Ethyl Acetate: Properties, Production Processes and Applications - a Review

Total Page:16

File Type:pdf, Size:1020Kb

Ethyl Acetate: Properties, Production Processes and Applications - a Review ETHYL ACETATE: PROPERTIES, PRODUCTION PROCESSES AND APPLICATIONS - A REVIEW Bijay N. Pattanaik, Hiren C. Mandalia ijcrr Vol 03 issue 12 Research & Development Centre, Gujarat Narmada Valley Fertilizer Category: Review Company Ltd. (GNFC), Narmadanagar- 392 015, Bharuch, Gujarat Received on:04/10/11 Revised on:11/10/11 E-mail of Corresponding Author: [email protected] Accepted on:22/10/11 ABSTRACT E-mail of Corresponding Author: [email protected] Ethyl acetate is an important organic solvent widely used in the chemical industry. This review article attempts to provide an updated compilation of research studies reported on ethyl acetate production by using various methods/techniques/ processes and it‘s parameters, which affect their productivity. The perspectives potential applications of ethyl acetate are also presented. ______________________________________________________________________ Keywords: Ethyl acetate, Esterification, compounds which generated serious Ethanol, Acetic acid. damage to the environment and human beings. With the increasing number of 1. INTRODUCTION research groups worldwide thereby Ethyl acetate is the organic compound (an regularly increasing number of oxygenated solvent) with the formula publications, covering many areas such as CH3COOC2H5 and having a molecular properties, production process and weight of 88.10. This colourless liquid has applications of ethyl acetate, we thought it a characteristic, pungent smell like certain worth to present comprehensive review glues or nail polish removers, in which it is article which covers the important work of used. Ethyl acetate is the ester from ethanol all the research group across the world. and acetic acid; it is manufactured on a large scale for use as a solvent. Ethyl 1. PRODUCTION OF ETHYL acetate is a moderately polar solvent that ACETATE has the advantages of being volatile, Industrial production of ethyl acetate is relatively non-toxic, and non-hygroscopic. mainly classified into three processes, It is a weak hydrogen bond acceptor, and is The first one is a classical Fischer not a donor due to the lack of an acidic esterification process1 of ethanol with proton. Ethyl acetate can dissolve up to 3% acetic acid in presence of acid catalyst. water and has a solubility of 8% in water at This process needs acid catalyst2 such as room temperature. It is unstable in the sulphuric acid, hydrochloride acid, p- presence of strong aqueous bases and acids. toluene sulfonic acid etc. This mixture It is soluble in most organic solvents, such converts to the ester in about 65% yield at as alcohol, acetone, ether and chloroform. room temperature. It has been also used as solvent in many CH3CH2OH + CH3COOH ↔ chemical processes for replacing aromatic CH3COOC2H5 + H2O 23 International Journal of Current Research and Review www.ijcrr.com Vol. 03 issue 12 December 2011 The reaction can be accelerated by acid This method has been proposed by two catalysis and the equilibrium can be shifted different routes; (i) dehydrogenative to the right by removal of water. Mechanism process, which uses copper or palladium of esterification reaction has been discussed based catalyst and (ii) the oxidative one, by P. Sykes.3 which employs, PdO supported catalysts. The system is strongly non-ideal due to the The former one produces, besides ethyl presence of ethanol, acetic acid and water. acetate, hydrogen and also, other by- The separation of pure components is very products which make the acetate purification difficult due to the existence of five normal expensive. In the case of oxidation process, azeotropes, namely, ethanol–water; water– the purification is straightforward and the acetic acid, ethyl acetate–ethanol, ethyl catalysts are very stable. acetate–water, and ethanol–ethyl