Tropical Grasslands--Trends, Perspectives and Future Prospects

Total Page:16

File Type:pdf, Size:1020Kb

Tropical Grasslands--Trends, Perspectives and Future Prospects University of Kentucky UKnowledge International Grassland Congress Proceedings XXIII International Grassland Congress Tropical Grasslands--Trends, Perspectives and Future Prospects Panjab Singh FAARD Foundation, India Follow this and additional works at: https://uknowledge.uky.edu/igc Part of the Plant Sciences Commons, and the Soil Science Commons This document is available at https://uknowledge.uky.edu/igc/23/plenary/8 The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015. Proceedings Editors: M. M. Roy, D. R. Malaviya, V. K. Yadav, Tejveer Singh, R. P. Sah, D. Vijay, and A. Radhakrishna Published by Range Management Society of India This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Plenary Lecture 7 Tropical grasslands –trends, perspectives and future prospects Panjab Singh President, FAARD Foundation, Varanasi and Ex Secretary, DARE and DG, ICAR, New Delhi, India E-mail : [email protected] Grasslands are the area covered by vegetation accounts for 50–80 percent of GDP (World Bank, 2007). dominated by grasses, with little or no tree cover. Central and South America provide 39 percent of the UNESCO defined grassland as “land covered with world’s meat production from grassland-based herbaceous plants with less than 10 percent tree and systems, and sub-Saharan Africa holds a 12.5 percent shrub cover” and wooded grassland as 10-40 percent share. This growth is driven by the rapidly increasing tree and shrub cover (White, 1983). According to demand for livestock products, this demand being Ecological Society of America (1952), “grassland is a driven by population growth, urbanization and community dominated by grasses or grass-like plants”. increasing incomes in developing countries (Delgado Grasslands normally exist out of temporary or et al., 1999).The growing demand for livestock products permanent freedom from woody plants. They constitute in the developing world and stagnant demand in about 40 percent of the land surface (Van Dyne et al., industrialized countries represents a major opportunity 1978) or 30 percent of the earth’s ice-free land surface for livestock keepers in developing countries, where (FAO, 2005a; WRI, 2000; White et al., 2000) and are most demand is met by local production, and this is used by grazing animals for bulk of their diet. Major likely to continue well into the foreseeable future (World grassland types are supported by climate variability Bank, 2009).This paper attempts a rapid summary of and are characterised by the dominance of a few grass the present day state of tropical grassland and livestock species. They may include vegetation regions classified based production systems globally, especially in tropics, mainly as steppe and savannas. These grasslands have in relation to recent trends, future assessment, mainly evolved from the destruction of permanent grassland rehabilitation and management strategies, woody vegetation and are thus bio-edaphic sub future perspectives of grassland science and climaxes. They are often associated with forbs; shrubs development including policy imperatives. and trees are scattered in patches of variable density. Distribution of grasslands Until recently, grasslands were generally thought to be inexhaustible, their capacity to regenerate often Tropical grasslands are located near the equator, overestimated. Today, there is evidence of grassland between the Tropic of Cancer and the Tropic of degradation throughout the world. Free and excessive Capricorn. They cover much of Africa as well as large grazing has done massive harm to these lands, areas of Australia, South America, and India (Table 1). converting them into highly degraded areas. The The favorable conditions for development of stable evidence of such degradation is most notable in the grassland are frequent rainfall and sufficient warmth tropics, especially in India and Africa. during the growing season. Grassland occurs where there is sufficient moisture for grass growth, but where Livestock based systems are a significant global environmental conditions, both climatic and asset with a value of at least $1.4 trillion, employs nearly anthropogenic, prevent tree growth. Tropical 1.3 billion people globally and directly support the grasslands are found in tropical wet and dry climates. livelihoods of 600 million smallholder farmers in the These areas are hot year-round, usually never dropping developing world (Thornton et al., 2002). Moreover, under 64 degrees Fahrenheit. Although these areas are livestock keeping is an important risk reduction strategy overall very dry, they do have a season of heavy rain. for vulnerable communities, and livestock are important Annual rainfall is from 50-125 cm per year. It is crucial providers of nutrients and traction for growing crops that the rainfall is concentrated in six or eight months in smallholder systems. Currently, livestock products of the year, followed by a long period of drought when are the main outputs of grazing lands and continue to fires can occur. Tropical grasslands occur in the same be the fastest growing agricultural subsector globally. regions as savannas, and the distinction between these In some developing countries, the livestock sector two vegetation types is rather arbitrary, depending on 56 whether there are few or many trees. Typical tropical converted