Novel Sulfolobus Virus with an Exceptional Capsid Architecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elisabeth Mendes Martins De Moura Diversidade De Vírus DNA
Elisabeth Mendes Martins de Moura Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo Tese apresentada ao Programa de Pós- Graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Titulo de Doutor em Ciências. Área de concentração: Microbiologia Orienta: Prof (a). Dr (a). Dolores Ursula Mehnert versão original São Paulo 2017 RESUMO MOURA, E. M. M. Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo. 2017. 134f. Tese (Doutorado em Microbiologia) - Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2017. A água doce no Brasil, assim como o seu consumo é extremamente importante para as diversas atividades criadas pelo ser humano. Por esta razão o consumo deste bem é muito grande e consequentemente, provocando o seu impacto. Os mananciais são normalmente usados para abastecimento doméstico, comercial, industrial e outros fins. Os estudos na área de ecologia de micro-organismos nos ecossistemas aquáticos (mananciais) e em esgotos vêm sendo realizados com mais intensidade nos últimos anos. Nas últimas décadas foi introduzido o conceito de virioplâncton com base na abundância e diversidade de partículas virais presentes no ambiente aquático. O virioplâncton influencia muitos processos ecológicos e biogeoquímicos, como ciclagem de nutriente, taxa de sedimentação de partículas, diversidade e distribuição de espécies de algas e bactérias, controle de florações de fitoplâncton e transferência genética horizontal. Os estudos nesta área da virologia molecular ainda estão muito restritos no país, bem como muito pouco se conhece sobre a diversidade viral na água no Brasil. -
Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification
ORIGINAL RESEARCH published: 10 March 2017 doi: 10.3389/fmicb.2017.00380 Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification Arshan Nasir 1, 2 and Gustavo Caetano-Anollés 1* 1 Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2 Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types and identify protein folds involved in the formation of viral capsids and virion architectures. Viruses encoding similar capsid/coat related folds were pooled into lineages, after benchmarking against published literature. Remarkably, the in silico exercise reproduced all previously described members of known structure-based viral lineages, along with several proposals for new Edited by: additions, suggesting it could be a useful supplement to experimental approaches and Ricardo Flores, to aid qualitative assessment of viral diversity in metagenome samples. Polytechnic University of Valencia, Spain Keywords: capsid, virion, protein structure, virus taxonomy, SCOP, fold superfamily Reviewed by: Mario A. Fares, Consejo Superior de Investigaciones INTRODUCTION Científicas(CSIC), Spain Janne J. Ravantti, The last few years have dramatically increased our knowledge about viral systematics and University of Helsinki, Finland evolution. -
The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA. -
The Isolation of Viruses Infecting Archaea
Portland State University PDXScholar Biology Faculty Publications and Presentations Biology 2010 The Isolation of Viruses Infecting Archaea Kenneth M. Stedman Portland State University Kate Porter Mike L. Dyall-Smith Follow this and additional works at: https://pdxscholar.library.pdx.edu/bio_fac Part of the Bacteria Commons, Biology Commons, and the Viruses Commons Let us know how access to this document benefits ou.y Citation Details Stedman, Kenneth M., Kate Porter, and Mike L. Dyall-Smith. "The isolation of viruses infecting Archaea." Manual of aquatic viral ecology. American Society for Limnology and Oceanography (ASLO) (2010): 57-64. This Article is brought to you for free and open access. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. MANUAL of MAVE Chapter 6, 2010, 57–64 AQUATIC VIRAL ECOLOGY © 2010, by the American Society of Limnology and Oceanography, Inc. The isolation of viruses infecting Archaea Kenneth M. Stedman1, Kate Porter2, and Mike L. Dyall-Smith3 1Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97207, USA 2Biota Holdings Limited, 10/585 Blackburn Road, Notting Hill Victoria 3168, Australia 3Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany Abstract A mere 50 viruses of Archaea have been reported to date; these have been investigated mostly by adapting methods used to isolate bacteriophages to the unique growth conditions of their archaeal hosts. The most numer- ous are viruses of thermophilic Archaea. -