acetate– The third one, which has been recently water. I. Sujuki et al.4 also determined the commercialized, is addition of acetic acid to phase equilibrium for the system taking the ethylene using clay and heteroploy acid7 as a reaction into account (they fitted 16 catalyst. coefficients in modified Margules equations, CH2= CH2 + CH3COOH → CH3COOC2H5 for calculating the VLE-model of this The processes, however, have some mixture). disadvantages; both the conventional The normal boiling point of ethyl acetate, esterification and addition of acetic acid to ethanol, water and acetic acid is 77.1, 78.4, ethylene need stock tanks and apparatus for 100 and 118.1 in °C respectively. The order several feed stocks. Moreover, they use of volatility is ethyl acetate, ethanol, water acetic acid that causes apparatus corrosion. and acetic acid. Ethanol and water do not Although Teshchenko Reaction uses only differ greatly in volatility, making it difficult one feed and it is a non-corrosive material, it to move ethanol up the column. The is difficult to handle acetaldehyde because is minimum-boiling binary homogeneous not available outside of petrochemical azeotropes are formed by ethanol–water at industrial area. In such circumstances, an 78.2°C With 10.57mol% water and by ethyl improved process of ethyl acetate acetate–ethanol at 71.8°C with 46 mol% production is strongly desired. ethanol. A minimum-boiling binary Several new technologies have been heterogeneous azeotrope5 is formed by ethyl commercialised. BP‘s new Avada process8 acetate–water at 70.4°C with 24mol% water, employed in a new plant at Hull, UK, uses and a ternary, minimum-boiling azeotrope is ethylene and acetic acid with solid acid formed by ethanol–ethyl acetate–water at catalyst. Davy Process Technology 70.3°C with 12.4mol% ethanol and 60.1 (formerly Kvaerner) has licensed its ethanol- mol% ethyl acetate. based process to Sasol; in this process The second one is Tishchenko Reaction6 of ethanol is dehydrogenated to acetaldehyde, acetaldehyde using aluminium triethoxide as which further reacts to form ethyl acetate. a catalyst. In Germany and Japan, most ethyl Chinese National Petroleum has developed a acetate is produced via the Tishchenko one-step ethanol process where ethanol is process. partially oxidised to acetic acid and then 2 CH3CHO → CH3COOC2H5 esterified with excess ethanol to give ethyl acetate. 24 International Journal of Current Research and Review www.ijcrr.com Vol. 03 issue 12 December 2011 In esterification reactions the function of the silica-alumina group, it was recognized from catalysts is to donate protons for the a LFER (Linear Free Energy Relationship) autoprotolysis of the carboxylic acid. For approach and from poisoning with organic this purpose, either inorganic acids, such as bases that the esterification proceeded on H2SO4, HCl, HI or Cl-SO3OH or organic even weaker acid sites than other acid- acids such as p-toluene sulfonic acid have catalyzed reactions such as dealkylation and been used.9 In spite of their lower cost, the dehydration. From simple kinetics based on interest for homogeneous catalysts in a Langmuir-Hinshelwood mechanism, chemical industry has decreased because of distinct differences were found between the their miscibility with reaction medium, two groups in that acetic acid adsorbed more which gives raise to problems such their tightly than ethanol on alumina and the separation or the corrosion of devices in reverse on the silica-alumina group, and that contact with the acid. As a result there is an the activity ratios of esterification to increasing attention for various dehydration were much larger on the silica- process/techniques to obtain ethyl acetate. alumina group than on alumina. These characteristic behaviours of ethanol and 2. DEVELOPMENTS IN THE acetic acid on silica-alumina and alumina PRODUCTION PROCESS were satisfactorily interpreted by the Generally, two types of catalysts have been assumption that