Subsector Sourcebook: Earth Subsector

Total Page:16

File Type:pdf, Size:1020Kb

Subsector Sourcebook: Earth Subsector Subsector Sourcebook: Earth Subsector Sample file 2 Subsector Sourcebook: Earth Subsector Table of Contents Earth Subsector ............................................................................................................................................ 5 Subsector Map .......................................................................................................................................... 5 Subsector Data .......................................................................................................................................... 6 Sone Ke Amsu (Earth 0104) .......................................................................................................................... 7 Aishana ko Arama (Earth 0105) ................................................................................................................. 11 Reito Rokku (Earth 0106) ........................................................................................................................... 17 Toku (Earth 0107) ....................................................................................................................................... 21 Ti Nsan Oke (Earth 0108) ............................................................................................................................ 25 Chicxulub (Earth 0110) ............................................................................................................................... 29 Fangun Shi (Earth 0301) ............................................................................................................................. 33 Aisa Durghatana (Earth 0304) .................................................................................................................... 37 Serebryanyy (Earth 0309) ........................................................................................................................... 43 Inama (Earth 0401) ..................................................................................................................................... 47 Hansata Roka (Earth 0403) ......................................................................................................................... 52 Earth (Earth 0405) ...................................................................................................................................... 57 Luna/Earth .............................................................................................................................................. 65 Mars/Earth .............................................................................................................................................. 69 Afastado (Earth 0408) ................................................................................................................................ 74 Menshikov (Earth 0409) ............................................................................................................................. 79 Hongse Shamo (Earth 0501) ....................................................................................................................... 87 Beral (Earth 0508) ....................................................................................................................................... 92 SampleGolddust (Earth 0509) ................................................................................................ ................................file 97 Kookynie Crater ..................................................................................................................................... 102 3 Subsector Sourcebook: Earth Subsector Xi Oizaguetu (Earth 0602) ........................................................................................................................ 105 Debakel (Earth 0604) ................................................................................................................................ 110 Lehmann’s Gürtel .................................................................................................................................. 117 Xiaoxue .................................................................................................................................................. 119 Neu Berlin (Earth 0608) ............................................................................................................................ 123 Tanner (Earth 0609) .................................................................................................................................. 134 Bingxue Shijie (Earth 0704) ...................................................................................................................... 138 Hagelkörner (Earth 0707) ........................................................................................................................ 145 Hundebett (Earth 0708) ........................................................................................................................... 150 Eisstrom (Earth 0805) ............................................................................................................................... 155 Zahreddine (Earth 0807) .......................................................................................................................... 160 Legal .......................................................................................................................................................... 