Archaeal Viruses and Bacteriophages: Comparisons and Contrasts
Review Archaeal viruses and bacteriophages: comparisons and contrasts Maija K. Pietila¨ , Tatiana A. Demina, Nina S. Atanasova, Hanna M. Oksanen, and Dennis H. Bamford Institute of Biotechnology and Department of Biosciences, P.O. Box 56, Viikinkaari 5, 00014 University of Helsinki, Helsinki, Finland Isolated archaeal viruses comprise only a few percent of Euryarchaeaota [9,10]. Archaea have also been cultivated all known prokaryotic viruses. Thus, the study of viruses from moderate environments such as seawater and soil. infecting archaea is still in its early stages. Here we Consequently, an additional phylum, Thaumarchaeota, summarize the most recent discoveries of archaeal vi- has been formed to contain mesophilic and thermophilic ruses utilizing a virion-centered view. We describe the ammonia-oxidizing archaea [11]. However, all known ar- known archaeal virion morphotypes and compare them chaeal viruses infect extremophiles – mainly hyperther- to the bacterial counterparts, if such exist. Viruses infect- mophiles belonging to the crenarchaeal genera Sulfolobus ing archaea are morphologically diverse and present and Acidianus or halophiles of the euryarchaeal genera some unique morphotypes. Although limited in isolate Haloarcula, Halorubrum, and Halobacterium [6,7]. Even number, archaeal viruses reveal new insights into the though bacteria are also found in diverse extreme habitats viral world, such as deep evolutionary relationships such as hypersaline lakes, archaea typically dominate at between viruses that infect hosts from all three domains extreme salinities, based on both cultivation-dependent of life. and -independent studies [6,12–15]. Consequently, archae- al viruses do the same in hypersaline environments. About Discovery of archaeal viruses 50 prokaryotic haloviruses were recently isolated from All cellular organisms are susceptible to viral infections, nine globally distant locations, and only four of them which makes viruses a major evolutionary force shaping infected bacteria [6,16]. -
On the Biological Success of Viruses
MI67CH25-Turner ARI 19 June 2013 8:14 V I E E W R S Review in Advance first posted online on June 28, 2013. (Changes may still occur before final publication E online and in print.) I N C N A D V A On the Biological Success of Viruses Brian R. Wasik and Paul E. Turner Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106; email: [email protected], [email protected] Annu. Rev. Microbiol. 2013. 67:519–41 Keywords The Annual Review of Microbiology is online at adaptation, biodiversity, environmental change, evolvability, extinction, micro.annualreviews.org robustness This article’s doi: 10.1146/annurev-micro-090110-102833 Abstract Copyright c 2013 by Annual Reviews. Are viruses more biologically successful than cellular life? Here we exam- All rights reserved ine many ways of gauging biological success, including numerical abun- dance, environmental tolerance, type biodiversity, reproductive potential, and widespread impact on other organisms. We especially focus on suc- cessful ability to evolutionarily adapt in the face of environmental change. Viruses are often challenged by dynamic environments, such as host immune function and evolved resistance as well as abiotic fluctuations in temperature, moisture, and other stressors that reduce virion stability. Despite these chal- lenges, our experimental evolution studies show that viruses can often readily adapt, and novel virus emergence in humans and other hosts is increasingly problematic. We additionally consider whether viruses are advantaged in evolvability—the capacity to evolve—and in avoidance of extinction. On the basis of these different ways of gauging biological success, we conclude that viruses are the most successful inhabitants of the biosphere. -
Viruses of Hyperthermophilic Archaea: Entry and Egress from the Host Cell
Viruses of hyperthermophilic archaea : entry and egress from the host cell Emmanuelle Quemin To cite this version: Emmanuelle Quemin. Viruses of hyperthermophilic archaea : entry and egress from the host cell. Microbiology and Parasitology. Université Pierre et Marie Curie - Paris VI, 2015. English. NNT : 2015PA066329. tel-01374196 HAL Id: tel-01374196 https://tel.archives-ouvertes.fr/tel-01374196 Submitted on 30 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie – Paris VI Unité de Biologie Moléculaire du Gène chez les Extrêmophiles Ecole doctorale Complexité du Vivant ED515 Département de Microbiologie - Institut Pasteur 7, quai Saint-Bernard, case 32 25, rue du Dr. Roux 75252 Paris Cedex 05 75015 Paris THESE DE DOCTORAT DE L’UNIVERSITE PIERRE ET MARIE CURIE Spécialité : Microbiologie Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE PIERRE ET MARIE CURIE VIRUSES OF HYPERTHERMOPHILIC ARCHAEA: ENTRY INTO AND EGRESS FROM THE HOST CELL Présentée par M. Emmanuelle Quemin Soutenue le 28 Septembre 2015 devant le jury composé de : Prof. Guennadi Sezonov Président du jury Prof. Christa Schleper Rapporteur de thèse Dr. Paulo Tavares Rapporteur de thèse Dr. -