the active sites for used for the production of ethyl acetate, esterification were protonic acid sites on the a) Homogeneous acid catalysts (eg. mineral silica-alumina group, but Lewis acid sites on acids like HCl, H2SO4, alkyl sulfonic alumina. On the basis of these findings, an acid, aromatic sulfonic acid, methane esterification mechanism was also proposed sulfonic acid, benzene sulfonic acid, p- by authors.10 tolune sulfonic acid). Y. Iwasawa et al.11 prepared niobium b) Heterogeneous acid catalysts (eg. strong catalysts for the formation of ethyl acetate acid ion-exchange, Rohm Q-16, Hass A- from ethanol and acetic acid. The niobium 16). catalysts involving single, pair, and Effect of different catalysts concentration, monolayer Nb-sites have been prepared by different operative temperature is applied to the reaction between surface OH groups of 3 5 determine the amount of heat release and the SiO2 and Nb(η -C3H5)4, [Nb(η -C5H5)H-μ- 5 1 possibility of the reaction in creating runway (η , η -C5H4)]2, and Nb(OC2H5)5, reaction. respectively. The obtained Nb sites were Esterification of ethanol with acetic acid on found to be attached to the surface through silica-alumina, alumina-boria, sodium- oxygen atoms, showing Nb--Si bondings poisoned silica-alumina, and alumina has besides Nb---O bonds as proved by extended been investigated by the pulse technique and X-ray absorption fine structure (EXAFS). 10 compared with ethanol dehydration. The The Nb monomers on SiO2 were active for catalysts could be classified into two groups ethanol dehydrogenation which proceeds on according to their catalytic behaviour; silica- Nb=O bonds with basic character, while the alumina, alumina-boria, and sodium- Nb dimers showed dehydration activity to poisoned silica-alumina belong to one group form ethene and diethyl ether, based on and alumina to another. Concerning the acidic character. The Nb monolayers on 25 International Journal of Current Research and Review www.ijcrr.com Vol. 03 issue 12 December 2011 SiO2 produced ethyl acetate from ethanol. acetic acid. Authors also mentioned that the The monolayer catalyst also showed a high ability of the resin not only to catalyze the activity for the formation of ethyl acetate esterification reaction but also to shift the from ethanol and acetic acid. The Nb atoms corresponding equilibrium conversion, due were suggested to be nearly uniformly to its swelling capability.
Recommended publications
  • Catalytic Role of Solid Acid Catalysts in Glycerol Acetylation for the Production of Bio- Additives: a Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/20567 Official URL: https://doi.org/10.1039/c6ra10686b To cite this version: Kong, Pei San and Aroua, Mohamed Kheireddine and Daud, Wan Mohd Ashri Wan and Lee, Hwei Voon and Cognet, Patrick and Peres-Lucchese, Yolande Catalytic role of solid acid catalysts in glycerol acetylation for the production of bio- additives: a review. (2016) RSC Advances, 6 (73). 68885- 68905. ISSN 2046-2069 Any correspondence concerning this service should be sent to the repository administrator: [email protected] RSC Advances View Article Online REVIEW View Journal | View Issue Catalytic role of solid acid catalysts in glycerol acetylation for the production of bio-additives: Cite this: RSC Adv.,2016,6, 68885 a review Pei San Kong,ac Mohamed Kheireddine Aroua,*a Wan Mohd Ashri Wan Daud,a b c c Hwei Voon Lee, Patrick Cognet and Yolande Per´ `es Bio-additives obtained from the acetylation of biodiesel-derived glycerol have been extensively synthesized because of their nature as value-added products and their contribution to environmental sustainability. Glycerol acetylation with acetic acid produces commercially important fuel additives. Considering that the recovery of individual monoacetin, diacetin (DA), and triacetin (TA) is complicated, many endeavours have enhanced the selectivity and total conversion of glycerol using acetic acid during catalytic acetylation.
