Solutions for Sustainable Mariculture

Total Page:16

File Type:pdf, Size:1020Kb

Solutions for Sustainable Mariculture Secretariat CBD Technical Series No. of the Convention on Biological Diversity ALSO AVAILABLE Issue 1: Review of The Efficiency and Efficacy of Existing Legal Instruments Applicable to Invasive Alien Species Issue 2: Assessment and Management of Alien Species that Threaten Ecosystems, Habitats SOLUTIONS FOR SUSTAINABLE MARICULTURE - and Species AVOIDING THE ADVERSE EFFECTS OF MARICULTURE Issue 3: Assessment Conservation and Sustainable Use of Forest Biodiversity ON BIOLOGICAL DIVERSITY Issue 4: The Value of Forest Ecosystems Issue 5: Impacts of Human-Caused Fires on Biodiversity and Ecosystem Functioning, and Their Causes in Tropical, Temperate and Boreal Forest Biomes Issue 6: Sustainable Management of Non-Timber Forest Resources Issue 7: Review of the Status and Trends of, and Major Threats to, Forest Biological Diversity Issue 8: Status and trends of, and threats to, mountain biodiversity, marine, coastal and inland water ecosystems: abstracts of poster presentations at the eighth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice of the 12 Convention on Biological Diversity Issue 9: Facilitating Conservation and Sustainable Use of Biological Diversity Abstracts of poster presentations on protected areas and technology transfer and cooperation at the ninth meeting of the Subsidiary Body on Scientific, Technical and Technological Advice Issue 10: Interlinkages between Biological Diversity and Climate Change Advice on the integration of biodiversity considerations into the implementation of the United Nations Framework Convention on Climate Change and its Kyoto Protocol Issue 11: Status and Trends of Biodiversity of Inland Water Ecosystems SOLUTIONS FOR SUSTAINABLE MARICULTURE - AVOIDING THE ADVERSE EFFECTS OF MARICULTURE ON BIOLOGICAL DIVERSITY Report of the Ad Hoc Technical Expert Group on Mariculture January 2004 Solutions for sustainable mariculture - avoiding the adverse effects of mariculture on biological diversity Published by the Secretariat of the Convention on Citation Biological Diversity. ISBN: 92-807-2406-1 Secretariat of the Convention on Biological Copyright (c) 2004, Secretariat of the Convention Diversity (2004) Solutions for sustainable maricul- on Biological Diversity ture - avoiding the adverse effects of mariculture on biological diversity (CBD Technical Series no. 12). The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Convention on Biological For further information, please contact: Diversity concerning the legal status of any coun- Secretariat of the Convention try, territory, city or area or of its authorities, or on Biological Diversity concerning the delimitation of its frontiers or World Trade Centre boundaries. 393 St. Jacques Street, suite 300 Montreal, Quebec, Canada H2Y 1N9 The views reported in this publication do not nec- Phone: 1 (514) 288 2220 essarily represent those of the Convention on Fax: 1 (514) 288 6588 Biological Diversity nor those of the reviewers. This E-mail: [email protected] publication may be reproduced for educational or Website: http://www.biodiv.org non-profit purposes without special permission from the copyright holders, provided acknowledge- ment of the source is made. The Secretariat of the Convention would appreciate receiving a copy of any publications that uses this document as a source. Layout and printing: COMMUNICATIONS CDG Photo credits: Woman: R.J.ROSS/PETER ARNOLD/ALPHA PRESSE Shrimp and fish farm: C.RUOSO/BIOS/ALPHA PRESSE Fish farm: UNEP/ALPHA PRESSE Salmon fish farm: J.P. SYLVESTRE/BIOS/ALPHA PRESSE 2 Solutions for sustainable mariculture - avoiding the adverse effects of mariculture on biological diversity FOREWORD The programme of work on marine and coastal depletion of natural seedstock, transmission of dis- biodiversity aims to assist the implementation of eases, and reduction of genetic variability. To solve the Jakarta Mandate at the national, regional and these problems information is needed to improve global level. It identifies operational objectives and its sustainability. In particular, we need to