Survey of High-Resolution Archaeal Virus Structures
Available online at www.sciencedirect.com ScienceDirect Survey of high-resolution archaeal virus structures 1 2 3,4 Ross Hartman , Jacob Munson-McGee , Mark J Young and 1,4 Charles Martin Lawrence Archaeal viruses exhibit diverse morphologies whose folds [5]. Of these, only 20 folds are known for the major structures are just beginning to be explored at high-resolution. capsid proteins (MCPs) of viruses [6,7]. Despite the genetic In this review, we update recent findings on archaeal structural diversity of viruses, their structural proteins, and especially proteins and virion architectures and place them in the their MCPs, fit within a limited number of groups. This biological context in which these viruses replicate. We limited number of common structural themes unite viruses conclude that many of the unusual structural features and across all three domains of life (Eukarya, Bacteria, and dynamics of archaeal viruses aid their replication and survival in Archaea) and evolutionary history [8]. Virion structure also the chemically harsh environments, in which they replicate. allows for insights into viral assembly, release, attachment, Furthermore, we should expect to find more novel features and entry by comparing well-characterized members of a from examining the high-resolution structures of additional structural lineage with less characterized members [9–11]. archaeal viruses. Our understanding of viruses that infect Archaea Addresses (archaeal viruses), lags far behind those infecting Bacte- 1 Department of Chemistry and Biochemistry, Montana State University, ria and Eukaryotes and we refer the reader to several Bozeman, MT, USA 2 excellent reviews on archaeal viruses [12–14]. Many Department of Microbiology and Immunology, Montana State archaeal viruses have unique morphologies [12,15–18]. -
Spindle Shaped Virus (SSV) : Mutants and Their Infectivity
Portland State University PDXScholar University Honors Theses University Honors College 2014 Spindle Shaped Virus (SSV) : Mutants and Their Infectivity Thien Hoang Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses Let us know how access to this document benefits ou.y Recommended Citation Hoang, Thien, "Spindle Shaped Virus (SSV) : Mutants and Their Infectivity" (2014). University Honors Theses. Paper 231. https://doi.org/10.15760/honors.56 This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Spindle Shaped Virus (SSV): Mutants and Their Infectivity by Thien Hoang An undergraduate honors thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in University Honors and Biology: Micro/molecular biology Thesis Adviser Dr. Kenneth Stedman Portland State University 2014 Abstract: SSV1 is an archaeal virus that infects the thermoacidophile Sulfolobus residing in hot springs. The lemon shaped/spindle-shaped fuselloviruses (SSV) that infect Sulfolobus solfataricus is quite morphologically different from almost all other viruses. Because these archaeal viruses live in hot springs with high temperatures and low pH, their genomes and structures have adapted to withstand such harsh conditions. Little research has been done on these extreme viruses, and of the little research, SSV has been the most prominent. Not much is known about the genes that the genome encodes and so I have inserted transposons randomly into genome to determine functionality. -
2018-2019 Update from the ICTV Bacterial and Archaeal Viruses
