Zuverlässigkeit Von Raumflugkörpern

Total Page:16

File Type:pdf, Size:1020Kb

Zuverlässigkeit Von Raumflugkörpern (c) 2005-2007 Dipl.-Ing. (RWTH) Jan Thimo Grundmann e : janthimogrundmann (at) yahoo.de Betr.: Zuverlaessigkeit v.1.0.0.1 pdf Zuverlässigkeit von Raumflugkörpern vorgelegt von cand.-ing. Jan Thimo Grundmann Betreuer: Dr.-Ing. G. Neuwerth Institut für Luft- und Raumfahrt der RWTH Aachen 30.11.2005 2007 durchgesehene Fassung Aufgabenstellung i für Herrn cand. ing. Jan Thimo Grundmann Matr.-Nr. 192335 Die Planung und Auslegung von Satellitenkonstellationen zur Errichtung von Kommunikations-, Navigations- und Erkundungssystemen im Erdorbit sowie von interplanetaren Sondenflotten zum Zwecke der kontinuierlichen Erforschung von Objekten des Sonnensystems über mehrere Oppositionszyklen hin erfordert die Berücksichtigung der zu erwartenden Ausfallraten in den jeweiligen Missionsphasen hinsichtlich der Erfüllung der Missionsziele und der Kostenoptimierung. Die hierzu verfügbaren Daten sind jedoch aus historischen, politischen und rechtlichen Gründen sehr heterogen und lückenhaft in Detail und Umfang. Dies hat zur Folge, daß der Bedarf an Reserve-Raumflugkörpern und der Erfahrungszuwachs im Serienbau sowie das Missionsrisiko in Gruppen von einzelnen Flugkörpern verschiedenen Aufgabenstellungen nur unzureichend erfaßt werden können. Auch wird die Erkennung von grundlegenden Häufungen bestimmter Probleme durch statistische Methoden mangels einer konsistenten Datenbasis ebenso sehr erschwert wird wie Vorhersagen des zukünftigen Raumfahrtmarktes. Im Rahmen der Studienarbeit soll daher untersucht werden, ob aus den verfügbaren veröffentlichten Dokumentationen ausreichend detaillierte Daten zu extrahieren sind, um eine verbesserte Planungsgrundlage zu erhalten. Hierzu sind u.a. die folgenden Aufgaben zu bearbeiten: - Eine im gegebenen Zeitrahmen möglichste umfassende Literaturrecherche - Auswahl und Klassifizierung der erhaltenen Daten nach Umfang, Detailliertheit, fachlicher Kompetenz und Zuverlässigkeit der Quelle - Ermittlung von statistisch erkennbaren charakteristischen Versagensmodi und ihrer Entwicklung über der Zeit - Vergleich mit technisch ähnlich anspruchsvollen Bereichen der Luftfahrt - Berücksichtigung der Kostenentwicklung von Raumfahrtsystemen - Ausführliche Dokumentation der behandelten Teilaufgaben Inhaltsverzeichnis ii Aufgabenstellung i Inhaltsverzeichnis ii Verzeichnis der Tabellen iv Nomenklatur v 1. Einleitung 1 1.1. Historische Entwicklung zur Raumfahrt 1 1.2. Entwicklung der Datengrundlage 5 2. Definitionen: Raumfahrt, System, Erfolg und Mißerfolg 8 2.1. Raumfahrt und die Abgrenzung des Weltraumes 9 2.1.1. Anerkannte administrative Abgrenzungen des Weltraumes 9 2.1.2. Erflogene Abgrenzungen des Weltraumes 11 2.1.3. Physiologische Abgrenzung des Weltraumes 14 2.1.4. Abgrenzung des Weltraumes durch elektrische Versagenshergänge 15 2.1.5. Weitere mögliche technische Abgrenzungen des Weltraumes 15 2.1.6. Gewählte Definition der Abgrenzungen des Weltraumes 16 2.2. Systembegriff 20 2.2.1. Ein Beispiel für den Umfang eines Systems und die Vielfalt der Einflüsse 20 2.2.2. Gewählte Definition für ein System 26 2.2.3. Veränderung des Systems im Verlauf eines Flugversuches 27 2.3. Erfolg und Mißerfolg 29 3. Auswertungsverfahren 31 3.1. Vorauswahl