(12) United States Patent (10) Patent No.: US 9,580,610 B2 Koehler Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9,580,610 B2 Koehler Et Al USOO958.061 OB2 (12) United States Patent (10) Patent No.: US 9,580,610 B2 Koehler et al. (45) Date of Patent: Feb. 28, 2017 (54) ALUMINIUM OXIDE PASTES AND PROCESS (52) U.S. Cl. FOR THE USE THEREOF CPC ............. C09D 7/1216 (2013.01); C09D I/00 (2013.01); C09D 5/006 (2013.01); C09D (75) Inventors: Ingo Koehler, Reinheim (DE); Oliver 7/1233 (2013.01); C23C 18/1216 (2013.01); Doll, Dietzenbach (DE); Werner C23C 18/1245 (2013.01); C23C 18/1254 Stockum, Reinheim (DE); Sebastian (2013.01); HOIL 21/2225 (2013.01) Barth, Darmstadt (DE) (58) Field of Classification Search None (73) Assignee: MERCK PATENT GMBH, Darmstadt See application file for complete search history. (DE) (*) Notice: Subject to any disclaimer, the term of this (56) References Cited patent is extended or adjusted under 35 U.S. PATENT DOCUMENTS U.S.C. 154(b) by 99 days. 2008/0090101 A1 4/2008 Klipp et al. (21) Appl. No.: 14/003,467 2009,018951.0 A1 7/2009 Kanamori et al. (Continued) (22) PCT Filed: Feb. 9, 2012 FOREIGN PATENT DOCUMENTS (86). PCT No.: PCT/EP2012/000592 CN 101679.807. A 3, 2010 S 371 (c)(1), EP 1156024 A1 11 2001 (2), (4) Date: Sep. 6, 2013 (Continued) (87) PCT Pub. No.: WO2012/119686 OTHER PUBLICATIONS PCT Pub. Date: Sep. 13, 2012 International Search Report for PCT/EP2012/000592 (Jun. 28, (65) Prior Publication Data 2013). US 2014/0000481 A1 Jan. 2, 2014 (Continued) (30) Foreign Application Priority Data Primary Examiner – Colin W Slifka (74) Attorney, Agent, or Firm — Millen White Zelano and Mar. 8, 2011 (EP) ..................................... 11 OO1921 Branigan, PC; Csaba Henter; Anthony Zelano Sep. 6, 2011 (EP) ..................................... 11 OO7205 (57) ABSTRACT (51) Int. Cl. C09D 7/12 (2006.01) The present invention relates to aluminium oxide pastes and HOIL 2L/22 (2006.01) to a process for the use of the aluminium oxide pastes for the C23C 8/2 (2006.01) formation of Al-O coatings or mixed Al-O. hybrid layers. C09D I/00 (2006.01) C09D 5/00 (2006.01) 20 Claims, 2 Drawing Sheets US 9,580,610 B2 Page 2 (56) References Cited L. Jiang et al., “Adsorption of Salicylic Acid, 5-Sulfosalicylic Acid and Tiron at the Alumina-Water Interface'. Colloids and Surfaces A: U.S. PATENT DOCUMENTS Physicochem. Eng. Aspects, vol. 211, No. 2-3 (Dec. 1, 2002) pp. 165-172. 2010/024.3221 A1 9/2010 Yamasaki et al. 2011/0076505 A1* 3/2011 Ishii .......................... C23C 8/10 P.C. Hidber et al., “Influence of the Dispersant Structure on Prop 428,472 erties of Electrostatically Stabilized Aqueous Alumina Suspen sions”, Journal of the European Ceramic Society, vol. 17. No. 2 FOREIGN PATENT DOCUMENTS (1997) pp. 239-249. N. Ozer et al., “Preparation of Amorphous Al2O3 Films by the EP 2085411 A2 8, 2009 EP 2147957 A1 1, 2010 Sol-Gel Process”, Part of the SPIE Conference on Solar Optical JP 06-19129 A T 1994 Materials XVI, SPIE vol. 3789 (Jul 1999) pp. 77-83. JP 2010-254553 A 11 2010 M. Nocun et al., “Sodium Diffusion Barrier Coatings Prepared by TW 200819506 A 5, 2008 Sol-Gel Method”. Optica Applicata, vol. 38, No. 1 (2008) pp. TW 200936,717 A 9, 2009 171-179. Chinese Office Action dated May 15, 2015 issued in corresponding OTHER PUBLICATIONS CN 201280011955.6 application (pp. 1-12). English Abstract of JPH 06-191929 A published Jul. 12, 1994. L. Montanaro et al., “Set up of a Screen-Printing Procedure for the English Abstract of JP 2010-254553 A published Nov. 11, 2010. Production of a B Alumina-Based Gas Sensor'. Journal of Electroceramics, vol. 5, No. 3 (2000) pp. 253-259. * cited by examiner U.S. Patent Feb. 28, 2017 Sheet 1 of 2 US 9,580,610 B2 383.38 : *::::::: U.S. Patent Feb. 28, 2017 Sheet 2 of 2 US 9,580,610 B2 Change in viscosity •Example 1 &Exampl 93 7 Storage time days E-3 E-4 SE-s --screen printed A223 1.0E-38 r. ::::::::: of passivated Carries density A in US 9,580,610 B2 1. 