For Review Only
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
World Bank Document
GLOBAL ENVIRONMENT 33977 FACILITY Public Disclosure Authorized Public Disclosure Authorized Quarterly Operational Report April 1995 Public Disclosure Authorized GEF Public Disclosure Authorized development,agencies, national institutions, (GEF) is a financial tions, bilateral T mechanismhe Global Environment that provides Facility grant and concessional funds non-governmental organizations (NGOs), private sector to developing countries for projects and activities that aim entities, and academic institutions. The GEF also comprises to protect the global environment. GEF resources are avail- a Small Grants Programme available for projects in the able for projects and other activities that address climate four focal areas that are put forward by grassroots groups change, loss of biological diversity, pollution of international and NGOs in developing countries. waters, and depletion of the ozone layer. Countries can The Quarterly Operational Report is designed to pro- obtain GEF funds if they are eligible to borrow from the vide a comprehensive review of, and a status report on, the World Bank (IBRD and/or IDA) or receive technical assis- GEE work program. A brief description of each of the GEE's tance grants from UNDP through a country program. projects organized alphabetically by region can be Responsibility for implementing GEF activities is found on pages 8-J8. Each description lists the name of the shared by the United Nations Development Programme UNDP, UNEP or World Bank Task Manager responsible for (UNDP), the United Nations Environment Programme the project. Inquiries about specific projects should be (UNEP) and the World Bank. UNDP is responsible for referred to the responsible Task Manager. Their telephone technical assistance activities, capacity building, and the and fax numbers can be found on pages 63 and 64. -
Selous Game Reserve Tanzania
SELOUS GAME RESERVE TANZANIA Selous contains a third of the wildlife estate of Tanzania. Large numbers of elephants, buffaloes, giraffes, hippopotamuses, ungulates and crocodiles live in this immense sanctuary which measures almost 50,000 square kilometres and is relatively undisturbed by humans. The Reserve has a wide variety of vegetation zones, from forests and dense thickets to open wooded grasslands and riverine swamps. COUNTRY Tanzania NAME Selous Game Reserve NATURAL WORLD HERITAGE SITE 1982: Inscribed on the World Heritage List under Natural Criteria ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following Statement of Outstanding Universal Value at the time of inscription: Brief Synthesis The Selous Game Reserve, covering 50,000 square kilometres, is amongst the largest protected areas in Africa and is relatively undisturbed by human impact. The property harbours one of the most significant concentrations of elephant, black rhinoceros, cheetah, giraffe, hippopotamus and crocodile, amongst many other species. The reserve also has an exceptionally high variety of habitats including Miombo woodlands, open grasslands, riverine forests and swamps, making it a valuable laboratory for on-going ecological and biological processes. Criterion (ix): The Selous Game Reserve is one of the largest remaining wilderness areas in Africa, with relatively undisturbed ecological and biological processes, including a diverse range of wildlife with significant predator/prey relationships. The property contains a great diversity of vegetation types, including rocky acacia-clad hills, gallery and ground water forests, swamps and lowland rain forest. The dominant vegetation of the reserve is deciduous Miombo woodlands and the property constitutes a globally important example of this vegetation type. -
Aerial Surveys of Wildlife and Human Activity Across the Bouba N'djida