much of the land into agro-climax where grasslands are found mainly in the Sahel south of the climax vegetation is now agricultural crop. The Sahara, in East Africa, and in Australia. biotically disturbed forest land and agri-climax areas provide niche for grasses. In tropical regions, the short growing season is usually the rainy season or, in some cases, the season Chronology of evolution of grass, grazers and man when the ground is not waterlogged or submerged. is depicted in Table 2 (Crowder and Chheda, 1982). Perennial grasses, relying on subterranean reserves of Grasslands arose during the period of cooling and stored food for rapid shoot growth, are well adapted to drying of the global climate, probably during the exploiting such brief growing seasons, reaching their Cenozoic Era (65.5 million years ago). Indeed, the grass maximum size and completing their seeding within a family (Poaceae) itself evolved only early in this era. few weeks. Their above ground parts then die back, The date of earliest appearance of grasslands varies providing potential fuel for the grass fires that typify from region to region. In several regions a succession of these environments. The underground perennating vegetation types can be recognized in the Cenozoic fossil roots and rhizomes of the grasses, however, are record, as climate dried out progressively. For example, relatively well protected from fire and regenerate under in central Australia during the past 50 million years favourable conditions. tropical rainforest gave way successively to savanna, grassland, and, finally, desert. Natural calamities like Origin and history: droughts and wild fires and exposure to heavy grazing The natural grasslands are considered as in forest areas have favoured grassland development intermediates in an environmental gradient, with while wet seasons and an absence of significant forests at one end and deserts at the other. Forests occupy disturbances favour woody vegetation. Changes in the the most favourable environments, where moisture is severity or frequency of these factors can cause a change adequate for growth and survival of tall and dense from one vegetation type to another. Many of the vegetation dominated by trees. On the other hand, temperate grasslands are believed to be of great deserts are found where moisture is so lacking that a antiquity and are climax formations determined by soil continuous and permanent vegetation cover cannot be and climate while most of the tropical grasslands are of maintained. Grasslands lie between these two more recent origin and have replaced forests that have extremes.The existence of grassland has been possible been destroyed mainly by cutting and fire and these due to biotic activities such as lopping, burning, shifting have been maintained largely through grazing animals cultivation and grazing of the forests for the centuries. (Barnard & Frankel, 1964). In East Africa, destruction Human activities have affected the grasslands all over of trees and shrubs by elephants is a significant factor the world. The long term human activities have in this process, and Lamprey (1979) has stated that in Table 1: World tropical and sub-tropical grasslands, savannas and shrub lands Location Grassland, savannas and shrub lands Africa Angolan Miombo woodlands, Angolan Mopane woodlands, Ascension scrub and grasslands, Central Zambezian Miombo woodlands, East Sudanian savanna, Eastern Miombo woodlands, Guinean forest- savanna mosaic, Itigi-Sumbu thicket, Kalahari Acacia-Baikiaea woodlands, Mandara Plateau mosaic, Northern Acacia-Commiphora bushlands and thickets, Northern Congolian forest-savanna mosaic, Sahelian Acacia savanna, Serengeti, Somali Acacia-Commiphora bushlands and thickets, Southern Acacia-Commiphora bushlands and thickets, Southern Africa bushveld, Southern
Recommended publications
  • Global Legal Regimes to Protect the World's Grasslands / John W
    00 head grasslands final 9/28/12 1:47 PM Page i Global Legal Regimes to Protect the World’s Grasslands 00 head grasslands final 9/28/12 1:47 PM Page ii 00 head grasslands final 9/28/12 1:47 PM Page iii Global Legal Regimes to Protect the World’s Grasslands John W. Head Robert W. Wagstaff Distinguished Professor of Law University of Kansas School of Law Lawrence, Kansas Carolina Academic Press Durham, North Carolina 00 head grasslands final 9/28/12 1:47 PM Page iv Copyright © 2012 John W. Head All Rights Reserved Library of Congress Cataloging-in-Publication Data Head, John W. (John Warren), 1953- Global legal regimes to protect the world's grasslands / John W. Head. p. cm. ISBN 978-1-59460-967-1 (alk. paper) 1. Grasslands--Law and legislation. I. Title. K3520.H43 2012 346.04'4--dc23 2012016506 Carolina Academic Press 700 Kent Street Durham, North Carolina 27701 Telephone (919) 489-7486 Fax (919) 493-5668 www.cap-press.com Printed in the United States of America 00 head grasslands final 9/28/12 1:47 PM Page v Summary of Contents Part One Grasslands at Risk Chapter 1 • The Character and Location of the World’s Grasslands and Prairies 3 I. Locations of Grasslands in the World 4 II. Character and Definitions of Grasslands 17 Chapter 2 • How Are the Grasslands at Risk, and Why Should We Care? 39 I. Degradation and Destruction of the World’s Grasslands 39 II. What Good Are Grasslands? 57 III. Closing Comments for Part One 63 Part Two Current Legal Regimes Pertaining to Grasslands Chapter 3 • National and Provincial Measures for Grasslands Protection 67 I.
