An Experimental Analysis of a Compact Graph Representation ∗

Total Page:16

File Type:pdf, Size:1020Kb

An Experimental Analysis of a Compact Graph Representation ∗ An Experimental Analysis of a Compact Graph Representation ∗ Daniel K. Blandford Guy E. Blelloch Ian A. Kash Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 blandford,blelloch,iak @cs.cmu.edu f g Abstract Many methods have been proposed for compressing In previous work we described a method for compactly various specific classes of graphs. There have been representing graphs with small separators, which makes many results on planar graphs and graphs with constant use of small separators, and presented preliminary ex- genus [32, 15, 13, 18, 14, 21, 8, 6]. These representations perimental results. In this paper we extend the experi- can all store an n-vertex unlabeled planar graph in mental results in several ways, including extensions for O(n) bits, and some allow for O(1)-time neighbor dynamic insertion and deletion of edges, a comparison queries [21, 8, 6]. By unlabeled we mean that the of a variety of coding schemes, and an implementation representation is free to choose an ordering on the vertices (integer labels from 0 to n 1). To represent a of two applications using the representation. − The results show that the representation is quite ef- labeled graph one needs to additionally store the vertex fective for a wide variety of real-world graphs, including labels. Other representations have been developed for graphs from finite-element meshes, circuits, street maps, various other classes of graphs [15, 12, 24, 30]. A router connectivity, and web links. In addition to signif- problem with all these representations is that they can icantly reducing the memory requirements, our imple- only be used for a limited class of graphs. mentation of the representation is faster than standard In previous work we described a compact represen- representations for queries. The byte codes we intro- tation for graphs based on graph separators [5]. For c duce lead to DFT times that are a factor of 2.5 faster unlabeled graphs satisfying an O(n ), c < 1 separa- than our previous results with gamma codes and a fac- tor theorem, the approach uses O(n) bits and supports tor of between 1 and 9 faster than adjacency lists, while neighbor or adjacency queries in O(1)-time per edge. using a factor of between 3 and 6 less space. A property of the representation, however, is that it can be applied to any graph, and the effectiveness of 1 Introduction compression will smoothly degrade with the quality of the separators. For random graphs, which don't have We are interested in representing graphs compactly small separators (in expectation), the space require- while supporting queries and updates efficiently. The ment asymptotically matches the informational theoret- goals is to store large graphs in physical memory for ical lower bound. This smooth transition is important in use with standard algorithms requiring random access. practice since many real-world graphs might not strictly In addition to having applications to computing on large satisfy a separator theorem, but still have good separa- graphs (e.g. the link graph of the web, telephone call tor properties. In fact, since many graphs only come in a graphs, or graphs representing large meshes), the rep- fixed size, it does not even make sense to talk about sep- resentations can be used for medium-size graphs on de- arators theorems, which rely on asymptotic character- vices with limited memory (e.g. map graphs on a hand- istics of separators. As it turns out, most \real world" held device). Furthermore even if the application is not graphs do have small separators (significantly smaller limited by physical memory, the compact representa- than expected from a random graph). This is discussed tions can be faster than standard representations be- in Section 1.1. cause they have better cache characteristics. Our ex- This paper is concerned with the effectiveness of the periments confirm this. separator-based representation in practice. We extend the previous approach to handle dynamic graphs (edge ∗This work was supported in part by the National Science insertions and deletions) and present a more complete Foundation as part of the Aladdin Center (www.aladdin.cmu.edu) set of experiments, including a comparison of different under grants CCR-0086093, CCR-0085982, and CCR-0122581. prefix codes, comparison on two machines with different tices are ordered randomly, then our static representa- cache characteristics, a comparison with several variants tion with byte codes is between 2.2 and 3.5 times faster of the adjacency-list representation, and experimental than adjacency arrays for a DFS (depending on the ma- results of two algorithms using the representation. Our chine). If the vertices are ordered using the separator experiments show that our representations mostly dom- order