2 ALUMNIUM OXDE PASTES AND PROCESS highly promising replacement for SiO2 layers to be obtained. FOR THE USE THEREOF Besides the above-mentioned uses, in which Al-O serves either as diffusion barrier and/or Sol-gel-based doping The present invention relates to aluminium oxide pastes Source, Al2O is also Suitable, owing to the hardness of its and to a process for the use of the aluminium oxide pastes crystalline modifications, for use as mechanical protection for the formation of Al-O coatings or mixed Al-O hybrid layer. layers. Surprisingly, it has now been found that it is possible to The synthesis of Sol-gel-based layers is attaining ever synthesise and formulate paste-form mixtures based on the greater importance in industrial production owing to their Al-O sol-gel process which meet the rheological require variety of possible uses. Thus, the following functional 10 ments of the screen-printing process. Unexpectedly, the layers or Surface finishes and modifications can be built up paste-form mixtures can be applied Surprisingly easily to or carried out by means of Sol-gel technology: silicon wafer Surfaces in the screen-printing process, where antireflection coatings, for example for optical compo they have high structure fidelity. nents and the like For use, in particular in the Solar sector, Sol-gel-based corrosion-protection coatings, for example of Steels and 15 layers have to meet particular requirements, and thus so too the like do the pastes based on them, meaning that these requirement Scratch-protection coatings S also have to be taken into account in the formulation of Surface seals compositions for the production of Such layers. hydrophobisation or hydrophilisation of surfaces On the one hand, Suitable solvents having properties synthesis of membranes and membrane materials which are advantageous for the use. Such as, for example, no synthesis of Support materials for catalytic applications to low toxicity, adequate surface wetting, etc., should be precursors of sinter ceramics and sinter-ceramic compo selected. Furthermore, corrosive anions (Cl or NO, etc.) nents should not be present in the pastes, since they would greatly dielectric layers for electronic and microelectronic com limit the possible uses of the pastes. Corresponding pastes ponents having the following special applications, 25 could, for example, corrode the printing and deposition where the formation of one of the desired functional equipment used, but also later undesirably promote corro ities may be, but does not have to be, linked to specific sion of solder contacts when connecting up Solar cells which heat treatment, such as, for example, in a stream of O, are provided with Such layers, which would consequently N, O/N and/or forming gas: result in limited long-term stability of crystalline silicon spin-on-glass ("SoG) in the manufacture of integrated 30 Solar cells. circuits For the production of screen-printable pastes, the litera dielectric buffer layers between individual metallisa ture only discloses syntheses using rheological additives or tion planes in the manufacture of integrated circuits grinding of metal oxides precipitated by the sol-gel process (“porous MSQ) with Subsequent Suspension of these oxides. However, this printable dielectric layers for printed circuits, printable 35 type of paste production with post-treatment or admixture of electronics in general and printable organic electron rheological additives usually comprises contamination of ics in particular the actual active Substances. diffusion-barrier layers (cf. MERCK SolarFesist patent) Zhou et al. have investigated, for example, the synthesis for semiconductors in general of a CuZnSnS paste. Elemental copper, Zinc, tin and Sulfur for silicon in particular and especially for silicon wafers 40 were ground in a ball mill with addition of ethanol. After and in particular for those for the production of Subsequent drying, these were Suspended in isopropanol and crystalline silicon Solar cells mixed with a 10% ethylcellulose mixture in isopropanol. matrices for the binding of dopants (for example B. Ga, P. This mixture was ground again in a ball mill with addition AS, etc.) for the specific full-area and/or local doping of of terpineol, and the alcohol was removed in vacuo. The semiconductors in general 45 resultant viscous mass was employed for screen printing, silicon in particular and especially for silicon wafers and the layers obtained were investigated. {1 Z. Zhou, Y. and in particular for those for the production of Wang, D. Xu, Y. Zhang, Solar Energy Materials and Solar