der Quellen 31 3.1.1. Erste Phase der Auswertung 32 3.1.2. Hauptauswahl der auszuwertenden Literatur 33 3.2. Zweite Phase der Auswertung 35 3.2.1. Eindeutige Identifikation der Versagensfälle 35 3.2.2. Klassifizierung ausgewerteter Versagensfälle 39 3.2.2.1 Versagensfälle unter Beteiligung kerntechnischer Einrichtungen 44 3.3. Einfluß manipulativer Information bei Klassifizierung und Bewertung 45 3.3.1. Das Nedelin-Desaster als Beispiel manipulierter Information 49 3.3.2. Vergleich mit bekannten Informationen zu anderen schweren Unfällen 55 3.3.2.1. Nicht nachvollziehbare Informationen zu anderen schweren Unfällen 56 3.3.3. Weitere charakteristische Formen manipulativer Information 57 3.3.4. Einfluß der Perzeption bei manipulativer Information 60 3.4. Klassifizierung der Verantwortung für Versagensfälle 63 3.5. Hilfseinträge zur Analyse 67 3.6. Abschluß der Auswertungsphase 68 Inhaltsverzeichnis iii 4. Rechnungsverfahren 69 4.1 Rechnungsverfahren für bestimmte Fragestellungen 70 4.1.1. Begrenzungen und Aufwand bei der Erstellung von Ergebnisauszügen 72 4.2. Durchgeführte Rechnungen 73 5. Ausgewählte Flugkörpertypen und -familien 74 6. Schlußfolgerungen 86 6.1. Allgemeine Verteilung von Versagensereignissen 86 6.2. Beispiele für typische Versagenshergänge 92 6.2.1. Versagen durch atmosphärische Einflüsse 92 6.2.2. Versagen durch das Verhalten von Betriebsmitteln im Weltraum 94 6.2.3. Versagen durch Rückwirkung missionsbedingt abzutrennender Bauteile 98 6.2.4. Hohe Systemkomplexität als Beitrag zu Versagensfällen 99 6.2.5. Beabsichtigtes Versagen von Raumflugkörpern 101 6.2.6. Leistungsverbesserung von Raumflugkörpern durch Versagensfälle 104 6.3. Herkunft der Verursacherbeiträge und Behebungsbeiträge 106 6.3.1. Faktor Mensch an Bord und am Boden 107 6.3.2. Faktor Management 118 6.3.3. Kostenfaktor experimentelle Erfahrung 120 6.3.4. Kostenfaktor Mensch an Bord 130 6.3.5. Kostenfaktor Mensch im STS 149 6.3.6. Kostenfaktor Ende und Neubeginn 151 6.3.7. Versagensfaktor Kosten 154 6.3.8. Versagensfaktor Organisationsmethodik 161 6.3.9. Einfluß der Informationsflußbegrenzung 166 6.3.10. Versagen der Vorstellungskraft 172 6.4. Technisches Versagen 174 6.5. Versagen und Fortschritt 175 6.6 Zusammenfassung 177 7. Literatur 182 A. Anhänge 196 A.1. SI-fremde Einheiten 196 A.2. Anmerkungen zur Transkription 196 A.3. Anmerkungen zu Typenbezeichnungen 197 A.4. Hinweise zur eigenen Literaturrecherche 198 A.5. Ausgewählte Quellenzitate im Original 199 A.5.1. Kelly's Rules 200 A.6. Ausgewählte Ergebnisauszüge 201 Verzeichnis der Tabellen iv 2.1 - Nach der geometrischen Höhe definierte und erflogene Weltraumabgrenzungen 10 2.2 - Niedrigste in stabiler Umlaufbahn erflogene Perigäumshöhen 11 2.3 - Einige typische suborbitale Flüge 12 2.4 - Belastungen in der sehr niedrigen Erdumlaufbahn durch den Einfluß der Atmosphäre 13 2.5 - Flugmedizinisch bedingte Höhengrenzen 14 2.6 - Einige Arbeitsumgebungen entfernt vom menschlichen Eingriff arbeitender Geräte 19 2.7 - Verschiedene Zählweisen der Raketenstufung und Lokalisation von Triebwerkversagern 28 3.1 - Einträge im Tabellendokument für die erste Stufe der Auswertung 32 3.2 - Aufteilung der zur Auswertung ausgewählten Werke 34 3.3 - Einträge im Tabellendokument zur Identifikation eines Versuches über das Datum 37 3.4 - Einträge