we use for compression then the byte code is be- inate standard representations in terms of both space tween .95 and 1.3 times faster than adjacency arrays. and query times. Our dynamic representation is slower For dynamic graphs we compare our dynamic rep- than adjacency lists for updates. resentation to optimized implementation of adjacency In Section 2 we review our previous representation lists. The performance of the dynamic separator-based as applied to edge-separators. The representation uses a representation depends on the size of blocks used for separator tree for labeling the vertices of the graph and storing the data. We present results for two settings, uses difference codes to store the adjacency lists. In one optimized for space and the other for time. The Section 3 we describe our implementation, including a representation optimized for space uses 11.6 bits per description of the prefix codes used in this paper. In Sec- edge and the one optimized for time uses 18.8 bits per tion 4 we describe an extension of the separator-based edge (averaged over all graphs). This compares with 76 representation that supports dynamic graphs, i.e., the bits per edge for adjacency lists. insertion and deletion of edges. Our original represen- As with adjacency arrays, the time performance of tation only supported static graphs. The extension in- adjacency lists depends significantly on the ordering volves storing the bits for each representation in fixed- of the vertices. Furthermore for adjacency lists the length blocks and linking blocks together when they performance also depends significantly on the order in overflow. A key property is that the link pointers can which edges are inserted (i.e., whether adjacent edges be kept short (one byte for our experiments). The rep- end up on the same cache line). The runtime of resentation also uses a cache to store recently accessed the separator-based representation does not depend on vertices as uncompressed lists. insertion order. It is hard to summarize the time results In Sections 5 and 6 we report on experiments ana- other than to say that the performance of our time lyzing time and space for both the static and dynamic optimized representation ranges from .9 to 8 times faster graphs. Our comparisons are made over a wide vari- than adjacency lists for a DFS. The .9 is for separator ety of graphs including graphs taken from finite-element ordering, linear insertion, and on the machine with a meshes, VLSI circuits, map graphs, graphs of router large cache-line size. The 8 is for random ordering connectivity, and link graphs of the web. All the graphs and random insertion. The time for insertion on the are sparse. To analyze query times we measure the time separator-based representation is up to 4 times slower for a depth-first search (DFS) over the graph. We picked than adjacency lists. this measure since it requires visiting every edge exactly In Section 7 we describe experimental results ana- once (in each direction) and since it is a common sub- lyzing the performance of two algorithms. The first is routine in many algorithms. a maximum-bipartite-matching algorithm and the sec- For static graphs we compare our static representa- ond is an implementation of the Google page-rank algo- tion to adjacency arrays. An adjacency array stores for rithm. In both algorithms the graph is used many times each vertex an array of pointers to its neighbors. These over so it pays to use a static representation. We com- arrays are concatenated into one large array with each pare our static representation (using nibble codes) with vertex pointing to the beginning of its block. This repre- both adjacency arrays and adjacency lists. For both al- sentation takes about a factor of two less space than ad- gorithms our representation runs about as fast or faster, jacency lists (requiring only one word for each directed and saves a factor of between 3 and 4 in space. edge and each vertex). For our static representation we All experiments run within physical memory so our use four codes for encoding differences: gamma codes, speedup has nothing to do with disk access. snip codes, nibble codes, and byte codes (only gamma codes were reported in our previous paper). The differ- 1.1 Real-world graphs have good separators An ent codes present a tradeoff between time and space. edge-separator is a set of edges that, when removed, Averaged over our test graphs, the static represen- partitions a graph into two almost equal sized parts tation with byte codes uses 12.5 bits per edge, and the (see [23] for various definitions of \almost equal"). snip code uses 9 bits per edge. This compares with 38 Similarly a vertex separator is a set of vertices that bits per edge for adjacency arrays. Due to caching ef- when removed (along with its incident edges) partitions fects the time performance of adjacency arrays depends a graph into two almost equal parts.