    [Show full text]
  • Selous Game Reserve Tanzania
    SELOUS GAME RESERVE TANZANIA Selous contains a third of the wildlife estate of Tanzania. Large numbers of elephants, buffaloes, giraffes, hippopotamuses, ungulates and crocodiles live in this immense sanctuary which measures almost 50,000 square kilometres and is relatively undisturbed by humans. The Reserve has a wide variety of vegetation zones, from forests and dense thickets to open wooded grasslands and riverine swamps. COUNTRY Tanzania NAME Selous Game Reserve NATURAL WORLD HERITAGE SITE 1982: Inscribed on the World Heritage List under Natural Criteria ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following Statement of Outstanding Universal Value at the time of inscription: Brief Synthesis The Selous Game Reserve, covering 50,000 square kilometres, is amongst the largest protected areas in Africa and is relatively undisturbed by human impact. The property harbours one of the most significant concentrations of elephant, black rhinoceros, cheetah, giraffe, hippopotamus and crocodile, amongst many other species. The reserve also has an exceptionally high variety of habitats including Miombo woodlands, open grasslands, riverine forests and swamps, making it a valuable laboratory for on-going ecological and biological processes. Criterion (ix): The Selous Game Reserve is one of the largest remaining wilderness areas in Africa, with relatively undisturbed ecological and biological processes, including a diverse range of wildlife with significant predator/prey relationships. The property contains a great diversity of vegetation types, including rocky acacia-clad hills, gallery and ground water forests, swamps and lowland rain forest. The dominant vegetation of the reserve is deciduous Miombo woodlands and the property constitutes a globally important example of this vegetation type.
    [Show full text]
  • Aerial Surveys of Wildlife and Human Activity Across the Bouba N'djida
    Aerial Surveys of Wildlife and Human Activity Across the Bouba N’djida - Sena Oura - Benoue - Faro Landscape Northern Cameroon and Southwestern Chad April - May 2015 Paul Elkan, Roger Fotso, Chris Hamley, Soqui Mendiguetti, Paul Bour, Vailia Nguertou Alexandre, Iyah Ndjidda Emmanuel, Mbamba Jean Paul, Emmanuel Vounserbo, Etienne Bemadjim, Hensel Fopa Kueteyem and Kenmoe Georges Aime Wildlife Conservation Society Ministry of Forests and Wildlife (MINFOF) L'Ecole de Faune de Garoua Funded by the Great Elephant Census Paul G. Allen Foundation and WCS SUMMARY The Bouba N’djida - Sena Oura - Benoue - Faro Landscape is located in north Cameroon and extends into southwest Chad. It consists of Bouba N’djida, Sena Oura, Benoue and Faro National Parks, in addition to 25 safari hunting zones. Along with Zakouma NP in Chad and Waza NP in the Far North of Cameroon, the landscape represents one of the most important areas for savanna elephant conservation remaining in Central Africa. Aerial wildlife surveys in the landscape were first undertaken in 1977 by Van Lavieren and Esser (1979) focusing only on Bouba N’djida NP. They documented a population of 232 elephants in the park. After a long period with no systematic aerial surveys across the area, Omondi et al (2008) produced a minimum count of 525 elephants for the entire landscape. This included 450 that were counted in Bouba N’djida NP and its adjacent safari hunting zones. The survey also documented a high richness and abundance of other large mammals in the Bouba N’djida NP area, and to the southeast of Faro NP. In the period since 2010, a number of large-scale elephant poaching incidents have taken place in Bouba N’djida NP.