better priority activities within the five key programme understand possible interactions between aquacul- elements, namely: implementation of integrated ture and natural environments to minimize the marine and coastal area management, marine and potential for habitat degradation, introduction of coastal living resources, marine and coastal protect- invasive alien species, etc. ed areas, mariculture and alien species and geno- types. The objective of this document is to provide a basis for understanding the effects of mariculture on Mariculture - the production of marine organisms marine and coastal biological diversity. The present for food - represents an opportunity to provide a report is a result of a forum in which researchers sustainable supplement to the marine capture fish- reviewed the scientific knowledge base for the ery. Mariculture has a relatively long history; for development of a sustainable mariculture. It is my example, oyster culture was known to the Romans. hope that this report is a contribution to develop By contrast, modern, intensive mariculture is only greater depth in domestic research, as well as to approximately 30 years old, producing a steadily building connections between the researchers. increasing proportion of the world’s seafood during this period. Aquaculture production currently This report is being widely distributed to reach out exceeds freshwater capture by a factor of more than to public sectors, research centres and to other three and makes up almost half of the marine cap- interested parties. I am confident that the lessons ture fisheries. Moreover, aquaculture production learned from these efforts will provide valuable has more than doubled over the last ten years and input as the Convention continues to promote and this trend is continuing whilst traditional fishing facilitate achievement of the target of significantly production is declining as a result of overexploita- reducing the current rate of biodiversity loss by the tion. But aquaculture, both in inland waters and year 2010. marine and coastal areas, has problems, including habitat degradation, disruption of trophic systems, I thank all of those individuals and institutions who have contributed to the preparation of this techni- cal report. Hamdallah Zedan 3 Solutions for sustainable mariculture - avoiding the adverse effects of mariculture on biological diversity Acknowledgements The Secretariat of the Convention on Biological Diversity wishes to acknowledge with appreciation the Food and Agriculture Organization of the United Nations (FAO) for the technical support and meeting facilities provided for the meeting of the Ad Hoc Technical Expert Group on Mariculture. The Secretariat would also like to express its gratitude to the members of the Ad Hoc Technical Expert Group on Mariculture for devel- oping this document; to Ms. Stella Williams of Nigeria and Mr. Phillippe Goulletquer of France for chairing the meeting of the expert group; and to the observers and resource personnel for their invaluable contributions. Finally, the Secretariat would like to thank the World Fisheries Trust for preparing the background document for the meet- ing of the expert group. 4 Solutions for sustainable mariculture - avoiding the adverse effects of mariculture on biological diversity LIST OF AUTHORS This document was produced by the Ad Hoc Technical Expert Group on Marine and Coastal Protected Areas. The expert group members, includ- ing observers are (in alphabetical order): Mr. A.K. Armah (Ghana) Ms. Daisy C. Arroyo Mora (Costa Rica) Mr. Uwe Barg (FAO) Mr. Devin Bartley (FAO) Mr. Stefano Cataudella (Italy) Mr. S.U.K Ekaratne (Sri Lanka) Ms. Vlasta Franicevic^ ´ (Croatia) Mr. Phillippe Goulletquer (France - Co-chair) Mr. Alessandro Lovatelli (FAO) Mr. Terry McMahon (OSPAR Commission) Mr. Manal Nader (Lebanon) Mr. Fabian Pina Amargos (Cuba) Ms. Shyama Rathacharen (Mauritius) Mr. Arturas Razinkovas (Lithuania) Mr. Tetsuo Seki (Japan) Mr. Mohamed Shariff (Malaysia) Ms. Doris Soto (Chile) Mr. Uwe Waller (Germany) Ms. Stella Williams (Nigeria - Co-chair) Ms. Fatimah Md.Yusoff (Universiti Putra Malaysia) Mr. Serguei Zagranitchnyi (Russia) The following also contributed considerably to this document: Mr. David Coates (CBD Secretariat) Ms. Beatriz Gomez-Castro (CBD Secretariat) Mr. Kalemani Jo Mulongoy (CBD Secretariat) Ms. Marjo Vierros (CBD Secretariat) 5 Solutions for sustainable mariculture - avoiding the adverse effects of mariculture on biological diversity EXECUTIVE SUMMARY The Ad Hoc Technical Expert Group on all forms of mariculture affect biodiversity at the Mariculture was established by the Conference of genetic, species and ecosystem level, but that under the Parties in adopting the programme of work on certain circumstances mariculture could also marine and coastal biological diversity at its fourth enhance biodiversity locally (Chapter 4). The main meeting (decision IV/5, annex). The Expert Group effects include habitat degradation, disruption of was established to assist the Subsidiary Body on trophic systems, depletion of natural seedstock, Scientific, Technical and Technological Advice transmission of diseases, and reduction of genetic (SBSTTA) in its work on the topic of mariculture. variability. The biodiversity-effects of pollutants- The terms of reference instructed the Expert Group such as
Recommended publications
  • The Milkfish Broodstock-Hatchery Research and Development Program and Industry: a Policy Study
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Israel, Danilo C. Working Paper The Milkfish Broodstock-Hatchery Research and Development Program and Industry: A Policy Study PIDS Discussion Paper Series, No. 2000-05 Provided in Cooperation with: Philippine Institute for Development Studies (PIDS), Philippines Suggested Citation: Israel, Danilo C. (2000) : The Milkfish Broodstock-Hatchery Research and Development Program and Industry: A Policy Study, PIDS Discussion Paper Series, No. 2000-05, Philippine Institute for Development Studies (PIDS), Makati City This Version is available at: http://hdl.handle.net/10419/127711 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Philippine Institute for Development Studies The Milkfish Broodstock-Hatchery Research and Development Program and Industry: A Policy Study Danilo C.
    [Show full text]
  • SUSTAINABLE FISHERIES and RESPONSIBLE AQUACULTURE: a Guide for USAID Staff and Partners
    SUSTAINABLE FISHERIES AND RESPONSIBLE AQUACULTURE: A Guide for USAID Staff and Partners June 2013 ABOUT THIS GUIDE GOAL This guide provides basic information on how to design programs to reform capture fisheries (also referred to as “wild” fisheries) and aquaculture sectors to ensure sound and effective development, environmental sustainability, economic profitability, and social responsibility. To achieve these objectives, this document focuses on ways to reduce the threats to biodiversity and ecosystem productivity through improved governance and more integrated planning and management practices. In the face of food insecurity, global climate change, and increasing population pressures, it is imperative that development programs help to maintain ecosystem resilience and the multiple goods and services that ecosystems provide. Conserving biodiversity and ecosystem functions are central to maintaining ecosystem integrity, health, and productivity. The intent of the guide is not to suggest that fisheries and aquaculture are interchangeable: these sectors are unique although linked. The world cannot afford to neglect global fisheries and expect aquaculture to fill that void. Global food security will not be achievable without reversing the decline of fisheries, restoring fisheries productivity, and moving towards more environmentally friendly and responsible aquaculture. There is a need for reform in both fisheries and aquaculture to reduce their environmental and social impacts. USAID’s experience has shown that well-designed programs can reform capture fisheries management, reducing threats to biodiversity while leading to increased productivity, incomes, and livelihoods. Agency programs have focused on an ecosystem-based approach to management in conjunction with improved governance, secure tenure and access to resources, and the application of modern management practices.
