Whiting (Sillaginidae) NRM Project 09003

Total Page:16

File Type:pdf, Size:1020Kb

Whiting (Sillaginidae) NRM Project 09003 Fisheries Research Report No. 248, 2013 Status of nearshore finfish stocks in south-western Western Australia Part 3: Whiting (Sillaginidae) NRM Project 09003 J. Brown, C. Dowling, A. Hesp, K. Smith and B. Molony Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Brown, J., Dowling, C., Hesp, A., Smith, K., and Molony, B. 2013. Status of nearshore finfish stocks in south- western Western Australia. Part 3: Whiting (Sillaginidae). Fisheries Research Report No. 248. Department of Fisheries, Western Australia. 128pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au ABN: 55 689 794 771 A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au Cover: Whiting. Illustration © R. Swainston/www.anima.net.au © Department of Fisheries, Western Australia. September 2013. ISSN: 1035 - 4549 ISBN: 978-1-921845-68-0 ii Fisheries Research Report [Western Australia] No. 248, 2013 Contents Executive summary .............................................................................................................. 1 1.0 Introduction .................................................................................................................. 5 1.1 Background ............................................................................................................. 5 1.2 Need ........................................................................................................................ 6 1.3 Resource assessment framework – indicator species ............................................. 7 1.4 Weight-of-evidence assessment .............................................................................. 7 1.5 Objectives ............................................................................................................... 7 1.6 Overview of whiting species of Western Australia ................................................ 8 2.0 Methods ......................................................................................................................... 11 2.1 Fishery catch composition ...................................................................................... 11 2.1.1 Species identification ................................................................................... 11 2.1.2 Sample collection ......................................................................................... 11 2.1.3 Catch shares ................................................................................................. 12 2.2 Assessment.............................................................................................................. 12 2.2.1 Biological analysis ....................................................................................... 12 2.2.2 Recruitment dynamics ................................................................................. 17 2.2.3 Recreational fishery catch and effort ........................................................... 18 2.2.4 Commercial fishery catch and effort ........................................................... 21 3.0 Results............................................................................................................................ 23 3.1 Fishery catch composition ...................................................................................... 23 3.1.1 Species identification ................................................................................... 23 3.1.2 Recreational catch composition ................................................................... 24 3.1.3 Commercial catch composition ................................................................... 27 3.1.4 Catch shares ................................................................................................. 27 3.2 Assessment.............................................................................................................. 27 3.2.1 Biological analyses ...................................................................................... 27 3.2.1.1 Southern school whiting ................................................................ 28 3.2.1.2 King George whiting ..................................................................... 31 3.2.1.3 Other whiting species .................................................................... 33 3.2.2 Recruitment dynamics ................................................................................. 34 3.2.2.1 Southern school whiting ................................................................ 34 3.2.2.2 King George whiting ..................................................................... 35 3.2.3 Recreational fishery catch and effort ........................................................... 35 3.2.3.1 Southern school whiting ................................................................ 36 3.2.3.2 King George whiting ..................................................................... 38 3.2.4 Commercial fishery catch and effort ........................................................... 40 3.2.4.1 Southern school whiting ................................................................ 43 3.2.4.2 King George whiting ..................................................................... 43 Fisheries Research Report [Western Australia] No. 248, 2013 iii 4.0 Discussion ...................................................................................................................... 45 4.1 Fishery catch composition ...................................................................................... 