    [Show full text]
  • Direct Synthesis of Some Significant Metal Alkoxides
    SD0000032 DIRECT SYNTHESIS OF SOME SIGNIFICANT METAL ALKOXI'DE BVYU EMI1JG A THESIS SUBMITTED FOR THE DEGREE OF Mi.Sc. IN CHEMISTRY SUPERVISOR: Dr. O.Y.OMER DEPARTMENT OF CHEMISTRY FACULTY OF EDUCATION UNIVERSITY OF KHARTOUM NOVEMBER, 1998 31/28 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Please be aware that all of the Missing Pages in this document were originally blank pages Dedication To my three children: Regina, Maria and Samuel CONTENTS Page Dedication i Contents ii List of Tables v List of Figures vii Acknowledgement viii Abstract (Arabic) ix Abstract (English) x CHAPTER 1.0 CHAPTER ONE - INTRODUCTION 1 2.0 CHAPTER TWO - LITERATURE REVIEW 5 2.1 Introduction to Literature Review 5 2.2 Definition of metal alkoxides 5 2.3 Metal elements and (heir chemistry 8 2.3.1 Sodium metal 8 2.3.2 Magnesium metal 12 2.3.3 Aluminium metal 16 2.3.3.1 Hydrolysis of aluminium compounds 20 2.3.4 Tin metal 21 2.4 Preparative methods and uses ofalkoxides ofNa, Mg, Al & Sn. 25 2.4.1 Sodium alkoxide 25 2.4.2 Mamiesium alkoxide 26 2.4.3 Aluminium alkoxide 27 2.4.4. Tin alkoxide 30 2.5 General properties of metal alkoxides 31 2.5.1 1 lydrolysis in metal alkoxide 34 3.0 CHAPTER THREE - MATERIALS AND EXPERIMENTAL PROCEDURE 36 3.1 General procedures 36 3.1.1 Start ing material s 3 6 3.1. I.I Apparatus 36 3.1.1.2 Dry ethanol and isopropanol 36 3.1.1.3 Na, Mg, Al & Sn metals 36 3.1.2 Infrared spectra (Ir) 37 3.2 Reactions procedures 37 3.2.1 Reaction between sodium metal and absolute ethanol 37 3.2.2 Reaction of magnesium metal with absolute ethanol 37 3.2.3 Reaction of magnesium mclal with absolute ethanol using mercury (11) chloride catalyst.
    [Show full text]
  • One-Step Synthesis of Ester from Alkene
    ー論文ー ●One-step synthesis of ester from alkene Madoka Furuta M.C.Kung and H.H.Kung UFO Project Northwestern University Abstract A one-step synthesis of ethylacetate from a feed mixture of ethene, oxygen, and water using a supported Pd and silicotungstic acid catalyst was demonstrated. At about 180℃ and 25% ethene conversion, ethylacetate could be produced with to 46% selectivity, with 34% acetic acid and ethanol that could be recycled. The catalyst was believed to be bifunctional, with Pd providing the oxidation function and the silicotungstic acid providing the acidic function. And this catalyst system had an activity that could produce isopropylacrylate from a feed mixture of propene, oxygen, and water. 1 Introduction C2H5OH + O2 = CH3COOH + H2O (2) Carboxylic acid esters are used in a wide range of applications. They are used, for example, as plasticizers, solvents, surface-active Finally, ethyl acetate is produced by the esterification of ethanol agents, and flavor and perfume materials. There are many known with acetic acid over a catalyst. methods to produce esters. The most common method is the C2H5OH + CH3COOH = CH3COOC2H5 + H2O (3) esterification, which is a reaction of alcohol with carboxylic acid1,2). For example, ethyl acrylate is synthesized from ethyl alcohol and Thus the overall reaction is acrylic acid, and ethyl acetate from ethyl alcohol and acetic acid. An 2C2H4 + O2 = CH3COOC2H5 (4) acidic catalyst, which can be a mineral acid, or polymeric material containing chemically-bound acid groups, such as sulfonated Such a one-step process has the advantage of starting with reactants, polystyrene, is commonly used in the esterification.