    [Show full text]
  • Flora of China 22: 604–605. 2006. 201. DICHANTHIUM Willemet, Ann
    Flora of China 22: 604–605. 2006. 201. DICHANTHIUM Willemet, Ann. Bot. (Usteri) 18: 11. 1796. 双花草属 shuang hua cao shu Chen Shouliang (陈守良); Sylvia M. Phillips Eremopogon Stapf; Lepeocercis Trinius. Perennial, rarely annual. Leaf blades often cauline, linear; ligule membranous. Inflorescence of single or subdigitate racemes, terminal or also axillary and sometimes supported by spathes; racemes usually with 1 or more basal homogamous spikelet pairs, spikelets often imbricate; rachis internodes and pedicels slender, solid, bearded, truncate or oblique at apex. Sessile spikelet dorsally compressed; callus short, obtuse; lower glume papery to cartilaginous, broadly convex to slightly concave, sometimes pitted, rounded on flanks, becoming 2-keeled upward, apex obtuse; upper glume boat-shaped, dorsally keeled, awnless; lower floret reduced to an empty hyaline lemma; upper lemma stipitiform, entire, awned from apex; awn geniculate, glabrous or puberulous. Stamens (2–) 3. Pedicelled spikelet similar to the sessile, male or barren, awnless. About 20 species: Africa through India to SE Asia and Australia; three species in China. Dichanthium is closely related to Bothriochloa, but can be distinguished by its pedicels and rachis internodes being solid and lacking a median, purple line. The species present in China are not clear-cut and are also variable within themselves due to polyploidy and apomixis. All three species provide good grazing and now occur widely in tropical regions as introductions or escapes. 1a. Peduncle pilose below inflorescence ........................................................................................................................... 1. D. aristatum 1b. Peduncle glabrous. 2a. Lower glume of sessile spikelet obovate, winged along keels; leaf sheaths compressed; ligule less than 1 mm, margin ciliate ........................................................................................................................................................ 2. D. caricosum 2b.
    [Show full text]
  • Investigating Grasslands All Across the World from ESRI India Geo-Inquiry Team
    Investigating Grasslands all across the world From ESRI India Geo-Inquiry Team Target Audience: Class 9 Geography Students Time required: 1 hour and 10 Minutes Indicator: Understand the presence of Grasslands all across the world and learn about them on real maps. Learning Outcomes: Students will analyze the Grasslands all across the world using web-based mapping tools to: 1–Symbolize and classify a map of the grasslands of the world based on their division, formation and name. 2–Examine a table of the largest grasslands of the world with details of name, division and formation. 3– Understand the relationship between individual grassland and the larger grasslands in which individual grasslands exist. 4– Examine which regions of the world has grasslands and where in India Grasslands are found. 5– Understand the differences between division, formation and different individual grasslands. 6– Understand how grasslands have sustained the ecology of earth and its contribution towards the biosphere. Map URL: https://arcg.is/1SHvj0 Can you better understand the importance of grasslands in the world? Can you better understand characteristics of the world’s major grasslands, including their locations, division, formation, and countries in which it is spread out? Can you determine the effect of grasslands in the ecology and biosphere of the earth? Teacher Notes This is a discovery type of investigation. Students use live web mapping services in an online Geographic Information System (GIS) and use real data about rivers around the world. Students will investigate four themes of geography in this activity: 1. Patterns of grasslands all across the world.