45 4.1.1 Species identification ................................................................................... 45 4.1.2 Species compositions of whiting catches .................................................... 45 4.2 Assessment.............................................................................................................. 47 4.2.1 Biological assessment .................................................................................. 47 4.2.1.1 Southern school whiting ................................................................ 47 4.2.1.2 King George whiting ..................................................................... 50 4.2.1.3 Other whiting (Sillago) species ..................................................... 53 4.2.2 Recruitment dynamics ................................................................................. 53 4.2.3 Recreational fishery catch and effort ........................................................... 55 4.2.4 Commercial fishery catch and effort ........................................................... 58 5.0 ‘Weight-of-evidence’ assessment and implications ................................................... 60 5.1 Summary of stock status ......................................................................................... 60 5.1.1 Southern school whiting .............................................................................. 60 5.1.2 King George whiting ................................................................................... 62 6.0 Acknowledgements ....................................................................................................... 65 7.0 References ..................................................................................................................... 66 8.0 Appendices .................................................................................................................... 121 Appendix 1. Whiting identification article published in the Research Angler Program newsletter (April 2011) to assist with improved reporting of individual whiting species of the West Coast Bioregion. ......................................................................................... 121 Appendix 2. Sagittae otoliths of whiting species of south-western Western Australia. .. 122 Appendix 3. Photographs of stout whiting from a) Western Australia and b) New South Wales. ................................................................................................................... 123 iv Fisheries Research Report [Western Australia] No. 248, 2013 Executive summary The whiting family (Sillaginidae) is common in nearshore waters of south-western Western Australia (WA) where it is highly valued by recreational and commercial fishers. The importance of these species to recreational fishers is reflected in this category of fishes being ranked as the most or 2nd most retained finfish species group by boat- and shore-based fishers in several recreational fishing surveys in WA. Whiting are commercially important in a number of fisheries, with total state catches averaging over 200 tonnes per annum since 1980. The composition of the whiting catch, however, is largely unknown, with a number of whiting species potentially contributing substantially to the overall catch of this family. The recreational and commercial fisheries that capture whiting can therefore be considered very data-limited, due to the lack of species-specific data that prohibit a robust assessment of the status of the stocks of the different whiting species. The main purpose of this report is to determine the species composition of whiting landings caught recreationally and commercially in south-western WA. This report then investigates the stock status of the key (most abundant)
Recommended publications
  • Nursery Origin and Population Connectivity of Swordfish Xiphias Gladius in the North Pacific Ocean
    Received: 15 January 2021 Accepted: 9 March 2021 DOI: 10.1111/jfb.14723 REGULAR PAPER FISH Nursery origin and population connectivity of swordfish Xiphias gladius in the North Pacific Ocean R. J. David Wells1,2 | Veronica A. Quesnell1 | Robert L. Humphreys Jr3 | Heidi Dewar4 | Jay R. Rooker1,2 | Jaime Alvarado Bremer1,2 | Owyn E. Snodgrass4 1Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas Abstract 2Department of Ecology & Conservation Element:Ca ratios in the otolith cores of young-of-the-year (YOY) swordfish, Xiphias Biology, Texas A&M University, College gladius, were used as natural tracers to predict the nursery origin of subadult and adult Station, Texas 3Retired, Pacific Islands Fisheries Science swordfish from three foraging grounds in the North Pacific Ocean (NPO). First, the Center, National Marine Fisheries Service, chemistry of otolith cores (proxy for nursery origin) was used to develop nursery- Honolulu, Hawaii specific elemental signatures in YOY swordfish. Sagittal otoliths of YOY swordfish were 4Southwest Fisheries Science Center, National Marine Fisheries Service, La Jolla, California collected from four regional nurseries in the NPO between 2000 and 2005: (1) Central Equatorial North Pacific Ocean (CENPO), (2) Central North Pacific Ocean (CNPO), Correspondence R. J. David Wells, Texas A&M University at (3) Eastern Equatorial North Pacific Ocean (EENPO) and (4) Western North Pacific Galveston, Department of Marine Biology, Ocean (WNPO). Calcium (43Ca), magnesium (24Mg), strontium (88Sr) and barium (138Ba) 1001 Texas Clipper Rd. Galveston, TX 77554, USA. were quantified in the otolith cores of YOY swordfish using laser ablation inductively Email: [email protected] coupled plasma mass spectrometry.