    [Show full text]
  • FAO Fisheries & Aquaculture
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Fishing Techniques Midwater Pair Trawling Main Components Aquatic species Target Species Semi-pelagic/demersal species Atlantic herring European pilchard(=Sardine) Seabream Hake Seabass European sprat Target Species Pelagic species Gear types: Midwater pair trawls Midwater pair trawls It has similar characteristics as midwater trawls used with otter boards. Vessel types: Pair trawlers In the wet-fish trawler the fish is kept in the hold in the fresh/"wet" condition. Characteristics Midwater pair trawling Species Environment Midwater pair trawling can be effective in different situations: when fish are aggregated into large dense shoals and when (at another season or time of the day or according to physiological status) fishes are regularly distributed within a given water layer. In addition to the difference it makes whether the FAO Fisheries and Aquaculture Department fish are aggregated in a small volume or spread within a large one, fish may swim (and avoid the net) at different speeds according to its own physiological status and/or other external conditions. As a result, in addition to the fish which is targeted, other different conditions will affect the design and size of the midwater trawl, as well as the towing speed. Fishing Gear A midwater pair trawl has roughly similar design as other midwater trawls. Midwater pair trawls might, however, be designed to have a more rectangular opening than ordinary midwater otter trawls. Midwater pair trawls might be rigged with two towing warps from each vessel or alternatively with one towing warp from each vessel and a bridle arrangement.
    [Show full text]
  • North America Broodstock Expanded Info
    Shrimp Is it what you think? Occasionally, a remarkable development takes place that redefines what’s possible for humanity. This slide deck defines this remarkable development, highlighting the opportunity that's sure to place stakeholders at the forefront of a market shift. To Appreciate the Magnitude of our extraordinary development, we must first paint the picture of an industry that's responsible for producing a food product that’s prized in every corner of the globe, regardless of socioeconomic standing, religious belief, or geographical location. We’ll look at the good, bad, and ugly, as it is today, and show you how the significance of our story stands to change everything. The Good The United States Loves Shrimp Consumptive shrimp is one of the most sought-after foods in the world. Americans alone consume more than one billion pounds of shrimp annually, making this by far the most popular seafood for consumption in the United States. According to the World Wildlife Federation, "Shrimp is the most valuable traded marine product in the world today. In 2005, farmed shrimp was a $10.6 Billion industry.” Today, the global shrimp farming industry has grown by nearly 325% in 15 years to about $45 Billion. The Bad America Doesn’t Produce Enough Up to and until now, the United States had no method for producing enough shrimp to satisfy the appetite of the American Consumer. Shrimp farms in Southeast Asia and Central America, plagued by disease and contamination, deliver frozen, 90% of the shrimp Americans eat. More Bad News Destroyed Ecosystems Climate Change Private Asia and Central America shrimp Imported, farmed shrimp can be ten farms utilize destructive procedures that times worse for the climate than beef.
    [Show full text]
  • Nutrition, Feeds and Feed Technology for Mariculture in India Vijayagopal P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository Course Manual Nutrition, Feeds and Feed Technology for Mariculture in India Vijayagopal P. [email protected] Central Marine Fisheries Research Institute, Kochi - 18 Mariculture of finfish on a commercial scale is non-existent in India. CMFRI, RGCA of MPEDA, CIBA are the Institutions promoting finfish mariculture with demonstrated seed production capabilities of Asian seabass (Lates calcarifer), cobia (Rachycentron canadum) and silver pompano (Trachynotus blochii). Seed production is not sufficient enough togo in for commercial scale investment. Requisite private investment has not flown into this segment of aquabusiness and Public Private Partnerships (PPP) are yet to take off. The scenario being this in the case of one (seed) of the two major inputs in this food production system, feeds and feeding, which is the other is the subject of elaboration here. Quality marine fish like king seer, pomfrets and tuna retails at more than Rs.400/- per kg in domestic markets. In metro cities it Rs.1000/- per kg is not surprising. With this purchasing power in the domestic market, most of the farmed marine fish is sold to such a clientele which is ever increasing in India. Therefore, without any assurance of a sustainable supply of such fish from capture fisheries, there is no doubt that we have to farm quality marine fish. With as deficit in seed supply at present, let us examine nutrition, feeds and feed technology required for this farming system in India. Farming sites, technologies of cage fabrication and launch, day-to-day management, social issues, policy, economics and health management, harvest and marketing, development of value chains, traceability and certification are all equally important and may or may not be dealt with in this training programme.
    [Show full text]
  • Can Sustainable Mariculture Match Agriculture's Output?