im Tabellendokument zur Anzahl der identifizierten Flüge 38 3.5 - Einträge im Tabellendokument zur Klassifizierung der Art von Versagensereignissen 42 3.6 - Einträge im Tabellendokument zur Klassifizierung des Versagenshergangs 43 3.7 - Opfer der Nedelin-Katastrophe in Abhängigkeit vom Informationsfluß 51 3.8 - Vergleich der Entwicklung von R-16 und LGM-25C 53 3.9 - Opfer ausgewerteter Versagensfälle 56 3.10 - Flugzahlen der Famile 7K Soyuz 59 3.11 - Einträge im Tabellendokument zur Klassifizierung des Verursacherbeitrages 64 3.12 - Einträge im Tabellendokument zur Klassifizierung der Schwere des Versagens 65 3.13 - Einträge im Tabellendokument zur Klassifizierung des Behebungsbeitrages 65 3.14 - Einträge im Tabellendokument zur Klassifizierung von Kollateralschäden 66 3.15 - Einträge im Tabellendokument zur Unterstützung der Auswertung (1/2) 67 3.16 - Einträge im Tabellendokument zur Unterstützung der Auswertung (2/2) 68 3.17 - Zustand des Tabellendokumentes nach Auswertung und Klassifizierung 68 4.1 - Gesamtzahl der aufgenommenen Einträge nach Flugkörperart und Versuchszählung 69 6.1 - Umfassender Ergebnisauszug mit A4 und Fi-103 Einsatzflugkörper 87 6.2 - Umfassender Ergebnisauszug ohne A4 und Fi-103 Einsatzflugkörper 88 6.3 - Umfassender Ergebnisauszug ohne A4 und Fi-103 Einsatzflugkörper, anteilig 89 6.4 - Häufigste Kombinationen System - Fachbereich für Versagensereignisse 90 6.5 - Einträge der Gruppe System nach ihrer Häufigkeit 91 6.6 - Einträge der Gruppe Fachbereich nach ihrer Häufigkeit 91 6.7 - Ergebnisauszug der Behebungsbeiträge ohne A4 und Fi-103, nach Verursacherbeitrag 106 6.8 - Verursacher- und Behebungsbeiträge und unmittelbarste menschliche Beteiligung 107 6.9 - Anteile bemannter Raumflugkörper und des Verantwortungsbereiches Crew 109 6.10 - Relative Effizienz der Behebungsbeiträge leistenden Gruppen 117 6.11 - Kosten des Skylab-Programmes; geplante und hypothetische Nachfolger, und ISS 121 6.12 - Kosten des Apollo-Programmes 122 6.13 - Massen und bewohnbare Volumen von Skylab im Vergleich zu Mir und ISS 124 6.14 - Neu aufzuwendende Mehrkosten für Skylab-Fortsetzung im Vergleich zu Mir u. ISS 125 6.15 - Vergleich mit pauschalen Kostenangaben zu Apollo in der Öffentlichkeit 126 6.16 - Kosten von Apollo, Skylab und ASTP als inkrementelle Entwicklung betrachtet 128 6.17 - Übersicht der Ye-8 Luna Landesonden 130 Verzeichnis der Tabellen v 6.18 - Kostenabschätzung für Ye-8-5, Ye-8-5M Luna Landesonden mit Probenrückführung 131 6.19 - Optimistische Kostenabschätzung für Ye-8-5, Ye-8-5M Probenrückführung 132 6.20 - Verteilung der Außenaktivitäten auf die Apollo Missionstypen 134 6.21 - Kostenabschätzung für Apollo Probenrückholung, Außenaktivität und Experimente 135 6.22 - Vergleich günstigster und ungünstigster Kostenschätzungen für Ye-8-5 und Apollo 136 6.23 - Arbeitszeitaufwendungen für Mondexkursionen 137 6.24 - Bahndynamisch mögliche und erflogene Landekoordinaten von Mondlandern 138 6.25 - Entwicklung der Startkosten des STS und ihre Darstellung 139 6.26 - Bau- und Entwicklungskosten des STS und ihre Darstellung
Recommended publications
  • Douglas Missile & Space Systems Division