Recommended publications
  • Practical Parallel Hypergraph Algorithms
    Practical Parallel Hypergraph Algorithms Julian Shun [email protected] MIT CSAIL Abstract v While there has been signicant work on parallel graph pro- 0 cessing, there has been very surprisingly little work on high- e0 performance hypergraph processing. This paper presents v0 v1 v1 a collection of ecient parallel algorithms for hypergraph processing, including algorithms for betweenness central- e1 ity, maximal independent set, k-core decomposition, hyper- v2 trees, hyperpaths, connected components, PageRank, and v2 v3 e single-source shortest paths. For these problems, we either 2 provide new parallel algorithms or more ecient implemen- v3 tations than prior work. Furthermore, our algorithms are theoretically-ecient in terms of work and depth. To imple- (a) Hypergraph (b) Bipartite representation ment our algorithms, we extend the Ligra graph processing Figure 1. An example hypergraph representing the groups framework to support hypergraphs, and our implementa- , , , , , , and , , and its bipartite repre- { 0 1 2} { 1 2 3} { 0 3} tions benet from graph optimizations including switching sentation. between sparse and dense traversals based on the frontier size, edge-aware parallelization, using buckets to prioritize processing of vertices, and compression. Our experiments represented as hyperedges, can contain an arbitrary number on a 72-core machine and show that our algorithms obtain of vertices. Hyperedges correspond to group relationships excellent parallel speedups, and are signicantly faster than among vertices (e.g., a community in a social network). An algorithms in existing hypergraph processing frameworks. example of a hypergraph is shown in Figure 1a. CCS Concepts • Computing methodologies → Paral- Hypergraphs have been shown to enable richer analy- lel algorithms; Shared memory algorithms.
    [Show full text]
  • Practical Parallel Hypergraph Algorithms
    Practical Parallel Hypergraph Algorithms Julian Shun [email protected] MIT CSAIL Abstract v0 While there has been significant work on parallel graph pro- e0 cessing, there has been very surprisingly little work on high- v0 v1 v1 performance hypergraph processing. This paper presents a e collection of efficient parallel algorithms for hypergraph pro- 1 v2 cessing, including algorithms for computing hypertrees, hy- v v 2 3 e perpaths, betweenness centrality, maximal independent sets, 2 v k-core decomposition, connected components, PageRank, 3 and single-source shortest paths. For these problems, we ei- (a) Hypergraph (b) Bipartite representation ther provide new parallel algorithms or more efficient imple- mentations than prior work. Furthermore, our algorithms are Figure 1. An example hypergraph representing the groups theoretically-efficient in terms of work and depth. To imple- fv0;v1;v2g, fv1;v2;v3g, and fv0;v3g, and its bipartite repre- ment our algorithms, we extend the Ligra graph processing sentation. framework to support hypergraphs, and our implementations benefit from graph optimizations including switching between improved compared to using a graph representation. Unfor- sparse and dense traversals based on the frontier size, edge- tunately, there is been little research on parallel hypergraph aware parallelization, using buckets to prioritize processing processing. of vertices, and compression. Our experiments on a 72-core The main contribution of this paper is a suite of efficient machine and show that our algorithms obtain excellent paral- parallel hypergraph algorithms, including algorithms for hy- lel speedups, and are significantly faster than algorithms in pertrees, hyperpaths, betweenness centrality, maximal inde- existing hypergraph processing frameworks.
    [Show full text]
  • Adjacency Matrix
    CSE 373 Graphs 3: Implementation reading: Weiss Ch. 9 slides created by Marty Stepp http://www.cs.washington.edu/373/ © University of Washington, all rights reserved. 1 Implementing a graph • If we wanted to program an actual data structure to represent a graph, what information would we need to store? for each vertex? for each edge? 1 2 3 • What kinds of questions would we want to be able to answer quickly: 4 5 6 about a vertex? about edges / neighbors? 7 about paths? about what edges exist in the graph? • We'll explore three common graph implementation strategies: edge list , adjacency list , adjacency matrix 2 Edge list • edge list : An unordered list of all edges in the graph. an array, array list, or linked list • advantages : 1 2 3 easy to loop/iterate over all edges 4 5 6 • disadvantages : hard to quickly tell if an edge 7 exists from vertex A to B hard to quickly find the degree of a vertex (how many edges touch it) 0 1 2 3 4 56 7 8 (1, 2) (1, 4) (1, 7) (2, 3) 2, 5) (3, 6)(4, 7) (5, 6) (6, 7) 3 Graph operations • Using an edge list, how would you find: all neighbors of a given vertex? the degree of a given vertex? whether there is an edge from A to B? 1 2 3 whether there are any loops (self-edges)? • What is the Big-Oh of each operation? 4 5 6 7 0 1 2 3 4 56 7 8 (1, 2) (1, 4) (1, 7) (2, 3) 2, 5) (3, 6)(4, 7) (5, 6) (6, 7) 4 Adjacency matrix • adjacency matrix : An N × N matrix where: the non-diagonal entry a[i,j] is the number of edges joining vertex i and vertex j (or the weight of the edge joining vertex i and vertex j).