    10/30/2018 Can sustainable mariculture match agriculture’s output? « Global Aquaculture Advocate ENVIRONMENTAL & SOCIAL RESPONSIBILITY (/ADVOCATE/CATEGORY/ENVIRONMENTAL-SOCIAL- RESPONSIBILITY) Can sustainable mariculture match agriculture’s output? Thursday, 18 August 2016 By Amir Neori, Ph.D. A global focus on macroalgae and marine plants will result in many jobs and increased food security A seaweed farmer in Nusa Lembongan gathers edible seaweed that has grown on a rope. Photo by Jean-Marie Hullot. https://www.aquaculturealliance.org/advocate/can-sustainable-mariculture-match-agricultures-output/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA 10/30/2018 Can sustainable mariculture match agriculture’s output? « Global Aquaculture Advocate Currently, there is a signicant production difference between agriculture and aquaculture (an imbalance of around 100 to 1). Improving this relationship represents a signicant challenge to the aquaculture industry. A quantum leap in the scale of global food production is imperative to support increasing food needs on a global scale, as the human population continues to grow along with the additional demand for food. Climate change and its possible impacts on traditional food production practices must also be considered, and mariculture presents a unique opportunity. Agriculture produces about 10 billion tons annually of various products, most of which are plants. However, it is hard to imagine how this gure can grow much further, considering the toll of this production on diminishing resources of arable land, fertilizers and irrigation water. Strikingly, aquaculture production is a mere 1 percent of agriculture production, or about 100 million tons per year (according to FAO reports). This is astonishing in a world whose surface is 70 percent water, most of it an oceanic area that receives most of the world’s solar irradiation and that contains huge amounts of nutrients (e.g., 1011 tons of phosphorus), especially in the Pacic Ocean.
    [Show full text]
  • Cobia Database Articles Final Revision 2.0, 2-1-2017
    Revision 2.0 (2/1/2017) University of Miami Article TITLE DESCRIPTION AUTHORS SOURCE YEAR TOPICS Number Habitat 1 Gasterosteus canadus Linné [Latin] [No Abstract Available - First known description of cobia morphology in Carolina habitat by D. Garden.] Linnaeus, C. Systema Naturæ, ed. 12, vol. 1, 491 1766 Wild (Atlantic/Pacific) Ichthyologie, vol. 10, Iconibus ex 2 Scomber niger Bloch [No Abstract Available - Description and alternative nomenclature of cobia.] Bloch, M. E. 1793 Wild (Atlantic/Pacific) illustratum. Berlin. p . 48 The Fisheries and Fishery Industries of the Under this head was to be carried on the study of the useful aquatic animals and plants of the country, as well as of seals, whales, tmtles, fishes, lobsters, crabs, oysters, clams, etc., sponges, and marine plants aml inorganic products of U.S. Commission on Fisheries, Washington, 3 United States. Section 1: Natural history of Goode, G.B. 1884 Wild (Atlantic/Pacific) the sea with reference to (A) geographical distribution, (B) size, (C) abundance, (D) migrations and movements, (E) food and rate of growth, (F) mode of reproduction, (G) economic value and uses. D.C., 895 p. useful aquatic animals Notes on the occurrence of a young crab- Proceedings of the U.S. National Museum 4 eater (Elecate canada), from the lower [No Abstract Available - A description of cobia in the lower Hudson Eiver.] Fisher, A.K. 1891 Wild (Atlantic/Pacific) 13, 195 Hudson Valley, New York The nomenclature of Rachicentron or Proceedings of the U.S. National Museum Habitat 5 Elacate, a genus of acanthopterygian The universally accepted name Elucate must unfortunately be supplanted by one entirely unknown to fame, overlooked by all naturalists, and found in no nomenclator.