    ·, THE THOR HISTORY. MAY 1963 DOUGLAS REPORT SM-41860 APPROVED BY: W.H.. HOOPER CHIEF, THOR SYSTEMS ENGINEERING AEROSPACE SYSTEMS ENGINEERING DOUGLAS MISSILE & SPACE SYSTEMS DIVISION ABSTRACT This history is intended as a quick orientation source and as n ready-reference for review of the Thor and its sys­ tems. The report briefly states the development of Thor, sur'lli-:arizes and chronicles Thor missile and booster launch­ inGs, provides illustrations and descriptions of the vehicle systcn1s, relates their genealogy, explains sane of the per­ fon:iance capabilities of the Thor and Thor-based vehicles used, and focuses attention to the exploration of space by Douelas Aircraf't Company, Inc. (DAC). iii PREFACE The purpose of The Thor History is to survey the launch record of the Thor Weapon, Special Weapon, and Space Systems; give a systematic account of the major events; and review Thor's participation in the military and space programs of this nation. The period covered is from December 27, 1955, the date of the first contract award, through May, 1963. V �LE OF CONTENTS Page Contract'Award . • • • • • • • • • • • • • • • • • • • • • • • • • 1 Background • • • • • • • • • • • • • • • • • • • • • • • • • • • • l Basic Or�anization and Objectives • • • • • • • • • • • • • • • • 1 Basic Developmenta� Philosophy . • • • • • • • • • • • • • • • • • 2 Early Research and Development Launches • • • ·• • • • • • • • • • 4 Transition to ICBM with Space Capabilities--Multi-Stage Vehicles . 6 Initial Lunar and Space Probes ••••••• • • • • • • •
    [Show full text]
  • Aerospace Safety Advisory Panel
    Aerospace Safety Advisory Panel Annual Report for 2009 NASA AEROSPACE SAFETY ADVISORY PANEL National Aeronautics and Space Administration Washington, DC 20546 VADM Joseph W. Dyer, USN (Ret.), Chair January 15, 2010 The Honorable Charles F. Bolden, Jr. Administrator National Aeronautics and Space Administration Washington, DC 20546 Dear General Bolden: Pursuant to Section 106(b) of the National Aeronautics and Space Administration Authorization Act of 2005 (P.L. 109-155), the Aerospace Safety Advisory Panel (ASAP) is pleased to submit the ASAP Annual Report for 2009 to the U.S. Congress and to the Administrator of the National Aeronautics and Space Administration (NASA). ASAP members believe that NASA and the Administration face significant challenges for the Nation’s space program. Following the precedent set in 2008, the ASAP again pro - vides this letter report in lieu of the lengthier annual report submitted in previous years. This letter report is based on the Panel’s 2009 quarterly meetings (and public session minutes), fact-finding meetings, and formal recommendations, as well as ASAP members’ past experiences. In Section II of this report, the Panel provides a summary of key safety-related issues that the Agency confronts at this time. The most important relate to the future of the Nation’s human space flight program, and the ASAP hopes to encourage key stakeholders to immediately consider the critical decisions relating to this mission. Significant issues include human rating requirements for potential commercial and international entities, extension of Shuttle beyond the current manifest, workforce transition from the Shuttle to the follow-on program, the need for candid public communications about the risks of human space flight, and the more aggressive use of robots to reduce the risk of human exploration.