    [Show full text]
  • Appendix E: Fish Species List
    Appendix F. Fish Species List Common Name Scientific Name American shad Alosa sapidissima arrow goby Clevelandia ios barred surfperch Amphistichus argenteus bat ray Myliobatis californica bay goby Lepidogobius lepidus bay pipefish Syngnathus leptorhynchus bearded goby Tridentiger barbatus big skate Raja binoculata black perch Embiotoca jacksoni black rockfish Sebastes melanops bonehead sculpin Artedius notospilotus brown rockfish Sebastes auriculatus brown smoothhound Mustelus henlei cabezon Scorpaenichthys marmoratus California halibut Paralichthys californicus California lizardfish Synodus lucioceps California tonguefish Symphurus atricauda chameleon goby Tridentiger trigonocephalus cheekspot goby Ilypnus gilberti chinook salmon Oncorhynchus tshawytscha curlfin sole Pleuronichthys decurrens diamond turbot Hypsopsetta guttulata dwarf perch Micrometrus minimus English sole Pleuronectes vetulus green sturgeon* Acipenser medirostris inland silverside Menidia beryllina jacksmelt Atherinopsis californiensis leopard shark Triakis semifasciata lingcod Ophiodon elongatus longfin smelt Spirinchus thaleichthys night smelt Spirinchus starksi northern anchovy Engraulis mordax Pacific herring Clupea pallasi Pacific lamprey Lampetra tridentata Pacific pompano Peprilus simillimus Pacific sanddab Citharichthys sordidus Pacific sardine Sardinops sagax Pacific staghorn sculpin Leptocottus armatus Pacific tomcod Microgadus proximus pile perch Rhacochilus vacca F-1 plainfin midshipman Porichthys notatus rainwater killifish Lucania parva river lamprey Lampetra
    [Show full text]
  • VARIATION in SETTLEMENT and LARVAL DURATION of Klng GEORGE WHITING, SILLAGINODES PUNCTATA (SILLAGINIDAE), in SWAN BAY, VICTORIA, AUSTRALIA
    BULLETIN OF MARINE SCIENCE, 54(1): 281-296, 1994 VARIATION IN SETTLEMENT AND LARVAL DURATION OF KlNG GEORGE WHITING, SILLAGINODES PUNCTATA (SILLAGINIDAE), IN SWAN BAY, VICTORIA, AUSTRALIA Gregory P. Jenkins and Helen M. A. May ABSTRACT Otoliths were examined from late-stage larvae and juveniles of King George whiting, Sillaginodes punctata, collected from Swan Bay in spring 1989. Increments in otoliths of larval S. punctata are known to be formed daily. A transition in the microstructure of otoliths from late-stage larvae was apparently related to environmental changes associated with entry to Port Phillip Bay. The pattern of abundance of post-larvae of S. punctata in fortnightly samples supported the contention that the transition was formed immediately prior to "set- tlement" in seagrass habitats. Backcalculation to the otolith transition suggested that five cohorts had entered Swan Bay, each approximately 10 days apart, from late September to early November. Stability of this pattern for juveniles from sequential samples indicated that otolith increments continued to be formed daily in the juvenile stage. The pattern of settlement was consistent for two sites within Swan Bay. The larval phase of King George whiting settling in Port Phillip Bay was extremely long and variable, ranging from approximately 100 to 170 days. Age at settlement was more variable than length, and growth rate at settlement was I I extremely slow, approximately 0.06 mm ·d- • • Backcalculated hatching dates ranged from April to JUly. July. Increment widths in the larval stage suggest that growth slows after approxi- mately 45 to 75 days; beyond which individuals are in a slow growth, competent stage of 40 to 100 days.
    [Show full text]
  • Deep-Water Bottom Dropping Page 6 FISHING
    Doves usher in a new season * September 12, 2008 Texas’ Premier Outdoor Newspaper Volume 5, Issue 2 * Report on Page 6 www.lonestaroutdoornews.com INSIDE Flyway rivalry prompts HUNTING Texas’ dove research Timing of hunt causes stir among hunters BY CRAIG NYHUS on doves. A team was out two days prior to the hunting season to collect Dove hunters in Texas have long bird specimens for a study compar- feared a federal requirement for the ing the effectiveness of lead and non- use of nonlead shot to pursue their lead shot. But some outfitters and hunters were taken aback by the early Grayson County has become quarry. The state holds the same con- cerns, especially after other states in shooting. famous for its big bucks in the the Central Flyway tried to force Texas Parks and Wildlife biologists state’s lone archery-only Texas to require nonlead shot based are in the first year of a multi-year county. A petition to modify on their waterfowl studies, according study to determine the effectiveness the archery-only rule has many GUNNING FOR RESEARCH: Using volunteer hunters, TPW biologists are to officials. of different load types on wild hunters up in arms. conducting a three-year study of shot effectiveness on dove, but the early That was the genesis of Texas’ own mourning doves using trained Page 7 hunt caused a PR nightmare for officials. Photo by TPW. study on the effect of nonlead shot See DOVE, Page 16 Teal are arriving on schedule along the Texas coast in time for the early season.