    [Show full text]
  • Introduction to Graphs
    Multidimensional Arrays & Graphs CMSC 420: Lecture 3 Mini-Review • Abstract Data Types: • Implementations: • List • Linked Lists • Stack • Circularly linked lists • Queue • Doubly linked lists • Deque • XOR Doubly linked lists • Dictionary • Ring buffers • Set • Double stacks • Bit vectors Techniques: Sentinels, Zig-zag scan, link inversion, bit twiddling, self- organizing lists, constant-time initialization Constant-Time Initialization • Design problem: - Suppose you have a long array, most values are 0. - Want constant time access and update - Have as much space as you need. • Create a big array: - a = new int[LARGE_N]; - Too slow: for(i=0; i < LARGE_N; i++) a[i] = 0 • Want to somehow implicitly initialize all values to 0 in constant time... Constant-Time Initialization means unchanged 1 2 6 12 13 Data[] = • Access(i): if (0≤ When[i] < count and Where[When[i]] == i) return Where[] = 6 13 12 Count = 3 Count holds # of elements changed Where holds indices of the changed elements. When[] = 1 3 2 When maps from index i to the time step when item i was first changed. Access(i): if 0 ≤ When[i] < Count and Where[When[i]] == i: return Data[i] else: return DEFAULT Multidimensional Arrays • Often it’s more natural to index data items by keys that have several dimensions. E.g.: • (longitude, latitude) • (row, column) of a matrix • (x,y,z) point in 3d space • Aside: why is a plane “2-dimensional”? Row-major vs. Column-major order • 2-dimensional arrays can be mapped to linear memory in two ways: 1 2 3 4 5 1 2 3 4 5 1 1 2 3 4 5 1 1 5 9 13 17 2 6 7 8 9 10 2 2 6 10 14 18 3 11 12 13 14 15 3 3 7 11 15 19 4 16 17 18 19 20 4 4 8 12 16 20 Row-major order Column-major order Addr(i,j) = Base + 5(i-1) + (j-1) Addr(i,j) = Base + (i-1) + 4(j-1) Row-major vs.
    [Show full text]
  • 9 the Graph Data Model
    CHAPTER 9 ✦ ✦ ✦ ✦ The Graph Data Model A graph is, in a sense, nothing more than a binary relation. However, it has a powerful visualization as a set of points (called nodes) connected by lines (called edges) or by arrows (called arcs). In this regard, the graph is a generalization of the tree data model that we studied in Chapter 5. Like trees, graphs come in several forms: directed/undirected, and labeled/unlabeled. Also like trees, graphs are useful in a wide spectrum of problems such as com- puting distances, finding circularities in relationships, and determining connectiv- ities. We have already seen graphs used to represent the structure of programs in Chapter 2. Graphs were used in Chapter 7 to represent binary relations and to illustrate certain properties of relations, like commutativity. We shall see graphs used to represent automata in Chapter 10 and to represent electronic circuits in Chapter 13. Several other important applications of graphs are discussed in this chapter. ✦ ✦ ✦ ✦ 9.1 What This Chapter Is About The main topics of this chapter are ✦ The definitions concerning directed and undirected graphs (Sections 9.2 and 9.10). ✦ The two principal data structures for representing graphs: adjacency lists and adjacency matrices (Section 9.3). ✦ An algorithm and data structure for finding the connected components of an undirected graph (Section 9.4). ✦ A technique for finding minimal spanning trees (Section 9.5). ✦ A useful technique for exploring graphs, called “depth-first search” (Section 9.6). 451 452 THE GRAPH DATA MODEL ✦ Applications of depth-first search to test whether a directed graph has a cycle, to find a topological order for acyclic graphs, and to determine whether there is a path from one node to another (Section 9.7).