    [Show full text]
  • Soviet Steps Toward Permanent Human Presence in Space
    SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations.
    [Show full text]
  • Press Kit EN
    A FILM BY ANDREI UJICĂ be available, I was determined either to make Synopsis the film that way or not at all. In addition, I wanted to have two sequences shot in space Man's place in the universe has never been — using film — which would frame the story as contemplated quite the way it is in this prologue and epilogue. These shots were to be singular film. Russian cosmonaut Sergei coordinated by Vadim Yusov in tribute to his Krikalev's ten months on board the Mir space camera work in Solaris. Yusov was granted the station are captured in footage shot during opportunity of going down in the history of film his visit to the heavens, which is contrasted as the director of photography responsible for with images of the collapse of the Soviet Union the first purely cinematographic images ever from 1991 to 1992. While Krikalev was away to have been shot in space — that is, the first from earth, the empire that sent him to space images shot for purely artistic purposes. We did ceased to exist, his hometown of Leningrad in fact succeed in sending a 35mm camera up to again became St. Petersburg, and the nature of the Mir space station in October 1994 and made global affairs underwent massive change. "Yet, these recordings. the extraterrestrial shots and scenes have the effect of somehow dwarfing and distancing these It took a good deal of effort before I got historic events, however momentous. Galaxies, to look over the whole image archive of the like grains of sand, spread across the sky, and Krikalev mission, but then I was happy to see even the epochal sights of the collapse of the that there was enough material to make a whole Soviet state shrivel in comparison" (Michael film.
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Orbital Debris: a Chronology
    NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................
    [Show full text]
  • Rex D. Hall and David J. Shayler
    Rex D. Hall and David J. Shayler Soyuz A Universal Spacecraft ruuiiMicPublishedu 11in1 aaaundiiuiassociationi witwimh ^^ • Springer Praxis Publishing PRHB Chichester, UK "^UF Table of contents Foreword xvii Authors' preface xix Acknowledgements xxi List of illustrations and tables xxiii Prologue xxix ORIGINS 1 Soviet manned spaceflight after Vostok 1 Design requirements 1 Sever and the 1L: the genesis of Soyuz 3 The Vostok 7/1L Soyuz Complex 4 The mission sequence of the early Soyuz Complex 6 The Soyuz 7K complex 7 Soyuz 7K (Soyuz A) design features 8 The American General Electric concept 10 Soyuz 9K and Soyuz 1 IK 11 The Soyuz Complex mission profile 12 Contracts, funding and schedules 13 Soyuz to the Moon 14 A redirection for Soyuz 14 The N1/L3 lunar landing mission profile 15 Exploring the potential of Soyuz 16 Soyuz 7K-P: a piloted anti-satellite interceptor 16 Soyuz 7K-R: a piloted reconnaissance space station 17 Soyuz VI: the military research spacecraft Zvezda 18 Adapting Soyuz for lunar missions 20 Spacecraft design changes 21 Crewing for circumlunar missions 22 The Zond missions 23 The end of the Soviet lunar programme 33 The lunar orbit module (7K-LOK) 33 viii Table of contents A change of direction 35 References 35 MISSION HARDWARE AND SUPPORT 39 Hardware and systems 39 Crew positions 40 The spacecraft 41 The Propulsion Module (PM) 41 The Descent Module (DM) 41 The Orbital Module (OM) 44 Pyrotechnic devices 45 Spacecraft sub-systems 46 Rendezvous, docking and transfer 47 Electrical power 53 Thermal control 54 Life support 54