    [Show full text]
  • Diversity and Length-Weight Relationships of Blenniid Species (Actinopterygii, Blenniidae) from Mediterranean Brackish Waters in Turkey
    EISSN 2602-473X AQUATIC SCIENCES AND ENGINEERING Aquat Sci Eng 2019; 34(3): 96-102 • DOI: https://doi.org/10.26650/ASE2019573052 Research Article Diversity and Length-Weight relationships of Blenniid Species (Actinopterygii, Blenniidae) from Mediterranean Brackish Waters in Turkey Deniz İnnal1 Cite this article as: Innal, D. (2019). Diversity and length-weight relationships of Blenniid Species (Actinopterygii, Blenniidae) from Mediterranean Brackish Waters in Turkey. Aquatic Sciences and Engineering, 34(3), 96-102. ABSTRACT This study aims to determine the species composition and range of Mediterranean Blennies (Ac- tinopterygii, Blenniidae) occurring in river estuaries and lagoon systems of the Mediterranean coast of Turkey, and to characterise the length–weight relationship of the specimens. A total of 15 sites were surveyed from November 2014 to June 2017. A total of 210 individuals representing 3 fish species (Rusty blenny-Parablennius sanguinolentus, Freshwater blenny-Salaria fluviatilis and Peacock blenny-Salaria pavo) were sampled from five (Beşgöz Creek Estuary, Manavgat River Es- tuary, Karpuzçay Creek Estuary, Köyceğiz Lagoon Lake and Beymelek Lagoon Lake) of the locali- ties investigated. The high juvenile densities of S. fluviatilis in Karpuzçay Creek Estuary and P. sanguinolentus in Beşgöz Creek Estuary were observed. Various threat factors were observed in five different native habitats of Blenny species. The threats on the habitat and the population of the species include the introduction of exotic species, water ORCID IDs of the authors: pollution, and more importantly, the destruction of habitats. Five non-indigenous species (Prus- D.İ.: 0000-0002-1686-0959 sian carp-Carassius gibelio, Eastern mosquitofish-Gambusia holbrooki, Redbelly tilapia-Copt- 1Burdur Mehmet Akif Ersoy odon zillii, Stone moroko-Pseudorasbora parva and Rainbow trout-Oncorhynchus mykiss) were University, Department of Biology, observed in the sampling sites.
    [Show full text]
  • Catch and Effort Data
    Chapter 11: The Inland Waters River Fishery Information System CHAPTER 11: INLAND WATERS RIVER FISHERY INFORMATION SYSTEM 11.1 Background The Inland Waters River fishery is a multi-species, multi-gear fishery encompassing the South Australian sector of the River Murray and its backwaters (Map 11.1). Historically, the fishery was based on harvesting Murray cod (Maccullochella peelii peelii), golden perch (Macquaria ambigua), and bony bream (Nematalosa erebi). The fishery was restructured in July 2003 to a non-native dominate fishery and the commercial fishing for significant native species is now prohibited. The fishery is now based predominantly on the taking European carp (Cyprinus carpio) and redfin perch (Perca fluviatilis). There are a total of 6 licence holders who operate within the fishery. Prior to the restructure 30 license holders fished the river, each with a designated reach. Up to December 2007 SARDI production tables hold in excess of 270,000 daily records. Data is held from 1984/85 to current and is continually being updated. Refer to Figure 11.3 for an entity relationship diagram of the inland waters system that encompasses the River Fishery. South Australian Aquatic Sciences: Information Systems and Database Support Program SARDI Aquatic Sciences Information Systems Quality Assurance and Data Integrity Report (June 2009) 81 Chapter 11: The Inland Waters River Fishery Information System Map 11.1: The inland waters river fishery – River Murray area designations. South Australian Aquatic Sciences: Information Systems and Database Support Program SARDI Aquatic Sciences Information Systems Quality Assurance and Data Integrity Report (June 2009) 82 Chapter 11: The Inland Waters River Fishery Information System 11.2 Research Logbook Information Each licence holder is required to submit a daily fishing return by the 15th day of each month detailing their fishing activities for the previous month (Figure 11.1).