Archives of Virology (2020) 165:1253–1260 https://doi.org/10.1007/s00705-020-04577-8 VIROLOGY DIVISION NEWS: Taxonomy of prokaryotic viruses: 2018‑2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee Evelien M. Adriaenssens1 · Matthew B. Sullivan2 · Petar Knezevic3 · Leonardo J. van Zyl4 · B. L. Sarkar5 · Bas E. Dutilh6,7 · Poliane Alfenas‑Zerbini8 · Małgorzata Łobocka9 · Yigang Tong10 · James Rodney Brister11 · Andrea I. Moreno Switt12 · Jochen Klumpp13 · Ramy Karam Aziz14 · Jakub Barylski15 · Jumpei Uchiyama16 · Rob A. Edwards17,18 · Andrew M. Kropinski19,20 · Nicola K. Petty21 · Martha R. J. Clokie22 · Alla I. Kushkina23 · Vera V. Morozova24 · Siobain Dufy25 · Annika Gillis26 · Janis Rumnieks27 · İpek Kurtböke28 · Nina Chanishvili29 · Lawrence Goodridge19 · Johannes Wittmann30 · Rob Lavigne31 · Ho Bin Jang32 · David Prangishvili33,34 · Francois Enault35 · Dann Turner36 · Minna M. Poranen37 · Hanna M. Oksanen37 · Mart Krupovic33 Published online: 11 March 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020 Abstract This article is a summary of the activities of the ICTV’s Bacterial and Archaeal Viruses Subcommittee for the years 2018 and 2019. Highlights include the creation of a new order, 10 families, 22 subfamilies, 424 genera and 964 species. Some of our concerns about the ICTV’s ability to adjust to and incorporate new DNA- and protein-based taxonomic tools are discussed. Introduction Taxonomic updates The prokaryotic virus community is represented in the Inter- Over the past two years, our subcommittee -
Archaeal Viruses—Novel, Diverse and Enigmatic
SCIENCE CHINA Life Sciences SPECIAL TOPIC May 2012 Vol.55 No.5: 422–433 • REVIEW • doi: 10.1007/s11427-012-4325-8 Archaeal viruses—novel, diverse and enigmatic PENG Xu*, GARRETT Roger A. & SHE QunXin Archaea Centre, Department of Biology, Copenhagen University, Ole MaaløesVej 5, DK2200 Copenhagen N, Denmark Received March 20, 2012; accepted April 15, 2012 Recent research has revealed a remarkable diversity of viruses in archaeal-rich environments where spindles, spheres, fila- ments and rods are common, together with other exceptional morphotypes never recorded previously. Moreover, their dou- ble-stranded DNA genomes carry very few genes exhibiting homology to those of bacterial and eukaryal viruses. Studies on viral life cycles are still at a preliminary stage but important insights are being gained especially from microarray analyses of viral transcripts for a few model virus-host systems. Recently, evidence has been presented for some exceptional archaeal- nspecific mechanisms for extra-cellular morphological development of virions and for their cellular extrusion. Here we sum- marise some of the recent developments in this rapidly developing and exciting research area. virus morphotypes, diversity and evolution, life cycle, temporal regulation, cellular extrusion mechanism Citation: Peng X, Garrett R A, She Q X. Archaeal viruses—novel, diverse and enigmatic. Sci China Life Sci, 2012, 55: 422–433, doi: 10.1007/s11427-012-4325-8 1 Historical served that did not conform to this pattern and virions were isolated and characterised primarily from terrestrial hot springs that exhibited a variety of morphotypes, including Over the past two decades a major revolution has occurred spindles, spheres, rods, filaments, and other forms, some of in our understanding of viruses, their evolution and roles in which differed radically from bacterial and eukaryal viral cellular evolution. -
Ab Komplet 6.07.2018
CONTENTS 1. Welcome addresses 2 2. Introduction 3 3. Acknowledgements 10 4. General information 11 5. Scientific program 16 6. Abstracts – oral presentations 27 7. Abstracts – poster sessions 99 8. Participants 419 1 EMBO Workshop Viruses of Microbes 2018 09 – 13 July 2018 | Wrocław, Poland 1. WELCOME ADDRESSES Welcome to the Viruses of Microbes 2018 EMBO Workshop! We are happy to welcome you to Wrocław for the 5th meeting of the Viruses of Microbes series. This series was launched in the year 2010 in Paris, and was continued in Brussels (2012), Zurich (2014), and Liverpool (2016). This year our meeting is co-organized by two partner institutions: the University of Wrocław and the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences. The conference venue (University of Wrocław, Uniwersytecka 7-10, Building D) is located in the heart of Wrocław, within the old, historic part of the city. This creates an opportunity to experience the over 1000-year history of the city, combined with its current positive energy. The Viruses of Microbes community is constantly growing. More and more researchers are joining it, and they represent more and more countries worldwide. Our goal for this meeting was to create a true global platform for networking and exchanging ideas. We are most happy to welcome representatives of so many countries and continents. To accommodate the diversity and expertise of the scientists and practitioners gathered by VoM2018, the leading theme of this conference is “Biodiversity and Future Application”. With the help of your contribution, this theme was developed into a program covering a wide range of topics with the strongest practical aspect.