    [Show full text]
  • Acidity of Keggin-Type Heteropolycompounds Evaluated by Catalytic Probe Reactions, Sorption Microcalorimetry, and Density Functional Quantum Chemical Calculations
    J. Phys. Chem. B 1998, 102, 10817-10825 10817 Acidity of Keggin-Type Heteropolycompounds Evaluated by Catalytic Probe Reactions, Sorption Microcalorimetry, and Density Functional Quantum Chemical Calculations Billy B. Bardin, Shailendra V. Bordawekar, Matthew Neurock, and Robert J. Davis* Department of Chemical Engineering, UniVersity of Virginia, CharlottesVille, Virginia 22903 ReceiVed: May 22, 1998; In Final Form: October 5, 1998 The acidity and its effects on reactivity of Keggin-type heteropolycompounds were examined by catalytic probe reactions, microcalorimetry of ammonia sorption, and density functional quantum chemical calculations. Phosphotungstic, phosphomolybdic, silicotungstic, and silicomolybdic acids were used as model compounds. The specific rates of double-bond isomerization of both 1-butene and cis-2-butene were orders of magnitude greater on the tungsten heteropolyacids than on molybdenum heteropolyacids, which suggests the tungsten- containing solids are stronger acids. The rate of double-bond isomerization over silicotungstic acid was similar to that over phosphotungstic acid, indicating the minor role of the heteroatom. Results from ammonia sorption -1 microcalorimetry showed ∆Hsorp on tungsten-based heteropolyacids was approximately 40 kJ mol higher than the corresponding enthalpy obtained on molybdenum-based heteropolyacids. Residual waters of hydration significantly affected both reaction rates and sorption enthalpies. Quantum chemical calculations revealed the most energetically favorable site of the acidic proton to be a bridging oxygen atom in the anhydrous heteropolyacid. Calculations on structurally optimized small metal oxide clusters, as well as the complete Keggin unit, were used to determine the proton affinities by DFT methods. Regardless of cluster size, the proton affinity of a tungsten cluster was always lower than that of an analogous molybdenum cluster by about 20-40 kJ mol-1.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Revision Date 15-Jan-2021 Revision Number 2 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Aluminum ethoxide Cat No. : 41336 Synonyms Aluminium ethoxide CAS-No 555-75-9 Molecular Formula C6 H15 Al O3 Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Flammable solids Category 2 (H228) Substances/mixtures which, in contact with water, emit flammable gases Category 2 (H261) Health hazards ______________________________________________________________________________________________ ALFAA41336 Page 1 / 11 SAFETY DATA SHEET Aluminum ethoxide Revision Date 15-Jan-2021 ______________________________________________________________________________________________ Skin Corrosion/Irritation Category 1 B (H314) Environmental hazards Based on available data, the classification criteria are not met Full text of Hazard Statements: see section 16 2.2. Label elements Signal Word Danger Hazard Statements H261 - In contact with water releases flammable gases H228 - Flammable solid H314 - Causes severe skin burns and eye damage EUH014 - Reacts violently with water Precautionary Statements P301 + P330 + P331 - IF SWALLOWED: rinse mouth.
    [Show full text]
  • 中文名稱英文名稱CAS.NO. 二乙縮醛acetal 105-57-7 乙醛
    中文名稱 英文名稱 CAS.NO.
    [Show full text]
  • WO 2014/009767 Al 16 January 2014 (16.01.2014) P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/009767 Al 16 January 2014 (16.01.2014) P O PCT (51) International Patent Classification: Pramod Kumar [IN/IN]; Micro Labs Limited, API Divi C07D 307/33 (2006.01) C07C 235/40 (2006.01) sion, Plot No. 43-45, K.I .A.D.B., Jigani-Bommasandra C07C 231/10 (2006.01) C07C 237/24 (2006.01) Link Road, Anekal Taluk, Bangalore-560 105, Karnataka C07C 233/58 (2006.01) (IN). (21) International Application Number: (74) Agents: NAIR, Manoj Vasudevan et al; M/s Lex Orbis PCT/IB20 12/00 1765 (Intellectual Property Practice), 709/710, Tolstoy House, 15-17 Tolstoy Marg, New Delhi - 110 001 (IN). (22) International Filing Date 12 September 2012 (12.09.2012) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, English (25) Filing Language: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 2752/CHE/2012 7 July 2012 (07.07.2012) IN KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (71) Applicant (for all designated States except US): MICRO ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, LABS LIMITED [IN/IN]; No.27, Race Course Road, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, Bangalore 560 001 (IN).