    [Show full text]
  • Fisheries Resources of Balaclava Island, Fitzroy River Central Queensland 2014
    Fisheries Resources of Balaclava Island, Fitzroy River Central Queensland 2014 Prepared by: Queensland Parks and Wildlife Service, Marine Resources Management, Department of National Parks, Recreation, Sport and Racing The preparation of this report was funded by the Gladstone Ports Corporation's offsets program. © State of Queensland, 2014. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470. This publication can be made available in an alternative format (e.g.
    [Show full text]
  • Fisheries Data on Northern·Kingfish
    BIOLOGICAL @-'. FISHERIES DATA ON NORTHERN·KINGFISH .. Menticirrhus s'axatilis (Bloch and Schneider) JULY 1982 Biological and Fisheries Data on the Northern Kingfish, Menticirrhus saxatilis Daniel E. Ralph U. S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Fisheries Center Sandy Hook Laboratory Highlands, New Jersey 07732 Technical Series Report No. 27 CONTENTS 1. IDENTITY 1.1 Nomenclature................................................. 1 1.1.1 Valid Name.. 1 1. 1.2 Synonymy... ........................................... 1 1. 2 Taxonomy... .................................................. 1 1.2.1 Affinities.................. 1 1.2.2 Taxonomic Status...................................... 5 1.2.3 Subspecies 5 1. 2.4 Common Names.......................................... 5 1.3 Morphology............ 5 1.3.1 Externa1 Morphology................................... 5 1.3.2 Cytomorphology.............. 6 1.3.3 Protein Specificity... 6 2. DISTRIBUTION 2.1 Total Area................................................... 6 2.2 Differential Distribution....... 6 2.3 Determinants of Distribution............... 8 2.4 Hybridization.,... 8 3. BIONOMICS AND LIFE HISTORY 3.1 Reproduction................................................. 8 3.1.1 Sexuality 8 3.1.2 Maturity.............................................. 8 3.1.3 Mating................................................ 9 3.1.4 Fertilization...... 9 3.1.5 Gonads 9 3.1.6 Spawning.............................................. 9 3.1.7
    [Show full text]
  • The Queensland Stout Whiting Fishery 1991 to 2002
    FISHERY ASSESSMENT REPORT DPI AGENCY FOR FOOD AND FIBRE SCIENCES THE QUEENSLAND STOUT WHITING FISHERY 1991 TO 2002 Michael O’Neill 1 Kate Yeomans 2, Ian Breddin2, Eddie Jebreen2 and Adam Butcher1 1 AFFS FISHERIES – RESOURCE ASSESSMENT 2 QUEENSLAND FISHERIES SERVICE MARCH 2002 CONTENTS 1. EXECUTIVE SUMMARY ...............................................................................................................3 2. INTRODUCTION .............................................................................................................................4 2.1 MAIN FEATURES OF THE 2002 FISHERY........................................................................................4 2.2 HISTORY .......................................................................................................................................4 2.3 BIOLOGY.......................................................................................................................................5 2.4 MARKETING .................................................................................................................................6 2.5 MANAGEMENT..............................................................................................................................6 2.6 PREVIOUS ASSESSMENTS .............................................................................................................7 3. 2003 ASSESSMENT..........................................................................................................................8 3.1 ADVANCES
    [Show full text]
  • 2018 Final LOFF W/ Ref and Detailed Info
    Final List of Foreign Fisheries Rationale for Classification ** (Presence of mortality or injury (P/A), Co- Occurrence (C/O), Company (if Source of Marine Mammal Analogous Gear Fishery/Gear Number of aquaculture or Product (for Interactions (by group Marine Mammal (A/G), No RFMO or Legal Target Species or Product Type Vessels processor) processing) Area of Operation or species) Bycatch Estimates Information (N/I)) Protection Measures References Detailed Information Antigua and Barbuda Exempt Fisheries http://www.fao.org/fi/oldsite/FCP/en/ATG/body.htm http://www.fao.org/docrep/006/y5402e/y5402e06.htm,ht tp://www.tradeboss.com/default.cgi/action/viewcompan lobster, rock, spiny, demersal fish ies/searchterm/spiny+lobster/searchtermcondition/1/ , (snappers, groupers, grunts, ftp://ftp.fao.org/fi/DOCUMENT/IPOAS/national/Antigua U.S. LoF Caribbean spiny lobster trap/ pot >197 None documented, surgeonfish), flounder pots, traps 74 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented A/G AndBarbuda/NPOA_IUU.pdf Caribbean mixed species trap/pot are category III http://www.nmfs.noaa.gov/pr/interactions/fisheries/tabl lobster, rock, spiny free diving, loops 19 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented A/G e2/Atlantic_GOM_Caribbean_shellfish.html Queen conch (Strombus gigas), Dive (SCUBA & free molluscs diving) 25 not applicable not applicable Antigua & Barbuda EEZ none documented none documented A/G U.S. trade data Southeastern U.S. Atlantic, Gulf of Mexico, and Caribbean snapper- handline, hook and grouper and other reef fish bottom longline/hook-and-line/ >5,000 snapper line 71 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented N/I, A/G U.S.