crystalline silicon Solar cells Cells, in press, (2010)} electronic passivation of semiconductor Surfaces in gen Hansch et al. in turn investigated the synthesis of a eral and of silicon Surfaces in particular, which results 50 screen-printable YO/ZrO mixed oxide. A YO/ZrO sol in a considerable reduction in the Surface recombina was obtained by mixing Zirconium n-propoxide stabilised by tion speed. means of acetylacetone and carboxylic acid (acetic acid, This list only represents a selection of the various possible propionic acid, caproic acid, nonanoic acid) in isopropanol applications. and an aqueous yttrium nitrate solution. In order to obtain a Most sol-gel processes known from the literature are 55 screen-printable paste, a calcined YO/ZrO powder was based on the use of silicon and alkoxides thereof (siloxanes), added to this sol (sol/powder 20/80-40/60 wt.%), and this the specific hydrolysis and condensation of which enables mixture was Subsequently ground by means of a ball mill for networks having various properties and coatings which can homogenisation. In the same way, pastes were prepared with be derived therefrom to be synthesised very easily, and addition of organic additives (terpineol or ethylcellulose), Smooth or porous films, or films in which particles are 60 but a paste was also prepared only from the calcined oxide.
Recommended publications
  • Direct Synthesis of Some Significant Metal Alkoxides
    SD0000032 DIRECT SYNTHESIS OF SOME SIGNIFICANT METAL ALKOXI'DE BVYU EMI1JG A THESIS SUBMITTED FOR THE DEGREE OF Mi.Sc. IN CHEMISTRY SUPERVISOR: Dr. O.Y.OMER DEPARTMENT OF CHEMISTRY FACULTY OF EDUCATION UNIVERSITY OF KHARTOUM NOVEMBER, 1998 31/28 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Please be aware that all of the Missing Pages in this document were originally blank pages Dedication To my three children: Regina, Maria and Samuel CONTENTS Page Dedication i Contents ii List of Tables v List of Figures vii Acknowledgement viii Abstract (Arabic) ix Abstract (English) x CHAPTER 1.0 CHAPTER ONE - INTRODUCTION 1 2.0 CHAPTER TWO - LITERATURE REVIEW 5 2.1 Introduction to Literature Review 5 2.2 Definition of metal alkoxides 5 2.3 Metal elements and (heir chemistry 8 2.3.1 Sodium metal 8 2.3.2 Magnesium metal 12 2.3.3 Aluminium metal 16 2.3.3.1 Hydrolysis of aluminium compounds 20 2.3.4 Tin metal 21 2.4 Preparative methods and uses ofalkoxides ofNa, Mg, Al & Sn. 25 2.4.1 Sodium alkoxide 25 2.4.2 Mamiesium alkoxide 26 2.4.3 Aluminium alkoxide 27 2.4.4. Tin alkoxide 30 2.5 General properties of metal alkoxides 31 2.5.1 1 lydrolysis in metal alkoxide 34 3.0 CHAPTER THREE - MATERIALS AND EXPERIMENTAL PROCEDURE 36 3.1 General procedures 36 3.1.1 Start ing material s 3 6 3.1. I.I Apparatus 36 3.1.1.2 Dry ethanol and isopropanol 36 3.1.1.3 Na, Mg, Al & Sn metals 36 3.1.2 Infrared spectra (Ir) 37 3.2 Reactions procedures 37 3.2.1 Reaction between sodium metal and absolute ethanol 37 3.2.2 Reaction of magnesium metal with absolute ethanol 37 3.2.3 Reaction of magnesium mclal with absolute ethanol using mercury (11) chloride catalyst.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Revision Date 15-Jan-2021 Revision Number 2 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Aluminum ethoxide Cat No. : 41336 Synonyms Aluminium ethoxide CAS-No 555-75-9 Molecular Formula C6 H15 Al O3 Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Flammable solids Category 2 (H228) Substances/mixtures which, in contact with water, emit flammable gases Category 2 (H261) Health hazards ______________________________________________________________________________________________ ALFAA41336 Page 1 / 11 SAFETY DATA SHEET Aluminum ethoxide Revision Date 15-Jan-2021 ______________________________________________________________________________________________ Skin Corrosion/Irritation Category 1 B (H314) Environmental hazards Based on available data, the classification criteria are not met Full text of Hazard Statements: see section 16 2.2. Label elements Signal Word Danger Hazard Statements H261 - In contact with water releases flammable gases H228 - Flammable solid H314 - Causes severe skin burns and eye damage EUH014 - Reacts violently with water Precautionary Statements P301 + P330 + P331 - IF SWALLOWED: rinse mouth.
