARCHITECTURE: (ISA) programmer/compiler view = SPECIFICATION • Functional programming model to application/system programmers • Opcodes, addressing modes, architected registers, IEEE floating point IMPLEMENTATION: (μarchitecture) processor designer view • Logical structure or organization that performs the ISA specification • Pipelining, functional units, caches, physical registers, buses, branch predictors REALIZATION: (Chip) chip/system designer view • Physical structure that embodies the implementation • Gates, cells, transistors, wires, dies, packaging 8/30/2017 (©J.P.
    [Show full text]
  • KVM on POWER7
    Developments in KVM on Power Paul Mackerras, IBM LTC OzLabs [email protected] Outline . Introduction . Little-endian support . OpenStack . Nested virtualization . Guest hotplug . Hardware error detection and recovery 2 21 October 2013 © 2013 IBM Introduction • We will be releasing POWER® machines with KVM – Announcement by Arvind Krishna, IBM executive • POWER8® processor disclosed at Hot Chips conference – 12 cores per chip, 8 threads per core – 96kB L1 cache, 512kB L2 cache, 8MB L3 cache per core on chip u u Guest Guest m host OS process m e e OS OS q host OS process q host OS process KVM Host Linux Kernel SAPPHIRE FSP POWER hardware 3 21 October 2013 © 2013 IBM Introduction • “Sapphire” firmware being developed for these machines – Team led by Ben Herrenschmidt – Successor to OPAL • Provides initialization and boot services for host OS – Load first-stage Linux kernel from flash – Probe the machine and set up device tree – Petitboot bootloader to load and run the host kernel (via kexec) • Provides low-level run-time services to host kernel – Communication with the service processor (FSP) • Console • Power and reboot control • Non-volatile memory • Time of day clock • Error logging facilities – Some low-level error detection and recovery services 4 21 October 2013 © 2013 IBM Little-endian Support • Modern POWER CPUs have a little-endian mode – Instructions and multi-byte data operands interpreted in little-endian byte order • Lowest-numbered byte is least significant, rather than most significant – “True” little endian, not address swizzling
    [Show full text]
  • EECS 373 Design of Microprocessor-Based Systems
    EECS 373 Design of Microprocessor-Based Systems Website: https://www.eecs.umich.edu/courses/eecs373/ Robert Dick University of Michigan Lecture 1: Introduction, ARM ISA September 6 2017 Many slides from Mark Brehob Teacher Robert Dick http://robertdick.org/ [email protected] EECS Professor Co-founder, CEO of profitable direct- to-consumer athletic wearable electronics company (Stryd) Visiting Professor at Tsinghua Univeristy Graduate studies at Princeton Visiting Researcher at NEC Labs, America, where technology went into their smartphones ~100 research papers on embedded system design Lab instructor Matthew Smith [email protected] Head lab instructor 15 years of 373 experience He has seen it before … but he’ll make you figure it out yourself TAs Took EECS 373 Jon Toto <[email protected]> Brennan Garrett <[email protected]> Thomas Deeds <[email protected]> Melinda Kothbauer <[email protected]> Course goals Embedded system design Debugging complex systems Communication and marketing A head start on a new product or research idea What is an embedded system? An (application-specific) computer within something else that is not generally regarded as a computer. Embedded, everywhere Embedded systems market Dominates general-purpose computing market in volume. Similar in monetary size to general-purpose computing market. Growing at 15% per year, 10% for general- purpose computing. Car example: half of value in embedded electronics, from zero a few decades ago. Common requirements Timely (hard real-time) Wireless Reliable
    [Show full text]
  • EECS 373 Design of Microprocessor-Based Systems
    EECS 373 Design of Microprocessor-Based Systems Prabal Dutta University of Michigan Lecture 2: Architecture, Assembly, and ABI January 13, 2015 Slides developed in part by Mark Brehob 1 Announcements • Website up – http://www.eecs.umich.edu/~prabal/teaching/eecs373/ • Homework 2 posted (mostly a 370 review) • Lab and office hours posted on-line. – My office hours: Thursday 3:00-4:00 pm in 4773 BBB • Projects – Start thinking about them now! 2 Today… Finish ARM assembly example from last time Walk though of the ARM ISA Software Development Tool Flow Application Binary Interface (ABI) 3 Major elements of an Instruction Set Architecture (registers, memory, word size, endianess, conditions, instructions, addressing modes) 32-bits 32-bits ! !mov!r0,!#4! ! !ldr!r1,![r0,#8]! ! !!!!!!r1=mem((r0)+8)! ! !bne!loop! ! !subs!r2,!#1! Endianess Endianess 4 The endianess religious war: 288 years and counting! • Modern version • Little-Endian – Danny Cohen – LSB is at lower address !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Memory!!!!!Value! – IEEE Computer, v14, #10 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Offset!!(LSB)!(MSB)! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!======!!===========! uint8_t!a!!=!1;!!!!!!!!!!!!!!!0x0000!!01!02!FF!00! – Published in 1981 uint8_t!b!!=!2;! uint16_t!c!=!255;!//!0x00FF! – Satire on CS religious war uint32_t!d!=!0x12345678;!!!!!!0x0004!!78!56!34!12! • Historical Inspiration • Big-Endian – Jonathan Swift – MSB is at lower address !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Memory!!!!!Value! – Gulliver's Travels !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Offset!!(LSB)!(MSB)! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!======!!===========!