    [Show full text]
  • Skin Injuries Contribute to Nocardiosis in Japanese Amberjack Seriola
    魚病研究 Fish Pathology, 54 (3), 64–67, 2019. 9 © 2019 The Japanese Society of Fish Pathology Short communication expected, which is currently in experimental conditions (Kato et al., 2014). For the moment, control of this dis- Skin Injuries Contribute to ease largely depends on the culture techniques to avoid infection. Nocardiosis in Japanese It has long been suspected that Japanese amber- Amberjack Seriola quinqueradiata jack (=yellowtail) Seriola quinqueradiata with skin inju- ries are vulnerable to N. seriolae infection (Kusuda and Nakagawa, 1978). Matsuzato (1978) speculated that Yasuyuki Miyoshi1, Yutaka Fukuda2 injuries of the skin and the gills induced by the monoge- 3* and Kazuo Ogawa neans Benedenia seriolae and Heteraxine heterocerca, 1 respectively, can form a portal of entry by N. seriolae. Oita Prefecture Southern Region Bureau, However, no experimental evidence has been presented Oita 876-0813, Japan on the involvement of injuries and monogenean infesta- 2Fisheries Research Division, Oita Prefectural Agriculture, tions in the N. seriolae infection of amberjacks. In this Forestry and Fisheries Research Center, paper, we examined experimentally 1) if physical injuries Oita 879-2602, Japan of the skin induce N. seriolae infection of Japanese 3Meguro Parasitological Museum, amberjack, and 2) how the infestation of B. seriolae, a Tokyo 153-0064, Japan ubiquitous skin parasite among amberjacks cultured in net cages (Ogawa and Shirakashi, 2017), contributes to (Received July 12, 2019) the progression of nocardiosis. ABSTRACT―We examined how mechanical damages to Materials and Methods the skin and the infestation of the monogenean Benedenia Fish used in the experiments seriolae on the skin affected Nocardia seriolae infection in 0-year-old wild-caught seedlings of Japanese Japanese amberjack Seriola quinqueradiata.
    [Show full text]
  • Gene Flow in the Environment – Genetic Pollution? G.R
    Gene flow in the environment Gene flow in the environment – genetic pollution? G.R. Squire, N. Augustin, J. Bown1, J.W. Crawford, G. Dunlop, J. Graham, J.R. Hillman, B. Marshall, D. Marshall, G. Ramsay, D.J. Robinson, J. Russell, C. Thompson & G. Wright iological invasions have had profound effects on affect plants and animals, injure us? Will crops in gen- Bhuman society from the earliest times. The spread eral, and GM ones in particular, reduce even more the of the black death in the Middle Ages, the devasta- biological diversity of arable farmland? Will they con- tions of potato blight, the effects on indigenous taminate other crops, cause more pesticide to be used, species by grey squirrels, dutch elm disease and flat- rather than less as some companies claim? worms have all been seen as detrimental to man or the environment. Others are seen as bringing benefits: An increasing number of people have a stake in the most of our crops evolved elsewhere in the world and debate - pressure groups, farmers, farm advisers, con- many culinary and medicinal herbs were brought to sumers, agrochemical companies and government. Britain by the Romans. Perhaps the greatest invasion Opinions are too often polarised. In this confronta- is the import of vast numbers of exotic plants to gar- tional atmosphere, the need is for clear, independent dens and greenhouses. Ecological invasions are an fact, answers and comment. A part of the debate is intrinsic part of ecology and evolution and we only ethical, but independent research is essential on ques- consider them bad if they impoverish our health, tions that science can legitimately address.