    [Show full text]
  • 中文名稱英文名稱CAS.NO. 二乙縮醛acetal 105-57-7 乙醛
    中文名稱 英文名稱 CAS.NO.
    [Show full text]
  • WO 2014/009767 Al 16 January 2014 (16.01.2014) P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/009767 Al 16 January 2014 (16.01.2014) P O PCT (51) International Patent Classification: Pramod Kumar [IN/IN]; Micro Labs Limited, API Divi C07D 307/33 (2006.01) C07C 235/40 (2006.01) sion, Plot No. 43-45, K.I .A.D.B., Jigani-Bommasandra C07C 231/10 (2006.01) C07C 237/24 (2006.01) Link Road, Anekal Taluk, Bangalore-560 105, Karnataka C07C 233/58 (2006.01) (IN). (21) International Application Number: (74) Agents: NAIR, Manoj Vasudevan et al; M/s Lex Orbis PCT/IB20 12/00 1765 (Intellectual Property Practice), 709/710, Tolstoy House, 15-17 Tolstoy Marg, New Delhi - 110 001 (IN). (22) International Filing Date 12 September 2012 (12.09.2012) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, English (25) Filing Language: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 2752/CHE/2012 7 July 2012 (07.07.2012) IN KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (71) Applicant (for all designated States except US): MICRO ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, LABS LIMITED [IN/IN]; No.27, Race Course Road, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, Bangalore 560 001 (IN).
    [Show full text]
  • Reducing the Cost of Production of Bimetallic Aluminium Catalysts for the Synthesis of Cyclic Carbonates Michael North* and Carl Young[A]
    DOI: 10.1002/cssc.201100239 Reducing the Cost of Production of Bimetallic Aluminium Catalysts for the Synthesis of Cyclic Carbonates Michael North* and Carl Young[a] Bimetallic aluminium complexes of general formula [(salen)- most expensive chemicals by less expensive alternatives. The Al]2O or [(acen)Al]2O catalyse the formation of cyclic carbo- largest cost saving was associated with the formation of alumi- nates from carbon dioxide and terminal epoxides under excep- nium triethoxide in situ, which reduced the cost of the chemi- tionally mild reaction conditions. To improve the potential for cals need for production of the catalysts by 49–87 %. Further industrial scale application of these catalysts, the cost of their savings were made by avoiding the use of tetrabutylammoni- production has been evaluated and reduced significantly by um bromide and acetonitrile, resulting in overall cost savings optimization of the synthesis, including replacement of the of 68–93 %. Introduction The increasing prominence of climate change related issues[1] the use of dimethyl carbonate as an oxygenating agent for and the limited nature of fossil fuel reserves[2] for use as transport fuel.[16] energy and chemical feedstocks has driven the development Current commercial processes for the production of cyclic of green chemical processes involving alternative solvents, re- carbonates employ catalysts that require the use of tempera- newable materials and minimal waste.[3] One area that is re- tures above 1808C, pressures above 50 atm (1 atm = ceiving increasing attention is the use of carbon dioxide as an 101325 Pa) and highly purified carbon dioxide.[17] The carbon inexpensive, readily available and renewable starting material dioxide emitted as a result of generating the energy required for the synthesis of commercially important chemicals.[4] Urea to achieve these reaction conditions negates any benefit from is currently manufactured from carbon dioxide on a the use of carbon dioxide in the synthesis of cyclic carbonates.