    [Show full text]
  • List Representation: Adjacency List – N Rows of the Adjacency Matrix Are
    List Representation: Adjacency List { n rows of the adjacency matrix are repre- sented as n linked lists { Declare an Array of size n e.g. A[1:::n] of Lists { A[i] is a pointer to the edges in E(G) starting at vertex i. Undirected graph: data in each list cell is a number indicating the adjacent vertex Weighted graph: data in each list cell is a pair (vertex, weight) 1 a b c e a [b,2] [c,6] [e,4] b a b [a,2] c a e d c [a,6] [e,3] [d,1] d c d [c,1] e a c e [a,4] [c,3] Properties: { the degree of any node is the number of elements in the list { O(e) to check for adjacency for e edges. { O(n + e) space for graph with n vertices and e edges. 2 Search and Traversal Techniques Trees and Graphs are models on which algo- rithmic solutions for many problems are con- structed. Traversal: All nodes of a tree/graph are exam- ined/evaluated, e.g. | Evaluate an expression | Locate all the neighbours of a vertex V in a graph Search: only a subset of vertices(nodes) are examined, e.g. | Find the first token of a certain value in an Abstract Syntax Tree. 3 Types of Traversals Binary Tree traversals: | Inorder, Postorder, Preorder General Tree traversals: | With many children at each node Graph Traversals: | With Trees as a special case of a graph 4 Binary Tree Traversal Recall a Binary tree | is a tree structure in which there can be at most two children for each parent | A single node is the root | The nodes without children are leaves | A parent can have a left child (subtree) and a right child (subtree) A node may be a record of information | A node is visited when it is considered in the traversal | Visiting a node may involve computation with one or more of the data fields at the node.
    [Show full text]
  • Package 'Igraph'
    Package ‘igraph’ February 28, 2013 Version 0.6.5-1 Date 2013-02-27 Title Network analysis and visualization Author See AUTHORS file. Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization,centrality indices and much more. Depends stats Imports Matrix Suggests igraphdata, stats4, rgl, tcltk, graph, Matrix, ape, XML,jpeg, png License GPL (>= 2) URL http://igraph.sourceforge.net SystemRequirements gmp, libxml2 NeedsCompilation yes Repository CRAN Date/Publication 2013-02-28 07:57:40 R topics documented: igraph-package . .5 aging.prefatt.game . .8 alpha.centrality . 10 arpack . 11 articulation.points . 15 as.directed . 16 1 2 R topics documented: as.igraph . 18 assortativity . 19 attributes . 21 autocurve.edges . 23 barabasi.game . 24 betweenness . 26 biconnected.components . 28 bipartite.mapping . 29 bipartite.projection . 31 bonpow . 32 canonical.permutation . 34 centralization . 36 cliques . 39 closeness . 40 clusters . 42 cocitation . 43 cohesive.blocks . 44 Combining attributes . 48 communities . 51 community.to.membership . 55 compare.communities . 56 components . 57 constraint . 58 contract.vertices . 59 conversion . 60 conversion between igraph and graphNEL graphs . 62 convex.hull . 63 decompose.graph . 64 degree . 65 degree.sequence.game . 66 dendPlot . 67 dendPlot.communities . 68 dendPlot.igraphHRG . 70 diameter . 72 dominator.tree . 73 Drawing graphs . 74 dyad.census . 80 eccentricity . 81 edge.betweenness.community . 82 edge.connectivity . 84 erdos.renyi.game . 86 evcent . 87 fastgreedy.community . 89 forest.fire.game . 90 get.adjlist . 92 get.edge.ids . 93 get.incidence . 94 get.stochastic .