    [Show full text]
  • The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions
    Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions Presented at the 2007 ISPA/SCEA Joint International Conference & Workshop June 12-15, New Orleans, LA Bob Bitten, Debra Emmons, Claude Freaner 1 Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Abstract • The upcoming retirement of the Delta II family of launch vehicles leaves a performance gap between small expendable launch vehicles, such as the Pegasus and Taurus, and large vehicles, such as the Delta IV and Atlas V families • This performance gap may lead to a variety of progressions including – large satellites that utilize the full capability of the larger launch vehicles, – medium size satellites that would require dual manifesting on the larger vehicles or – smaller satellites missions that would require a large number of smaller launch vehicles • This paper offers some comparative costs of co-manifesting single- instrument missions on a Delta IV/Atlas V, versus placing several instruments on a larger bus and using a Delta IV/Atlas V, as well as considering smaller, single instrument missions launched on a Minotaur or Taurus • This paper presents the results of a parametric study investigating the cost- effectiveness of different alternatives and their effect on future NASA missions that fall into the Small Explorer (SMEX), Medium Explorer (MIDEX), Earth System Science Pathfinder (ESSP), Discovery,
    [Show full text]
  • VII Congress
    Association of Space Explorers 7th Planetary Congress Berlin, Germany 1991 Commemorative Poster Signature Key Viktor Afanasyev Vladimir Aksyonov Alexander Alexandrov (Bul.) Soyuz TM-11 Soyuz 22, Soyuz T-2 Soyuz TM-5 Joe Allen Alexander Balandin John-David Bartoe STS 5, STS 51A Soyuz TM-9 STS 51F Patrick Baudry Gerald Carr Robert Cenker STS 51G Skylab IV 7 STS 61C Jean-Loup Chretien Charles Conrad, Jr. Samuel Durrance Soyuz T-6, Soyuz TM-7 Gemini 5, Gemini 11 STS 35 Apollo 12, Skylab II Lev Dyomin John Fabian Bertalan Farkas Soyuz 15 STS 7, STS 51G Soyuz 36 Reinhard Furrer Drew Gaffney Viktor Gorbatko STS 61A STS 40 Soyuz 7, Soyuz 24, Soyuz 37 Georgi Grechko Miroslaw Hermaszewski Alexander Ivanchenkov Soyuz 17, Soyuz 26 Soyuz 30 Soyuz 29, Soyuz T-6 Soyuz T-14 Georgi Ivanov Yevgeni Khrunov Vladimir Kovolyonok Soyuz 33 Soyuz 5 Soyuz 25, Soyuz 29, Soyuz T-4 Alexei Leonov Don Lind James Lovell, Jr. Voskhod 2, Apollo-Soyuz STS 51B Gemini 7, Gemini 12 Apollo 8, Apollo 13 Vladimir Lyakhov Oleg Makarov Gennadi Manakov Soyuz 32, Soyuz T-9 Soyuz 12, Soyuz 27, Soyuz T-3 Soyuz TM-10 Soyuz TM-6 Musa Manarov Jon McBride Bruce McCandless II Soyuz TM-4, Soyuz TM-11 STS 41G STS 41B, STS 31 Ernst Messerschmid William Nelson Wubbo Ockels STS 61A STS 61C STS 61A Donald Peterson Leonid Popov Dumitru Prunariu STS 6 Soyuz 35, Soyuz 40, Soyuz T-7 Soyuz 40 Vladimir Remek Stuart Roosa Rusty Schweickart Soyuz 28 Apollo 14 Apollo 9 Vitali Sevastyonov Thomas Stafford Gennadi Strekalov Soyuz 9, Soyuz 18 Gemini 6, Gemini 9, Apollo 10 Soyuz T-3, Soyuz T-8 Apollo-Soyuz Soyuz TM-11 Valentina Tereshkova Lodewijk van den Berg Igor Volk Vostok 6 STS 51B Soyuz T-12 Charles Walker Donald Williams Boris Yegorov STS 41D, STS 51D, STS 61B STS 51D, STS 34 Voskhod 1 Vyacheslav Zhudov Soyuz 23 This poster commemorates the 7th Planetary Congress of the Association of Space Explorers (ASE).