    [Show full text]
  • South Australian Charter Boat Fishing Limits
    Commonwealth Size Individual Charter *Multi-day (cm) passenger boat limit charter trip Managed Species catch limit Up to 3 Up to 6 More than 3 days passengers passengers Albacore - 2 6 No multi-trip Barracouta - 10 30 limits permitted. Bight Redfish 30 10 30 Boat limits for up Blue Warehou - 10 30 to 6 passengers Gemfish - 10 30 apply irrespective Gummy/School Shark 45 2 6 of the number Note: These are combined Gummy/School Shark limits.- of persons on Ling - 3 18 the boat or the Morwong (Jackass) - 10 30 number of days Silver Warehou - 10 30 fishing. Southern Bluefin Tuna - 2 6 GLOSSARY Individual passenger catch limit Number of fish per person, per boat, per day. Charter boat limit Number of fish per boat, per day. Multi-day charter trip Three times the daily individual limits that apply. IMPORTANT INFORMATION 1. Boat limits apply when there are more than three and up to six people onboard. If three people or less are onboard, then individual bag limits apply. For the species listed in Table 1, a different individual catch limit applies where there are more than three passengers onboard. 2. On multi-day charters, the catch limit for Commonwealth-managed species is restricted to one daily boat limit, regardless of the number of passengers onboard or the number of days. South Australian Charter 3. It is an offence to cut up, fillet or otherwise mutilate fish in a boat (except for scaling and gutting) unless the fish are to be eaten onboard. This applies to all species subject to minimum legal lengths.
    [Show full text]
  • Comparisons Between the Biology of Two Species of Whiting (Sillaginidiae) in Shark Bay, Western Australia
    Comparisons between the biology of two species of whiting (Sillaginidiae) in Shark Bay, Western Australia By Peter Coulson Submitted for the Honours Degree of Murdoch University August 2003 1 Abstract Golden-lined whiting Sillago analis and yellow-fin whiting Sillago schomburgkii were collected from waters within Shark Bay, which is located at ca 26ºS on the west coast of Australia. The number of circuli on the scales of S. analis was often less than the number of opaque zones in sectioned otoliths of the same fish. Furthermore, the number of annuli visible in whole otoliths of S. analis was often less than were detectable in those otoliths after sectioning. The magnitude of the discrepancies increased as the number of opaque zones increased. Consequently, the otoliths of S. analis were sectioned in order to obtain reliable estimates of age. The mean monthly marginal increments on sectioned otoliths of S. analis and S. schomburgkii underwent a pronounced decline in late spring/early summer and then rose progressively during summer and autumn. Since these trends demonstrated that opaque zones are laid down annually in the otoliths of S. analis and S. schomburgkii from Shark Bay, their numbers could be used to help age this species in this marine embayment. The von Bertalanffy growth parameters, L∞, k and to derived from the total lengths at age for individuals of S. analis , were 277 mm, 0.73 year -1 and 0.02 years, respectively, for females and 253 mm, 0.76 year -1 and 0.10 years, respectively. Females were estimated to attain lengths of 141, 211, 245 and 269 mm after 1, 2, 3 and 5 years, compared with 124, 192, 224 and 247 mm for males at the corresponding ages.
    [Show full text]