    [Show full text]
  • Lecture 01.1: Organization & Introduction
    Organization Organization 2 Organization Course Goals Learn to write good C++ • Basic syntax • Common idioms and best practices Learn to implement large systems with C++ • C++ standard library and Linux ecosystem • Tools and techniques (building, debugging, etc.) Learn to write high-performance code with C++ • Multithreading and synchronization • Performance pitfalls 3 Organization Formal Prerequisites Knowledge equivalent to the lectures • Introduction to Informatics 1 (IN0001) • Fundamentals of Programming (IN0002) • Fundamentals of Algorithms and Data Structures (IN0007) Additional formal prerequisites (B.Sc. Informatics) • Introduction to Computer Architecture (IN0004) • Basic Principles: Operating Systems and System Software (IN0009) Additional formal prerequisites (B.Sc. Games Engineering) • Operating Systems and Hardware oriented Programming for Games (IN0034) 4 Organization Practical Prerequisites Practical prerequisites • No previous experience with C or C++ required • Familiarity with another general-purpose programming language Operating System • Working Linux operating system (e.g. Ubuntu) • Basic experience with Linux (in particular with shell) • You are free to use your favorite OS, we only support Linux 5 Organization Lecture & Tutorial • Lecture: Tuesday, 14:00 – 16:00, MI 02.11.018 • Tutorial: Friday, 10:00 – 12:00, MI 02.11.018 • Discuss assignments and any questions • First two tutorials are additional lectures • Attendance is mandatory • Announcements on the website and Mattermost 6 Organization Assignments • Brief
    [Show full text]
  • Guidelines for Integrating Device Drivers in the ASSERT Virtual Machine
    Reference: VMLAB-UPM-TR1 Date: 15/09/2009 Issue: 1.5 Page: 1 of 85 ESTEC/Contract No. 21392/08/NL/JK Guidelines for integrating device drivers in the ASSERT Virtual Machine Output of WP 300 Written by: Organization Date Juan Zamorano, Jorge Lopez,´ Juan A. de la Puente UPM 15/09/2009 Revised by: Organization Date Juan A. de la Puente UPM 15/09/2009 Tullio Vardanega UPD 15/09/2009 Accepted by: Organization Date Maxime Perrotin ESTEC 22/09/2009 Reference: VMLAB-UPM-TR1 Date: 15/09/2009 Issue: 1.5 Document Change Record Issue/Revision Date Change Author 1.0 22/12/2008 First version for review J. Zamorano, J, Lopez´ 1.1 15/01/2009 Revised as per review comments J. Zamorano, J, Lopez´ 1.2 06/05/2009 Minor changes in section 2 J. Zamorano, J, Lopez´ 1.3 24/07/2009 Draft version for final review J.A. de la Puente, J. Zamorano 1.4 29/07/2009 Revised version for final review J.A. de la Puente, J. Zamorano 1.5 15/09/2009 Final version for acceptance review J.A. de la Puente, J. Zamorano VMlab-UPM-TR1 Last Modified on: September 23, 2009 page 2 of 85 Reference: VMLAB-UPM-TR1 Date: 15/09/2009 Issue: 1.5 Abstract This document contains a set of guidelines for extending the ASSERT Virtual Machine kernel with device drivers. The real-time kernel is a version of ORK+, the Open Ravenscar real-time Kernel, which supports the Ada Raven- scar profile as defined in the current Ada 2005 standard.
    [Show full text]
  • User Guide Ecos User Guide Copyright © 2001, 2002, 2003, 2004, 2009 Free Software Foundation, Inc
    eCos User Guide eCos User Guide Copyright © 2001, 2002, 2003, 2004, 2009 Free Software Foundation, Inc. Documentation licensing terms This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/). Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright holder. Trademarks Altera® and Excalibur™ are trademarks of Altera Corporation. AMD® is a registered trademark of Advanced Micro Devices, Inc. ARM®, StrongARM®, Thumb®, ARM7™, ARM9™ is a registered trademark of Advanced RISC Machines, Ltd. Cirrus Logic® and Maverick™ are registered trademarks of Cirrus Logic, Inc. Cogent™ is a trademark of Cogent Computer Systems, Inc. Compaq® is a registered trademark of the Compaq Computer Corporation. Fujitsu® is a registered trademark of Fujitsu Limited. IBM®, and PowerPC™ are trademarks of International Business Machines Corporation. IDT® is a registered trademark of Integrated Device Technology Inc. Intel®, i386™, Pentium®, StrataFlash® and XScale™ are trademarks of Intel Corporation. Intrinsyc® and Cerf™ are trademarks of Intrinsyc Software, Inc. Linux® is a registered trademark of Linus Torvalds. Matsushita™ and Panasonic® are trademarks of the Matsushita Electric Industrial Corporation. Microsoft®, Windows®, Windows NT® and Windows XP® are registered trademarks of Microsoft Corporation, Inc. MIPS®, MIPS32™ MIPS64™, 4K™, 5K™ Atlas™ and Malta™ are trademarks of MIPS Technologies, Inc. Motorola®, ColdFire® is a trademark of Motorola, Inc. NEC® V800™, V850™, V850/SA1™, V850/SB1™, VR4300™, and VRC4375™ are trademarks of NEC Corporation.