    [Show full text]
  • Reducing the Cost of Production of Bimetallic Aluminium Catalysts for the Synthesis of Cyclic Carbonates Michael North* and Carl Young[A]
    DOI: 10.1002/cssc.201100239 Reducing the Cost of Production of Bimetallic Aluminium Catalysts for the Synthesis of Cyclic Carbonates Michael North* and Carl Young[a] Bimetallic aluminium complexes of general formula [(salen)- most expensive chemicals by less expensive alternatives. The Al]2O or [(acen)Al]2O catalyse the formation of cyclic carbo- largest cost saving was associated with the formation of alumi- nates from carbon dioxide and terminal epoxides under excep- nium triethoxide in situ, which reduced the cost of the chemi- tionally mild reaction conditions. To improve the potential for cals need for production of the catalysts by 49–87 %. Further industrial scale application of these catalysts, the cost of their savings were made by avoiding the use of tetrabutylammoni- production has been evaluated and reduced significantly by um bromide and acetonitrile, resulting in overall cost savings optimization of the synthesis, including replacement of the of 68–93 %. Introduction The increasing prominence of climate change related issues[1] the use of dimethyl carbonate as an oxygenating agent for and the limited nature of fossil fuel reserves[2] for use as transport fuel.[16] energy and chemical feedstocks has driven the development Current commercial processes for the production of cyclic of green chemical processes involving alternative solvents, re- carbonates employ catalysts that require the use of tempera- newable materials and minimal waste.[3] One area that is re- tures above 1808C, pressures above 50 atm (1 atm = ceiving increasing attention is the use of carbon dioxide as an 101325 Pa) and highly purified carbon dioxide.[17] The carbon inexpensive, readily available and renewable starting material dioxide emitted as a result of generating the energy required for the synthesis of commercially important chemicals.[4] Urea to achieve these reaction conditions negates any benefit from is currently manufactured from carbon dioxide on a the use of carbon dioxide in the synthesis of cyclic carbonates.
    [Show full text]
  • Hydrocalumite-Based Catalysts for Glycerol Revalorization
    HYDROCALUMITE-BASED CATALYSTS FOR GLYCEROL REVALORIZATION. Judith Cecilia Granados Reyes Dipòsit Legal: T 1362-2015 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • Aluminum Ethoxide
    AKA060 - ALUMINUM ETHOXIDE ALUMINUM ETHOXIDE Safety Data Sheet AKA060 Date of issue: 08/05/2016 Version: 1.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Physical state : Solid Substance name : ALUMINUM ETHOXIDE Product code : AKA060 Formula : C6H15AlO3 Synonyms : ALUMINUM ETHYLATE ALUMINUM TRIETHOXIDE ALUMINIUM TRIETHANOLATE TRI(ETHANOLATE), ALUMINUM ETHANOL, ALUMINIUM SALT Chemical family : METAL ALCOHOLATE 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture GHS-US classification Skin Irrit. 2 H315 Eye Irrit. 2A H319 Full text of H statements : see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS07 Signal word (GHS-US) : Warning Hazard statements (GHS-US) : H315 - Causes skin irritation H319 - Causes serious eye irritation Precautionary statements (GHS-US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection P264 - Wash hands thoroughly after handling P302+P352 - If on skin: Wash with plenty of soap and water P332+P313 - If skin irritation occurs: Get medical advice/attention P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Heteropolyacid Salt Catalysts for Methanol Conversion to Hydrocarbons and Dimethyl Ether: Effect of Reaction Temperature