    [Show full text]
  • The Role of Genetic Resources for Food and Agriculture in Climate Change Adaptation and Mitigation
    March 2021 CGRFA/WG-AqGR-3/21/Inf.15 E COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE Item 8 of the Provisional Agenda INTERGOVERNMENTAL TECHNICAL WORKING GROUP ON AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE Third Session 1 - 3 June 2021 THE ROLE OF GENETIC RESOURCES FOR FOOD AND AGRICULTURE IN CLIMATE CHANGE ADAPTATION AND MITIGATION TABLE OF CONTENTS Paragraphs I. INTRODUCTION ................................................................................................... 1 – 2 II. SCOPING STUDY ON THE ROLE OF GENETIC RESOURCES FOR FOOD AND AGRICULTURE IN ADAPTATION TO AND MITIGATION OF CLIMATE CHANGE ....................................................................................................................... 3 Appendix: Scoping study on the role of genetic resources for food and agriculture in adaptation to and mitigation of climate change NF847 2 CGRFA/WG-AqGR-3/21/Inf.15 I. INTRODUCTION 1. The Commission on Genetic Resources for Food and Agriculture (Commission), at its last session, requested FAO to prepare a scoping study on the role of genetic resources for food and agriculture (GRFA) in adaptation to and mitigation of climate change, including knowledge gaps, taking into account the forthcoming special reports on terrestrial and marine systems by the Intergovernmental Panel on Climate Change (IPCC) and other available relevant sources, including examples from different regions and subsectors.1 2. The Commission further requested its Intergovernmental Technical Working Groups to review the study. II. SCOPING STUDY ON THE ROLE OF GENETIC RESOURCES FOR FOOD AND AGRICULTURE IN ADAPTATION TO AND MITIGATION OF CLIMATE CHANGE 3. The draft text of the scoping study on the role of genetic resources for food and agriculture in adaptation to and mitigation of climate change is presented in Appendix to this document.
    [Show full text]
  • Bees, Beekeepers, and Bureaucrats: Parasitism and the Politics of Transgenic Life
    EnvironmentandPlanningD:SocietyandSpaceadvance online publication doi:10.1068/d0510 Bees, beekeepers, and bureaucrats: parasitism and the politics of transgenic life Javier Lezaun Institute for Science, Innovation and Society, University of Oxford, Park End Street, Oxford OX1 1HP, England; e-mail: [email protected] Received 5 January 2010; in revised form 26 September 2010; published online 3 June 2011 Abstract. Over the last decade the flying patterns and foraging behavior of bees have become a matter of public policy in the European Union. Determined to establish a system where transgenic crops can `coexist' with conventional and organic farming, the EU has begun to erect a system of demarcations and separations designed to minimize the extent of `gene flow' from genetically modified plants. As the European landscape is regimented through the introduction of isolation distances and buffer zones, bees and other pollinating insects have become vectors of `genetic pollution', disrupting the project of cohabitation and purification devised by European authorities. Drawing on the work of Michel Serres on parasitism, this paper traces the emergence of bees as an object of regulatory scrutiny and as an interruptor of the `coexistence' project. Along with bees, however, another uninvited guest arrived unexpectedly on the scene: the beekeeper, who came to see his traditional relationship to bees, crops, and consumers at risk. The figure of the parasite connects the two essential dynamics described in this paper: an escalation of research and the intensification of political attributes. ``The founding of the naked, empty field, virgin once more, is the oldest work of the human world.'' Michel Serres (2007 The Parasite) At the turn of this century bees became a preoccupation of European bureaucrats.
    [Show full text]
  • 101 Fishing Tips by Capt
    101 Fishing Tips By Capt. Lawrence Piper www.TheAnglersMark.com [email protected] 904-557 -1027 Table of Contents Tackle and Angling Page 2 Fish and Fishing Page 5 Fishing Spots Page 13 Trailering and Boating Page 14 General Page 15 1 Amelia Island Back Country Light Tackle Fishing Tips Tackle and Angling 1) I tell my guests who want to learn to fish the back waters “learn your knots”! You don’t have to know a whole bunch but be confident in the ones you’re going to use and know how to tie them good and fast so you can bet back to fishing after you’ve broken off. 2) When fishing with soft plastics keep a tube of Super Glue handy in your tackle box. When you rig the grub on to your jig, place a drop of the glue below the head and then finish pushing the grub up. This will secure the grub better to the jig and help make it last longer. 3) Many anglers get excited when they hook up with big fish. When fishing light tackle, check your drag so that it’s not too tight and the line can pull out. When you hookup, the key is to just keep the pressure on the fish. If you feel any slack, REEL! When the fish is pulling away from you, use the rod and the rod tip action to tire the fish. Slowly work the fish in, lifting up, reeling down. Keep that pressure on! 4) Net a caught fish headfirst. Get the net down in the water and have the angler work the fish towards you and as it tires, bring the fish headfirst into the net.
    [Show full text]