    [Show full text]
  • PIC32 Family Reference Manual
    Section 2. CPU for Devices with M4K® Core HIGHLIGHTS This section of the manual contains the following topics: 2 CPU for Devices 2.1 Introduction................................................................................................................2-2 with M4K 2.2 Architecture Overview ............................................................................................... 2-3 2.3 PIC32 CPU Details .................................................................................................... 2-6 2.4 Special Considerations When Writing to CP0 Registers ......................................... 2-11 2.5 Architecture Release 2 Details ................................................................................ 2-12 ® Core 2.6 Split CPU bus .......................................................................................................... 2-12 2.7 Internal System Busses........................................................................................... 2-13 2.8 Set/Clear/Invert........................................................................................................ 2-13 2.9 ALU Status Bits........................................................................................................ 2-14 2.10 Interrupt and Exception Mechanism ........................................................................ 2-14 2.11 Programming Model ................................................................................................ 2-14 2.12 Coprocessor 0 (CP0) Registers..............................................................................
    [Show full text]
  • Computer Systems and Networks ECPE 170 – University of the Pacific
    Computer Systems and Networks ECPE 170 – University of the Pacific Endianness 2 Lab Schedule Activities Assignments Due This Week Tuesday Nov 5th Lab 9 – Endianness Lab 8 due by 11:59pm Next Week… and Beyond! Tuesday Nov 12th Assembly Programming Lab 9 due by 11:59pm (Labs 10 & 11) Computer Systems and Networks Fall 2013 3 Endianness In typical computer memory, each address (location) stores one byte If we have a one-byte integer, how is that stored in memory? If we have a two-byte integer, how is that stored in memory? If we have a four-byte integer, how is that stored in memory? Endianness = Byte Ordering Computer Systems and Networks Fall 2013 4 Endianness Example Address “Option A” “Option B” 32 -bit hexadecimal number 0x12345678 0 0x12 0x78 Composed of 4 bytes: 0x12 0x34 0x56 0x78 (MSB) (LSB) 1 0x34 0x56 Two possible arrangements: 2 0x56 0x34 3 0x78 0x12 Computer Systems and Networks Fall 2013 5 Endianness Example Address Big Little 32 -bit hexadecimal number Endian Endian 0x12345678 0 0x12 0x78 Composed of 4 bytes: (MSB) (LSB) 0x12 0x34 0x56 0x78 (MSB) (LSB) 1 0x34 0x56 Two possible arrangements: 2 Big Endian 0x56 0x34 Little Endian 3 0x78 0x12 Computer Systems and Networks Fall 2013 6 Endianness How is DEADBEEF16 stored in little and big endian formats at address 21C16? Little endian 21C16=EF16 21D16=BE16 21E16 =AD16 21F16=DE16 Big endian 21C16=DE16 21D16=AD16 21E16 =BE16 21F16=EF16 Computer Systems and Networks Fall 2013 7 Big Endian –vs– Little Endian Big-Endian CPU Little-Endian CPU Most significant
    [Show full text]
  • Parallel Architecture Hardware and General Purpose Operating System
    Parallel Architecture Hardware and General Purpose Operating System Co-design Oskar Schirmer G¨ottingen, 2018-07-10 Abstract Because most optimisations to achieve higher computational performance eventually are limited, parallelism that scales is required. Parallelised hard- ware alone is not sufficient, but software that matches the architecture is required to gain best performance. For decades now, hardware design has been guided by the basic design of existing software, to avoid the higher cost to redesign the latter. In doing so, however, quite a variety of supe- rior concepts is excluded a priori. Consequently, co-design of both hardware and software is crucial where highest performance is the goal. For special purpose application, this co-design is common practice. For general purpose application, however, a precondition for usability of a computer system is an arXiv:1807.03546v1 [cs.DC] 10 Jul 2018 operating system which is both comprehensive and dynamic. As no such op- erating system has ever been designed, a sketch for a comprehensive dynamic operating system is presented, based on a straightforward hardware architec- ture to demonstrate how design decisions regarding software and hardware do coexist and harmonise. 1 Contents 1 Origin 4 1.1 Performance............................ 4 1.2 Limits ............................... 5 1.3 TransparentStructuralOptimisation . 8 1.4 VectorProcessing......................... 9 1.5 Asymmetric Multiprocessing . 10 1.6 SymmetricMulticore ....................... 11 1.7 MultinodeComputer ....................... 12 2 Review 14 2.1 SharedMemory.......................... 14 2.2 Cache ............................... 15 2.3 Synchronisation .......................... 15 2.4 Time-Shared Multitasking . 15 2.5 Interrupts ............................. 16 2.6 Exceptions............................. 16 2.7 PrivilegedMode.......................... 17 2.8 PeripheralI/O .........................
    [Show full text]