Aerial Surveys of Wildlife and Human Activity Across the Bouba N’djida - Sena Oura - Benoue - Faro Landscape Northern Cameroon and Southwestern Chad April - May 2015 Paul Elkan, Roger Fotso, Chris Hamley, Soqui Mendiguetti, Paul Bour, Vailia Nguertou Alexandre, Iyah Ndjidda Emmanuel, Mbamba Jean Paul, Emmanuel Vounserbo, Etienne Bemadjim, Hensel Fopa Kueteyem and Kenmoe Georges Aime Wildlife Conservation Society Ministry of Forests and Wildlife (MINFOF) L'Ecole de Faune de Garoua Funded by the Great Elephant Census Paul G. Allen Foundation and WCS SUMMARY The Bouba N’djida - Sena Oura - Benoue - Faro Landscape is located in north Cameroon and extends into southwest Chad. It consists of Bouba N’djida, Sena Oura, Benoue and Faro National Parks, in addition to 25 safari hunting zones. Along with Zakouma NP in Chad and Waza NP in the Far North of Cameroon, the landscape represents one of the most important areas for savanna elephant conservation remaining in Central Africa. Aerial wildlife surveys in the landscape were first undertaken in 1977 by Van Lavieren and Esser (1979) focusing only on Bouba N’djida NP. They documented a population of 232 elephants in the park. After a long period with no systematic aerial surveys across the area, Omondi et al (2008) produced a minimum count of 525 elephants for the entire landscape. This included 450 that were counted in Bouba N’djida NP and its adjacent safari hunting zones. The survey also documented a high richness and abundance of other large mammals in the Bouba N’djida NP area, and to the southeast of Faro NP. In the period since 2010, a number of large-scale elephant poaching incidents have taken place in Bouba N’djida NP. -
Lake Malawi Destination Guide
Lake Malawi Destination Guide Overview of Lake Malawi Occupying a fifth of the country, Lake Malawi is the third largest lake in Africa and home to more fish species than any other lake in the world. Also known as Lake Nyasa, it is often referred to as 'the calendar lake' because it is 365 miles (590km) long and 52 miles (85km) wide. Situated between Malawi, Mozambique and Tanzania, this African Great Lake is about 40,000 years old, a product of the Great Rift Valley fault line. There are fishing villages to be found along the lakeshore where residents catch a range of local fish including chambo, kampango (catfish), lake salmon and tiger fish. The export of fish from the lake contributes significantly to the country's economy, and the delicious chambo, similar to bream, is served in most Malawian eateries. Visitors to Lake Malawi can see colourful mbuna fish in the water, while there are also occasional sightings of crocodiles, hippos, monkeys and African fish eagles along the shore. The nearby Eastern Miombo woodlands are home to African wild dogs. Swimming, snorkelling and diving are popular activities in the tropical waters of the lake, and many visitors also enjoy waterskiing, sailing and fishing. There are many options available for holiday accommodation at the lake, including resorts, guesthouses and caravan or camping parks. All budgets are catered for, with luxury lodges attracting the glamorous and humble campsites hosting families and backpackers. Cape Maclear is a well-developed lakeside town, and nearby Monkey Bay is a great holiday resort area. Club Makokola, near Mangochi, is also a popular resort. -
Hull) Mphil (Cantab)
Thesis submitted for the degree of Doctor of Philosophy At the University of Leicester By William D. Gosling BSc (Hull) MPhil (Cantab) Department of Geography University of Leicester Submitted: December 2003 Examined: April 2004 © William This thesis is copyright material and no quotation from it may be published without proper UMI Number: U188605 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U188605 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Characterization of Neotropical forest and savannah ecosystems by their modern pollen spectra William D. Gosling Abstract Controversy surrounds the Quaternary palaeoenvironmental history of Amazonia. It is unclear whether moist evergreen forest, savannah or seasonally dry forest dominated the Amazon basin at the last glacial maximum (c. 21,000 years B.P.). In part the uncertainty surrounding the palaeoenvironmental history of Amazonia stems from a poor understanding of the ecological significance of the fossil pollen records from the region. In order to improve interpretations of the fossil pollen record it is essential to better understand the nature of the pollen rain produced by modem ecosystems. -