    [Show full text]
  • An XML-Based Description of Structured Networks
    Massimo Ancona, Walter Cazzola, Sara Drago, and Francesco Guido. An XML-Based Description of Structured Networks. In Proceedings of Interna- tional Conference Communications 2004, pages 401–406, Bucharest, Romania, June 2004. IEEE Press. An XML-Based Description of Structured Networks Massimo Ancona£ Walter Cazzola† Sara Drago£ Francesco Guido‡ £ DISI University of Genova, e-mail: fancona,[email protected] † DICo University of Milano, e-mail: [email protected] ‡ Marconi Selenia Communication, e-mail: [email protected] Abstract In this paper we present an XML-based formalism to describe hierarchically organized communication networks. After a short overview of existing graph description languages, we discuss the advantages and disadvantages of their application in network optimization. We conclude by extending one of these formalisms with features supporting the description of the relationship between the optimized logical layout of a network and its physical counterpart. Elements for describing traffic parameters are also given. 1 Introduction The problem of network design and optimization has a strategical importance especially for military networks. In this case, design for fault tolerance and security plays a role more and more crucial than the equivalent importance required for commercial and research networks. The reengineering of a large communication network is a complex problem, which consists of different aspects that can be strongly affected by the way of describing data. The plainest way to describe a communication network is to model the relationship among sites and links by means of a weighted undirected graph, but unless some more assumptions are taken, this approach can raise several problems. A first issue is encountered when an analysis and a visualization of the network has to be realized: practical networks include hundreds or often thousands of nodes and links, so that even a simple description and documentation of the network structure is hard to maintain and update.
    [Show full text]
  • Note: Nonlinear Data Structures Do Not Have Their Elements in a Sequence
    CS231 - Fall 2017 Graphs • Graph is a non-linear data structure (like a tree). Note: nonlinear data structures do not have their elements in a sequence. • But trees are somewhat orderly. Root is connected to its children. The children are connected to their children…all the way to the leaves. • Graph can be linked in any pattern. • A graph consists of vertices (nodes) and edges (arcs). o Name the vertices: {A,B,C,D,E} o Name the edges: {(A,B), (A,E), (A,D),…} • Applications: o roads between cities o communication networks o oil pipelines o personal relationships between people o interval graphs o rooms in caves with passages between them • Directed vs. Undirected o Graphs can be directed or undirected. o In undirected graphs, edges have no specific direction. Edges are always “two-way” o In directed graphs (also called digraphs), edges have a direction 1 o A self-edge a.k.a. a loop is an edge of the form (a,a) • Graph Connectivity o A graph is connected when there is a path between every pair of vertices. o In a connected graph, there are no unreachable vertices. o A graph that is not connected is disconnected. o A graph G is said to be disconnected if there exist two nodes in G such that no path in G has those nodes as endpoints. • Weighted graphs o In a weighed graph, each edge has a weight a.k.a. cost o Some graphs allow negative weights; some not • Paths and Cycles 2 o Path from one vertex to another is a sequence of vertices, each a neighbor of the previous one.
    [Show full text]
  • Chapter 12 Graphs and Their Representation
    Chapter 12 Graphs and their Representation 12.1 Graphs and Relations Graphs (sometimes referred to as networks) offer a way of expressing relationships between pairs of items, and are one of the most important abstractions in computer science. Question 12.1. What makes graphs so special? What makes graphs special is that they represent relationships. As you will (or might have) discover (discovered already) relationships between things from the most abstract to the most concrete, e.g., mathematical objects, things, events, people are what makes everything inter- esting. Considered in isolation, hardly anything is interesting. For example, considered in isolation, there would be nothing interesting about a person. It is only when you start consid- ering his or her relationships to the world around, the person becomes interesting. Challenge yourself to try to find something interesting about a person in isolation. You will have difficulty. Even at a biological level, what is interesting are the relationships between cells, molecules, and the biological mechanisms. Question 12.2. Trees captures relationships too, so why are graphs more interesting? Graphs are more interesting than other abstractions such as tree, which can also represent certain relationships, because graphs are more expressive. For example, in a tree, there cannot be cycles, and multiple paths between two nodes. Question 12.3. What do we mean by a “relationship”? Can you think of a mathematical way to represent relationships. 231 232 CHAPTER 12. GRAPHS AND THEIR REPRESENTATION Alice Bob Josefa Michel Figure 12.1: Friendship relation f(Alice, Bob), (Bob, Alice), (Bob, Michel), (Michel, Bob), (Josefa, Michel), (Michel, Josefa)g as a graph.