    catalysts Article Heteropolyacid Salt Catalysts for Methanol Conversion to Hydrocarbons and Dimethyl Ether: Effect of Reaction Temperature Yuehong Yu 1, Daoming Sun 1, Shuanjin Wang 1 , Min Xiao 1,*, Luyi Sun 2 and Yuezhong Meng 1,* 1 The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China; [email protected] (Y.Y.); [email protected] (D.S.); [email protected] (S.W.) 2 Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; [email protected] * Correspondence: [email protected] (M.X.); [email protected] (Y.M.); Tel./Fax: +86-20-8411-4113 (Y.M.) Received: 24 February 2019; Accepted: 26 March 2019; Published: 1 April 2019 Abstract: Phosphotungstic and silicotungstic acid salt catalysts (CuPW, CuSiW, FePW, FeSiW) were synthesized by substitution of protons with ferric and copper ions through a simple replacement reaction. The structure and thermal stability were characterized by IR, XRD and TG, and the salts showed a keggin structure and a thermal tolerance near 450 ◦C. Temperature programmed reactions indicated that the four catalysts showed similar trends in the change of methanol conversion, DME selectivity, and light olefins selectivity at 100–400 ◦C. Copper salt catalysts showed a 100% DME selectivity at temperatures ranging from 100–250 ◦C, while FeSiW and FePW catalysts had a 100% DME selectivity near 250 ◦C. Moreover, the heteropolyacid salt catalysts also produced a certain number of light olefins at the temperature ranging from 250–350 ◦C, and the CuSiW catalyst exhibited the highest ethylene and propylene selectivity of 44%.
    [Show full text]
  • Synthesis of Biguanidines and Triazines, and Biguanidino-Aluminium Complexes As Intermediates
    (19) TZZ ¥__T (11) EP 2 231 679 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07F 5/06 (2006.01) C07D 413/04 (2006.01) 16.11.2011 Bulletin 2011/46 C07D 251/54 (2006.01) C07D 401/04 (2006.01) C07D 403/04 (2006.01) C07D 405/12 (2006.01) (2006.01) (21) Application number: 08862791.4 C07D 403/12 (22) Date of filing: 25.11.2008 (86) International application number: PCT/EP2008/009962 (87) International publication number: WO 2009/077059 (25.06.2009 Gazette 2009/26) (54) SYNTHESIS OF BIGUANIDINES AND TRIAZINES, AND BIGUANIDINO-ALUMINIUM COMPLEXES AS INTERMEDIATES SYNTHESE VON BIGUANIDEN UND TRIAZINEN SOWIE BIGUANIN-ALUMINIUM-KOMPLEXE ALS ZWISCHENPRODUKTE SYNTHÈSE DE BIGUANIDINES ET DE TRIAZINES ET COMPLEXES DE BIGUANIDINO- ALUMINIUM COMME INTERMÉDIAIRES (84) Designated Contracting States: (72) Inventor: FORD, Mark, James AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 61389 Schmitten-Oberreifenberg (DE) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (56) References cited: • DATABASECA[Online]CHEMICALABSTRACTS (30) Priority: 14.12.2007 EP 07024256 SERVICE, COLUMBUS, OHIO, US; NANDI, S. D. ET AL: "Complexes of aluminum(III) and (43) Date of publication of application: beryllium(II) with biguanide" XP002476492 29.09.2010 Bulletin 2010/39 retrieved from STN Database accession no. 81: 144912 & ZEITSCHRIFT FUER (73) Proprietor: Bayer CropScience AG NATURFORSCHUNG, TEIL B: ANORGANISCHE 42789 Monheim (DE) CHEMIE, ORGANISCHE CHEMIE, BIOCHEMIE, BIOPHYSIK, BIOLOGIE , 29(5-6), 347-8 CODEN: ZENBAX; ISSN: 0044-3174, 1974, Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]