    [Show full text]
  • Lake Malawi Destination Guide
    Lake Malawi Destination Guide Overview of Lake Malawi Occupying a fifth of the country, Lake Malawi is the third largest lake in Africa and home to more fish species than any other lake in the world. Also known as Lake Nyasa, it is often referred to as 'the calendar lake' because it is 365 miles (590km) long and 52 miles (85km) wide. Situated between Malawi, Mozambique and Tanzania, this African Great Lake is about 40,000 years old, a product of the Great Rift Valley fault line. There are fishing villages to be found along the lakeshore where residents catch a range of local fish including chambo, kampango (catfish), lake salmon and tiger fish. The export of fish from the lake contributes significantly to the country's economy, and the delicious chambo, similar to bream, is served in most Malawian eateries. Visitors to Lake Malawi can see colourful mbuna fish in the water, while there are also occasional sightings of crocodiles, hippos, monkeys and African fish eagles along the shore. The nearby Eastern Miombo woodlands are home to African wild dogs. Swimming, snorkelling and diving are popular activities in the tropical waters of the lake, and many visitors also enjoy waterskiing, sailing and fishing. There are many options available for holiday accommodation at the lake, including resorts, guesthouses and caravan or camping parks. All budgets are catered for, with luxury lodges attracting the glamorous and humble campsites hosting families and backpackers. Cape Maclear is a well-developed lakeside town, and nearby Monkey Bay is a great holiday resort area. Club Makokola, near Mangochi, is also a popular resort.
    [Show full text]
  • Field Guide for Managing Yellow and Caucasian (Old World) Bluestems in the Southwest
    USDA United States Department of Agriculture - Field Guide for Managing Yellow and Caucasian (Old World) Bluestems in the Southwest Forest Southwestern Service Region TP-R3-16-36 October 2018 Cover Photos Top left — Yellow bluestem; courtesy photo by Max Licher, SEINet Top right — Yellow bluestem panicle; courtesy photo by Billy Warrick; Soil, Crop and More Information Lower left — Caucasian bluestem panicle; courtesy photo by Max Licher, SEINet Lower right — Caucasian bluestem; courtesy photo by Max Licher, SEINet Authors Karen R. Hickman — Professor, Oklahoma State University, Stillwater OK Keith Harmoney — Range Scientist, KSU Ag Research Center, Hays KS Allen White — Region 3 Pesticides/Invasive Species Coord., Forest Service, Albuquerque NM Citation: USDA Forest Service. 2018. Field Guide for Managing Yellow and Caucasian (Old World) Bluestems in the Southwest. Southwestern Region TP-R3-16-36, Albuquerque, NM. In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339.
    [Show full text]
  • Australian Savanna Eco System S J.J
    AUSTRALIAN SAVANNA ECO SYSTEM S J.J. Mott*, John Williams**, M.H. Andrew*** and A.N. Gillisonf * CSIRO Division of Tiopical Crops and Pastures,Cmnirgh;; Laboratory, St. Lucia, Australia e. 4067, ** CSIRO Division of Soils,Davies Laboratory, Private Mail Bag,P.O. Aitkenvale, 4g14, Australia :F:t* CSIRO Division e. of TropicalCrops and Pastures, Darwin Labor-atories,private Bag No. 44, Winnellie, NT 5789,Australia. t cSIRo Division of Water and Land Resources,P.O. Box 1666, Canberra City, AcT Australia. 2601, SUMMARY within the Australiansavannas-six.major groupshave been recognisedon the basisof the graminoid understorey'I.n all groupsthere is a dominant stimm,ergrowing season ,rrltr, lttt. productivity in winter months. characterisationof the mainlimiting.factors to produciivityrf,o*, thut ttretropical Monsoon Tallgrass has the most scvereenvironment system with a winter'droughtani pred<rminaninutrient limitation subhumid svstems to grofih. In the the higher-soil fertility in the S"ubtropi;Ji;ii;;; compensates climaticenvironment' for a less favourable but in the inlandsemi-arid communities bottiincreasing aridity combineto limit plant production. and low nutrientsoils Throughoutthe subhumid,uuunnu" ii..,iither natural almostannual occurrence. or man-inducedis an In termsof functionaladaptations to the stressesof the savannaenvironment, plants show to thoseoccurring in manysimilarities speciesin othercontinental savaffia systems. In ecosystemfunctioning limitation of the severenutrient the northerngroups closely parallel those conditiorr .*lrtirg savannas. in west and central African vertebratebiomass is low on all savannatypes with p-roductivityof both nativeand introducedspecies being curtailedbv low herbagequality in the driei months.'Invertef;"1";,;;;;;i"lly termites,reach high biomass levelsand play a majorpart in tirefunctioning of the ecosystems,especially in termsof nutrientcycling.