    [Show full text]
  • Data Structure for Representing a Graph: Combination of Linked List and Hash Table
    Data structure for representing a graph: combination of linked list and hash table Maxim A. Kolosovskiy Altai State Technical University, Russia [email protected] Abstract In this article we discuss a data structure, which combines advantages of two different ways for representing graphs: adjacency matrix and collection of adjacency lists. This data structure can fast add and search edges (advantages of adjacency matrix), use linear amount of memory, let to obtain adjacency list for certain vertex (advantages of collection of adjacency lists). Basic knowledge of linked lists and hash tables is required to understand this article. The article contains examples of implementation on Java. 1. Introduction There are two most common ways for representing a graph: Adjacency matrix Collection of adjacency lists Let’s look at comparison table of these ways: Adjacency Collection of matrix adjacency lists Memory complexity (optimal – O(|E|)) O(|V|2) O(|E|) Add new edge (optimal – O(1)) O(1) O(1) Remove edge (optimal – O(1)) O(1) O(|K|) Search edge (optimal – O(1)) O(1) O(|K|) Enumeration of the vertices adjacent to u O(|V|) O(|K|) (optimal – O(|K|)) Table 1. Comparison table of two ways for representing graphs. V – set of vertices, E – set of edges, K – set of vertices adjacent to vertex u. We assume that |V|<|E|. Bold font – optimal complexity. Operations with a graph represented by an adjacency matrix are faster. But if a graph is large we can’t use such big matrix to represent a graph, so we should use collection of adjacency lists, which is more compact.
    [Show full text]
  • Analyzing the Facebook Friendship Graph
    Analyzing the Facebook friendship graph S. Catanese1, P. De Meo2, E. Ferrara3, G. Fiumara1 1Dept. of Physics, Informatics Section, University of Messina 2Dept. of Computer Sciences, Vrije Universiteit Amsterdam 3Dept. of Mathematics, University of Messina 1st International Workshop on Mining the Future Internet 20 September 2010, Berlin Catanese, De Meo, Ferrara, Fiumara () Analyzing the Facebook friendship graph MIFI 2010, 20/09/2010, Berlin 1 / 42 Outline 1 Motivation Main objective The Basic Problem Classic Work 2 Our Results/Contribution Data Extraction and Cleaning Data Analysis Main Results 3 Future Issues Catanese, De Meo, Ferrara, Fiumara () Analyzing the Facebook friendship graph MIFI 2010, 20/09/2010, Berlin 2 / 42 Outline 1 Motivation Main objective The Basic Problem Classic Work 2 Our Results/Contribution Data Extraction and Cleaning Data Analysis Main Results 3 Future Issues Catanese, De Meo, Ferrara, Fiumara () Analyzing the Facebook friendship graph MIFI 2010, 20/09/2010, Berlin 3 / 42 Main objective Analyze the Facebook friendship graph using: I a wrapper (for extraction, cleaning and normalization of data) I a tool for graph visualization and analysis I developed by some of us Catanese, De Meo, Ferrara, Fiumara () Analyzing the Facebook friendship graph MIFI 2010, 20/09/2010, Berlin 4 / 42 Main objective Analyze the Facebook friendship graph using: I a wrapper (for extraction, cleaning and normalization of data) I a tool for graph visualization and analysis I developed by some of us Catanese, De Meo, Ferrara, Fiumara
    [Show full text]