    [Show full text]
  • Hydrocalumite-Based Catalysts for Glycerol Revalorization
    HYDROCALUMITE-BASED CATALYSTS FOR GLYCEROL REVALORIZATION. Judith Cecilia Granados Reyes Dipòsit Legal: T 1362-2015 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • Aluminum Ethoxide
    AKA060 - ALUMINUM ETHOXIDE ALUMINUM ETHOXIDE Safety Data Sheet AKA060 Date of issue: 08/05/2016 Version: 1.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Physical state : Solid Substance name : ALUMINUM ETHOXIDE Product code : AKA060 Formula : C6H15AlO3 Synonyms : ALUMINUM ETHYLATE ALUMINUM TRIETHOXIDE ALUMINIUM TRIETHANOLATE TRI(ETHANOLATE), ALUMINUM ETHANOL, ALUMINIUM SALT Chemical family : METAL ALCOHOLATE 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture GHS-US classification Skin Irrit. 2 H315 Eye Irrit. 2A H319 Full text of H statements : see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS07 Signal word (GHS-US) : Warning Hazard statements (GHS-US) : H315 - Causes skin irritation H319 - Causes serious eye irritation Precautionary statements (GHS-US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection P264 - Wash hands thoroughly after handling P302+P352 - If on skin: Wash with plenty of soap and water P332+P313 - If skin irritation occurs: Get medical advice/attention P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Synthesis of Biguanidines and Triazines, and Biguanidino-Aluminium Complexes As Intermediates
    (19) TZZ ¥__T (11) EP 2 231 679 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07F 5/06 (2006.01) C07D 413/04 (2006.01) 16.11.2011 Bulletin 2011/46 C07D 251/54 (2006.01) C07D 401/04 (2006.01) C07D 403/04 (2006.01) C07D 405/12 (2006.01) (2006.01) (21) Application number: 08862791.4 C07D 403/12 (22) Date of filing: 25.11.2008 (86) International application number: PCT/EP2008/009962 (87) International publication number: WO 2009/077059 (25.06.2009 Gazette 2009/26) (54) SYNTHESIS OF BIGUANIDINES AND TRIAZINES, AND BIGUANIDINO-ALUMINIUM COMPLEXES AS INTERMEDIATES SYNTHESE VON BIGUANIDEN UND TRIAZINEN SOWIE BIGUANIN-ALUMINIUM-KOMPLEXE ALS ZWISCHENPRODUKTE SYNTHÈSE DE BIGUANIDINES ET DE TRIAZINES ET COMPLEXES DE BIGUANIDINO- ALUMINIUM COMME INTERMÉDIAIRES (84) Designated Contracting States: (72) Inventor: FORD, Mark, James AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 61389 Schmitten-Oberreifenberg (DE) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (56) References cited: • DATABASECA[Online]CHEMICALABSTRACTS (30) Priority: 14.12.2007 EP 07024256 SERVICE, COLUMBUS, OHIO, US; NANDI, S. D. ET AL: "Complexes of aluminum(III) and (43) Date of publication of application: beryllium(II) with biguanide" XP002476492 29.09.2010 Bulletin 2010/39 retrieved from STN Database accession no. 81: 144912 & ZEITSCHRIFT FUER (73) Proprietor: Bayer CropScience AG NATURFORSCHUNG, TEIL B: ANORGANISCHE 42789 Monheim (DE) CHEMIE, ORGANISCHE CHEMIE, BIOCHEMIE, BIOPHYSIK, BIOLOGIE , 29(5-6), 347-8 CODEN: ZENBAX; ISSN: 0044-3174, 1974, Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide Using Bimetallic Aluminium(Salen) Complexes
    Reviews and Accounts ARKIVOC 2012 (i) 610-628 Synthesis of cyclic carbonates from epoxides and carbon dioxide using bimetallic aluminium(salen) complexes Michael North School of Chemistry, Bedson Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK E-mail: [email protected] DOI: http://dx.doi.org/10.3998/ark.5550190.0013.115 Abstract Over the last six years, highly active catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide have been developed. Initial studies showed that bimetallic aluminium(salen) complexes [Al(salen)]2O formed active catalysts and kinetic studies allowed the catalytic cycle to be determined. The catalysts could be immobilized on silica, allowing them to be used in a gas phase flow reactor as well as in batch reactors. The compatibility of the catalysts with waste carbon dioxide present in power station flue gas has been investigated and studies to enhance the commercial applicability of the catalysts by reducing the cost of their production carried out. Keywords: Carbon dioxide, epoxide, cyclic carbonate, catalyst, aluminium, salen Table of Contents 1. Introduction 2. Catalyst Discovery 3. Reaction Mechanism 4. One-Component and Immobilized Catalysts 5. Use of Waste Carbon Dioxide 6. Catalyst Cost Reduction 7. Conclusions 8. Acknowledgements 9. References Page 610 ©ARKAT-USA, Inc. Reviews and Accounts ARKIVOC 2012 (i) 610-628 1. Introduction The world currently generates most of its energy by the combustion of fossil fuels (coal, oil and natural gas) and despite efforts to develop alternative, renewable energy sources, fossil fuels are likely to remain the predominant energy source for the next 20–40 years.