    [Show full text]
  • D Accidents & Safety
    Understanding Airplanes Lecture 1 –2 –3 –4 –5 –6 –7 –8: Special Topics –9 Accidents & Safety © Bernardo Malfitano 334 Understanding Airplanes Lecture 1 –2 –3 –4 –5 –6 –7 –8: Special Topics –9 Accidents & Safety • Aviation is incredbldibly safe, and getting safer • Some statistics about commercial flights in the US, in jets weighing 30 tons or more, i.e. no older than a 707 and no smaller than an Embraer 170. • Hull‐loss accidents have hovered around 15‐25 a year, over all the decades of jet aviation • Flights have gone from about 1 million per year to about 20 million per year. • So the chance of being in a hull‐loss accident on your next flight has gone from one in 50,000 (1960s) to literally one in a million. • This is thanks to how regulations require additional airplane capabilities and/or maintenance practices in the wake of each accident, to prevent the same problem from causing future accidents. • See LessonsLearned.FAA .gov to read about dozens of major accidents, their causes, and how regulations and industry practices have changed to prevent repeats. • Several websites, presentations, and documents summarize all these tdtrends and dtdata, for example: http://www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf © Bernardo Malfitano 335 Understanding Airplanes Lecture 1 –2 –3 –4 –5 –6 –7 –8:© Special Bernardo Topics Malfitano –9 Crashworthiness = Survivable Hull Losses 5 1 2 3 4 6 7 8 9 11 12 10 © Bernardo Malfitano 336 Understanding Airplanes Lecture 1 –2 –3 –4 –5 –6 –7 –8: Special Topics –9 Crashworthiness = Survivable Hull Losses • Also, hull‐loss accidents are increasinggyly survivable • This is thanks to increased crashworthiness reqq,uirements, by the FAA and also internally within the manufacturers, as well as improved training and operational practices by the airlines.
    [Show full text]
  • FOR IMMEDIATE RELEASE Burt Rutan Honored with 2015 Wright
    FOR IMMEDIATE RELEASE Contact: Stephanie Berry 703-416-4888 Ext 104 [email protected] Burt Rutan Honored with 2015 Wright Brothers Memorial Trophy Washington, DC, October 5, 2015 – The National Aeronautic Association (NAA) is pleased to announce that Burt Rutan has been selected as the recipient of the 2015 Wright Brothers Memorial Trophy. Established by NAA in 1948 to honor the memory of Orville and Wilbur Wright, the trophy is awarded annually to a living American for “…significant public service of enduring value to aviation in the United States.” Rutan is a world-renown aerospace engineer noted for his originality in designing light, strong, and energy-efficient aircraft. He designed the record-breaking Voyager, which was the first plane to fly around the world without stopping or refueling, and the sub-orbital spaceplane Spaceship One, which became the first privately funded spacecraft to enter the realm of space twice within a two-week period. Rutan also has five aircraft on display at the Smithsonian’s National Air and Space Museum in Washington, DC. “For 40 years Burt has been one of the giants in aerospace development and engineering,” said Jim Albaugh, Chairman of NAA. “So much of his work has had an impact on aircraft design and performance, and he is very worthy of one of the most important awards in aviation.” From 1965 to 1972, Rutan was a civilian flight test project engineer for the United States Air Force at Edwards Air Force Base. He left to become Director of Development of the BD-5 aircraft for Bede Aircraft, a position he held until 1974.
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]