    [Show full text]
  • The Nature of Northern Australia
    THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF).
    [Show full text]
  • Carbon Dioxide Fluxes from Contrasting Ecosystems in the Sudanian
    Quansah et al. Carbon Balance and Management (2015) 10:1 DOI 10.1186/s13021-014-0011-4 RESEARCH Open Access Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa Emmanuel Quansah1,3, Matthias Mauder2*, Ahmed A Balogun1, Leonard K Amekudzi3, Luitpold Hingerl4, Jan Bliefernicht4 and Harald Kunstmann2,5 Abstract Background: The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics. Results: Over the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO2,mostlyby virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites.
    [Show full text]
  • Cliff of Bandiagara
    I---. _ L/ v WORLDBEBITAGE NOMINATION--IUCN SUMMARY c ' LE SANCTUAIRENATUREL ST CULTURELDE LA FALAISE DE BANDI' 0w.J) mi. r ---- l&L- -_ _ _ ._ Summary prepared by IUCN (March 1989) based on the original nomination submitted by the Government of Mali. This original and all documents presented in support of this nomination will be available for consultation at the meetings of the Bureau and the Committee. 1. LOCATION: The village of Sangha (Sanga or Songo), on the crest of the Bandiagara plateau escarpment, is located at the centre of the sanctuary. It overlooks the village of Banani at the Bandiagara cliff base, 44km north-east of Bandiagara town and 107km east of Mopti, in the Mopti fifth administrative and economic region. 14°00'-14045'N, 3°00*-3050'W. The sanctuary totals 400,OOOha. 2. JURIDICAL: The area was constituted as a natural and cultural sanctuary, initially based on Ordinance No. 52 of 3 October 1969 regulating the export of objects of art and subsequently by Law No. 85-4O/AN-RM of 26 July 1985 and Decree No. 203/PG-EM of 13 August 1985 safeguarding the cultural heritage, whilst Decree No. 299/PG-l?M of 19 September 1966 relates to the excavation-of sites. The Law No. 68-a/AN-EN of February 1968 sets out the Forestry Code and Ordinance No. 60/U&N of 11 November 1969 sets out the Hunting Code. 3. The sanctuary lies at the southern limit of the-Sahara in an arid aahelian region with averages of 58Ommof rainfall per year.
    [Show full text]
  • Mitchell Grass Downs Bioregion (QLD and the NT)
    Extract from Rangelands 2008 — Taking the Pulse 4. Focus Bioregions - Mitchell Grass Downs bioregion (QLD and the NT) © Commonwealth of Australia 2008 Suggested citation This work is copyright. It may be reproduced for Bastin G and the ACRIS Management Committee, study, research or training purposes subject to the Rangelands 2008 — Taking the Pulse, published on inclusion of an acknowledgment of the source and behalf of the ACRIS Management Committee by the no commercial usage or sale. Reproduction for National Land & Water Resources Audit, Canberra. purposes other than those above requires written Acknowledgments permission from the Commonwealth. Requests should be addressed to: Rangelands 2008 — Taking the Pulse is the work of many people who have provided data and information that Assistant Secretary has been incorporated into this report. It has been Biodiversity Conservation Branch possible due to signicant in-kind contributions from the Department of the Environment,Water, Heritage State andTerritory governments and funding from the and the Arts Australian Government through the Natural Heritage GPO Box 787 Trust. Particular thanks are due to sta of the Desert Canberra ACT 2601 Knowledge Cooperative Research Centre, including Australia Melissa Schliebs,Ange Vincent and Craig James. Disclaimer Cover photograph This report was prepared by the ACRIS Management West MacDonnell Ranges (photo Department of Unit and the ACRIS Management Committee.The the Environment,Water, Heritage and the Arts) views it contains are not necessarily those of the Australian Government or of state or territory Principal author: Gary Bastin, CSIRO and Desert governments.The Commonwealth does not accept Knowledge CRC responsibility in respect of any information or advice Technical editor: Dr John Ludwig given in relation to or as a consequence of anything Editors: Biotext Pty Ltd contained herein.
    [Show full text]