The Effects of Forest-Savanna-Grassland Gradients on Bird Communities of Chiquitano Dry Forests Domain, in Western Brazil
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil GODOI, MAURICIO N.; DE SOUZA, EDIVALDO O. The effects of forest-savanna-grassland gradients on bird communities of Chiquitano Dry Forests domain, in western Brazil Anais da Academia Brasileira de Ciências, vol. 88, núm. 3, 2016, pp. 1755-1767 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32748476014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2016) 88(3 Suppl.): 1755-1767 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201620150615 www.scielo.br/aabc The effects of forest-savanna-grassland gradients on bird communities of Chiquitano Dry Forests domain, in western Brazil MAURICIO N. GODOI1 and EDIVALDO O. DE SOUZA2 1Programa de Pós-Graduação em Ecologia e Conservação, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, s/n, 79070-900 Campo Grande, MS, Brasil 2Departamento de Biologia, Universidade Federal de Mato Grosso do Sul/UFMS, Campus Universitário de Aquidauana, CPAQ, Avenida Oscar Trindade de Barros, 740, Unidade II, Serraria, 79200-000 Aquidauana, MS, Brasil Manuscript received on August 27, 2015; accepted for publication on December 7, 2015 ABSTRACT Different vegetation types are distributed in mountains according to altitude, topography and soil. -
Tanzania Environmental Threats and Opportunities Assessment
TANZANIA ENVIRONMENTAL THREATS AND OPPORTUNITIES ASSESSMENT November 2012 This Report was produced for review by the United States Agency for international Development (USAID). It was prepared by the Environmental Threats and Opportunities Assessment Team under contract to the US Department of Agriculture Forest Service – International Programs. Cover photo: Rice fields in Mkula Village, Kilombero Valley, Morogoro Region. Water from the Udzungwa Mountains National Park is used by the village to irrigate two crops of rice per year. Photo by B. Byers, June 2012. TANZANIA ENVIRONMENTAL THREATS AND OPPORTUNITIES ASSESSMENT November 2012 AUTHORITY Prepared for USAID-Tanzania. This Tanzania Environmental Threats and Opportunities Assessment is made possible by the support of the American People through the United States Agency for International Development (USAID) under the terms of a Participating Agency Partnership Agreement (PAPA) No. AEG-T- 00-07-00003-00 between USAID and the USDA Forest Service International Programs. Funds were provided by USAID/Tanzania and facilitated by the USAID Bureau for Africa, Office of Sustainable Development, Economic Growth, Environment and Agriculture Division (AFR/SD/EGEA) under the Biodiversity Analysis and Technical Support (BATS) program. The contents of this report are the sole responsibility of the ETOA Team and do not necessarily reflect the views of USAID or the United States Government (USG). PREPARED BY ETOA Team: Bruce Byers (Team Leader), Zakiya Aloyce, Pantaleo Munishi, and Charles Rhoades. TABLE -
Combining Airborne Laser Scanning and Landsat Data for Statistical
Egberth et al. Carbon Balance Manage (2017) 12:8 DOI 10.1186/s13021-017-0076-y RESEARCH Open Access Combining airborne laser scanning and Landsat data for statistical modeling of soil carbon and tree biomass in Tanzanian Miombo woodlands Mikael Egberth1* , Gert Nyberg2,6, Erik Næsset3, Terje Gobakken3, Ernest Mauya3, Rogers Malimbwi4, Josiah Katani4, Nurudin Chamuya5, George Bulenga4 and Håkan Olsson1 Abstract Background: Soil carbon and biomass depletion can be used to identify and quantify degraded soils, and by using remote sensing, there is potential to map soil conditions over large areas. Landsat 8 Operational Land Imager satel- lite data and airborne laser scanning data were evaluated separately and in combination for modeling soil organic carbon, above ground tree biomass and below ground tree biomass. The test site is situated in the Liwale district in southeastern Tanzania and is dominated by Miombo woodlands. Tree data from 15 m radius feld-surveyed plots and samples of soil carbon down to a depth of 30 cm were used as reference data for tree biomass and soil carbon estimations. Results: Cross-validated plot level error (RMSE) for predicting soil organic carbon was 28% using only Landsat 8, 26% using laser only, and 23% for the combination of the two. The plot level error for above ground tree biomass was 66% when using only Landsat 8, 50% for laser and 49% for the combination of Landsat 8 and laser data. Results for below ground tree biomass were similar to above ground biomass. Additionally it was found that an early dry season satellite image was preferable for modelling biomass while images from later in the dry season were better for modelling soil carbon. -