    [Show full text]
  • Metal Salen Catalysts for Reactions of Epoxides and Heterocumulenes
    Christopher Beattie Metal salen catalysts for reactions of epoxides and heterocumulenes A thesis submitted for the degree of Doctor of Philosophy 2014 Abstract This thesis details the research carried out into the reaction of epoxides with various heterocumulenes, forming five-membered heterocyclic products. The catalyst systems used are numerous forms of metal salen compounds. It begins with the introduction, which summarises the body of literature outlining the reactions of epoxides with heterocumulenes. Previously developed catalytic systems are discussed along with any mechanistic studies that have taken place. A conclusion regarding the most active systems for each reaction is given, which will provide an understanding of the requirements needed to be a successful catalyst. The results and discussion section is divided into four main chapters. It begins with a study into forming novel one-component catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Four new catalysts are conceived and tested on this reaction, but with very limited success due to the level of steric hindrance present in the backbone of the salen ligands. The catalysts that are successfully synthesised are then examined for other reactions for which they may be suited, namely the synthesis of thiocarbonates from epoxides and carbon disulphide and asymmetric cyanohydrin synthesis. Both reactions gave mixed results. The activity exhibited for thiocarbonate synthesis ranged from 0-100 % conversion, while the asymmetric induction of the cyanohydrin products was disappointing (18-79 % ee). Both proving to be less active than previously devised salen-based systems. The next chapter describes a mechanistic exploration of previously developed monometallic and bimetallic catalyst systems for the reaction of epoxides with isocyanates.
    [Show full text]
  • Iron(III) Chloride
    Iron(III) chloride Iron(III) chloride is the inorganic compound with the Iron(III) chloride formula (FeCl3). Also called ferric chloride, it is a common compound of iron in the +3 oxidation state. The anhydrous compound is a crystalline solid with a melting point of 307.6 °C. The color depends on the viewing angle: by reflected light the crystals appear dark green, but by transmitted light they appear purple-red. Contents Structure and properties Anhydrous Iron(III) chloride (hydrate) Hydrates Aqueous solution Preparation Reactions Redox reactions With carboxylate anions With alkali metal alkoxides With organometallic compounds Uses Industrial Laboratory use Other uses Safety Iron(III) chloride (anhydrous) Natural occurrence See also Notes References Further reading Names IUPAC names Iron(III) chloride Structure and properties Iron trichloride Other names Anhydrous Ferric chloride Molysite Anhydrous iron(III) chloride has the BiI structure, with 3 Flores martis octahedral Fe(III) centres interconnected by two-coordinate chloride ligands.[3] Identifiers CAS Number 7705-08-0 (http://www.c Iron(III) chloride has a relatively low melting point and boils ommonchemistry.org/Ch at around 315 °C. The vapour consists of the dimer Fe Cl (cf. 2 6 emicalDetail.aspx?ref=7 aluminium chloride) which increasingly dissociates into the 705-08-0) monomeric FeCl3 (with D3h point group molecular 10025-77-1 (http://www. symmetry) at higher temperature, in competition with its commonchemistry.org/C reversible decomposition to give iron(II) chloride and hemicalDetail.aspx?ref= [8] chlorine gas. 10025-77-1) (hexahydrate) Hydrates 54862-84-9 (http://www. commonchemistry.org/C In addition to the anhydrous material, ferric chloride forms hemicalDetail.aspx?ref= four hydrates.
    [Show full text]
  • 2U11/158249 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date \ / ; 22 December 2011 (22.12.2011) 2U1n 1/158249ft Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 209/48 (2006.01) C07C 231/12 (2006.01) kind of national protection available): AE, AG, AL, AM, C07D 307/93 (2006.01) C07C 237/24 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/IN20 11/000387 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, June 201 1 (09.06.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 1809/MUM/2010 16 June 2010 (16.06.2010) IN kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): GLEN- ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MARK GENERICS LIMITED [IN/IN]; Glenmark TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, HDO- Corporate Bldg, Wing-A, B.
    [Show full text]