A Study on the Plant Communities in the Vegetation of Eastern Miombo Woodlands Eco-Region in Tanzania
International Scholars Journals African Journal of Ecology and Ecosystems ISSN: 9428-167X Vol. 4 (2), pp. 242-250, February, 2017. Available online at www.internationalscholarsjournals.org © International Scholars Journals Author(s) retain the copyright of this article. Full Length Research Paper A study on the plant communities in the vegetation of eastern Miombo woodlands eco-region in Tanzania 1 1 2 Mbwana F. Patrick *, Mizengo Ali Pinda and Steven Fredrick Werema 1 Department of Forest Biology, Sokoine University of Agriculture, P.O. Box 3010, Morogoro, Tanzania. 2 Department of Wildlife Management, Sokoine University of Agriculture, P.O. Box 3010, Morogoro, Tanzania. Accepted 15 January, 2017 This study assessed the plant communities and species associations in the eastern Miombo woodlands eco- region of the Lake Rukwa basin southern Tanzania. Information was collected from 288 temporary sample plots in 32 sampling sites established randomly in the area and covering as much variation in the landscape as possible. Detailed analysis of the vegetation identified six tree communities of conservation importance, which included Brachystegia boehmii-Pericopsis angolensis woodland, Julbernardia globiflora woodland, Combretum molle-Sclerocarya birrea-Combretum zeyherii-Acacia seyal var fistula woodland, Bridelia cathartica-Diospyros mespiliformis woodland, Brachystegia bussei-Pterocarpus tinctorius woodland and Brachystegia microphylla-Isoberlinia tomentosa-Hymenocardia acida- Syzygium owariense woodland. Majority of the described plant communities are typical of Miombo ecosystems dominated by trees belonging mainly to the genera Brachystegia and Julbernardia. A mixture of non-legume species but typical of the Miombo ecosystem, however, dominates two out of six described plant communities. Apparently, there is high variability of plant communities in the Miombo ecosystem of southern Tanzania, an indication of the diverse nature of the Miombo ecosystem, also, an implication of high species diversity. -
Brivio Workshop IMATI 27-03-2012 Last
Workshop Sustainable agro-pastoral systems: concepts, approaches and tools Milano | Italy | 27 March 2012 Analysis of time series satellite imagery to monitor vegetated ecosystem dynamics in Sahel M. Boschetti 1, F. Nutini 1, P.A. BRIVIO 1, D. Stroppiana 1, E. Bartholomè 2 CNR - IREA, Via Bassini 15, Milano, Italy JRC- EC, Global Environmental Monitoring, Ispra, Italy 1 Contact: brivio.pa @irea.cnr.it CNR-IREA tel +39.02.23699289 Framework 2 Developing countries are particularly vulnerable to the ongoing climate changes , and Africa, due to its weak adaptive capacity, is likely to be the most vulnerable (IPCC 2007) The growing population , with a projection to double in the next twenty years, will exacerbate existing problems and impacts on food production, safe water provision, and natural-resource-based livelihoods Climate exerts a significant control on the day-to-day economic development of Africa (particularly for the agricultural and water-resources sectors). Monitoring of the natural environmental resources and early warning of drought are crucial components of disaster mitigation plans . Sahel fragile ecosystem 3 SAHEL: dynamic eco-region Sahel is a transition zone between the arid Sahara in the North and the sub-humid tropical savannas in the South, and is marked by a steep North-South gradient in mean annual rainfall. The borders of the Sahel are often identified with the boundaries of pastoral and agro-pastoral activities (thus relying on human activities), or with the limits of rainfall isohyets (150-550 mm) From 1960 to early 80s the area experienced dramatic food crisis , caused by prolonged drought, resulted in tensions and armed conflicts Sahel: Re-greening vs humanitarian crisis 4 Several studies aimed to seek explanations (climatic or human) of the drought phenomena . -
Ecological Systems of the Amazon Basin of Peru and Bolivia Clasification and Mapping
ECOLOGICAL SYSTEMS of the Amazon Basin of Peru and Bolivia Clasification and Mapping Ecological Systems of the Amazon Basin of Peru and Bolivia Clasification and Mapping Ecological Systems of the Amazon Basin Peru and Bolivia • Clasification Mapping Published by This publication has been financed by The Gordon and Betty Moore Foundation www.moore.org Ecological Systems of the Amazon Basin of Peru and Bolivia Classification and Mapping Josse, C., G. Navarro, F. Encarnación, A. Tovar, P. Comer, W. Ferreira, F. Rodríguez, J. Saito, J. Sanjurjo, J. Dyson, E. Rubin de Celis, R. Zárate, J. Chang, M. Ahuite, C. Vargas, F. Paredes, W. Castro, J. Maco y F. Reátegui #$# 5.!,- NatureServe is a non-profit organization dedicated to providing the scientific basis for effective conservation action. The Instituto de Investigaciones de la Amazonía Peruana is an autonomous governmental entity, based in the Amazon Basin of Peru. Its mission is to support the betterment of the local communities’ quality of life by dedicating research to sustainable development and conservation of the natural resources in the Amazon region. The Conservation Data Center in the Facultad de Ciencias Forestales of the Universidad Nacional Agraria la Molina is an information management unity of the #$# 5.!,- biological and ecological information of Peru. The unity keeps records of fauna and flora species as well as diminishing terrestrial and marine environments. Photo Credits Gonzalo Navarro, IIAP, CDC-UNALM, NatureServe, Hugo Arnal, Walter H. Wust Cover Photo Frans Lanting (cover, Tambopata river); Walter H. Wust (back cover, Amiguillo river) Editorial Coordination Cristiane Nascimento Editorial Production Wust Ediciones / www.walterwust.com Translation Ana Maria Piza Printer Gráfica Biblos © NatureServe 2007 ISBN: 0-9711053-7-5 Total or partial use of text permitted with proper citation Citation: Josse, C., G. -
Distribution Mapping of World Grassland Types A
Journal of Biogeography (J. Biogeogr.) (2014) SYNTHESIS Distribution mapping of world grassland types A. P. Dixon1*, D. Faber-Langendoen2, C. Josse2, J. Morrison1 and C. J. Loucks1 1World Wildlife Fund – United States, 1250 ABSTRACT 24th Street NW, Washington, DC 20037, Aim National and international policy frameworks, such as the European USA, 2NatureServe, 4600 N. Fairfax Drive, Union’s Renewable Energy Directive, increasingly seek to conserve and refer- 7th Floor, Arlington, VA 22203, USA ence ‘highly biodiverse grasslands’. However, to date there is no systematic glo- bal characterization and distribution map for grassland types. To address this gap, we first propose a systematic definition of grassland. We then integrate International Vegetation Classification (IVC) grassland types with the map of Terrestrial Ecoregions of the World (TEOW). Location Global. Methods We developed a broad definition of grassland as a distinct biotic and ecological unit, noting its similarity to savanna and distinguishing it from woodland and wetland. A grassland is defined as a non-wetland type with at least 10% vegetation cover, dominated or co-dominated by graminoid and forb growth forms, and where the trees form a single-layer canopy with either less than 10% cover and 5 m height (temperate) or less than 40% cover and 8 m height (tropical). We used the IVC division level to classify grasslands into major regional types. We developed an ecologically meaningful spatial cata- logue of IVC grassland types by listing IVC grassland formations and divisions where grassland currently occupies, or historically occupied, at least 10% of an ecoregion in the TEOW framework. Results We created a global biogeographical characterization of the Earth’s grassland types, describing approximately 75% of IVC grassland divisions with ecoregions.