165 Sample file 4 Subsector Sourcebook: Earth Subsector Sample file 5 Subsector Sourcebook: Earth Subsector Earth Subsector (Subsector G of Earth Sector) Hex Name UWP Trade Codes PBG Sun(s) Allegiance 0104 Sōnē kē ām̐ sū B000466-B As Ni Va 730 M5 V M5 V New Zealand M5 V 0105 Aishana Ko A886667-B Ag Ga Ni Ri 821 K5 V K7 V India Arama 0106 Reitō Rokku B400467-B Ni 300 M3 V M3 V Japan 0107 Tōku BAB0267-B De Lo Ni 201 M6 V Japan 0108 Ti Nṣàn Oke B000565-B As Ni Va 621 M1 V M3 V Nigeria 0110 Chicxulub B000466-B As Ni Va 721 M4 V Mexico 0301 Fāngǔn shi B310467-B Ni 310 M0 V China 0304 Ā'isa B643466-B Po 420 M4 V India Durghaṭanā 0309 Serebryanyy B000467-B As Ni Va 320 M4 V Russia 0401 Ināma B420367-B Lo Ni 500 M0 V India 0403 Hansatā Rŏka A531565-B Ni Po 100 M3 V India 0405 Earth A867A76-D Ga Hi Ht Ri 134 G2 V Divided 0408 Afastado C300464-A Ni 621 M2 V Brazil 0409 Menshikov A867766-B Ag Ga Ri 721 G8 V Russia 0501 Hóngsè shāmò BAB0366-B De Lo Ni 510 M3 V China 0508 Beral B300367-B Lo Ni 611 M5 V M6 V Nigeria 0509 Golddust B400466-B Ni 410 M5 V US/Australia 0602 Xi Oizaguetu B300367-B Lo Ni 531 K5 V T1 T6 China 0604 Debakel AAB0765-B De 710 G2 V K0V M5 V Germany/ China 0608 Neu Berlin A967845-C Ga Ri 323 K2 V German 0609 Tanner B410366-B Lo Ni 400 M6 V US 0704 Bīngxuě Shìjiè B744668-B Ag Ga Ni 400 L7 T0 China 0707 Hagelkörner B000666-B As Ni Va 610 M6 V Germany 0708 Hundebett B000665-B As Ni Va 610 A1 V DA2 Germany 0805 Eisstrom B000665-B As Ni Va 710 M4 V Germany 0807 Zahreddine B6B0466-B De Ni 500 M1 V Pan-Islamic Caliphate Sample file 6 Subsector Sourcebook: Earth Subsector Sone Ke Amsu (Earth 0104) B000466-B System Details hollowed out and given a standard artificial atmosphere. Sone Ke Amsu is an asteroid belt located in orbit around EZ Aquarii B, an M5 V red main Hydrographic Details sequence star. The belt orbits at a distance of approximately 0.065 AU (9.72 million kilometers Many of the asteroids have pockets of or 6.04 million miles). There are no other naturally occurring water inside their rocky shells. significant bodies in orbit around EZ Aquarii B. This water is used and recycled by the inhabitants EZ Aquarii B is one of the three stars in a for all of their needs. Additional potable water is trinary system. There are no other significant often shipped in from Earth and other sources. bodies in orbit around the other two stars. Both EZ Aquarii A and C are M5 V red main sequence stars. Geographic Details EZ Aquarii C orbits EZ Aquarii A at a close distance of 0.03 AU (4.5 million kilometers or 2.8 The surface of the Sone Ke Amsu asteroids million miles). EZ Aquarii B orbits this pair at a is coated in hydrocarbon ices. These are materials distance of 1.22 AU (182.5 million kilometers or such as methane, ethane, and carbon monoxide in 113.4 million miles). ice form. These ices are currently being mined Zimm Points leading to other star systems away from many of these asteroids which provides are located mainly near EZ Aquarii B and in space much of the income for the local government. near the trinary system. However, as of yet, none of the asteroids is free of hydrocarbon ice. Physical Data Population Details The major asteroids within the Sone Ke Amsu Belt have an average diameter of 166 The permanent population of the Sone Ke meters (544.6 feet). Most have a composition of Amsu Belt is 74,012. Most of these residents are 50% hydrocarbon ice, 40% rock, and 10% water originally from New Zealand on Earth with only a ice. Most of the hydrocarbon ice is located on the small minority having been born elsewhere. There outer shell of the icy bodies while the rocky are a small number of Gaishan altrants here as interior often contains the smaller pockets of well. water ice. The belt is approximately 0.002 AU (299,195.74 kilometers or 185,911.61 miles) in Government Details width. Sone Ke Amsu is administrated by the New Zealand government through a Colonial Atmospheric Details Governor. The current Colonial Governor is Janet Grace. There is no naturally occurring The Colonial Governor is
Recommended publications
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Star Systems in the Solar Neighborhood up to 10 Parsecs Distance
    Vol. 16 No. 3 June 15, 2020 Journal of Double Star Observations Page 229 Star Systems in the Solar Neighborhood up to 10 Parsecs Distance Wilfried R.A. Knapp Vienna, Austria [email protected] Abstract: The stars and star systems in the solar neighborhood are for obvious reasons the most likely best investigated stellar objects besides the Sun. Very fast proper motion catches the attention of astronomers and the small distances to the Sun allow for precise measurements so the wealth of data for most of these objects is impressive. This report lists 94 star systems (doubles or multiples most likely bound by gravitation) in up to 10 parsecs distance from the Sun as well over 60 questionable objects which are for different reasons considered rather not star systems (at least not within 10 parsecs) but might be if with a small likelihood. A few of the listed star systems are newly detected and for several systems first or updated preliminary orbits are suggested. A good part of the listed nearby star systems are included in the GAIA DR2 catalog with par- allax and proper motion data for at least some of the components – this offers the opportunity to counter-check the so far reported data with the most precise star catalog data currently available. A side result of this counter-check is the confirmation of the expectation that the GAIA DR2 single star model is not well suited to deliver fully reliable parallax and proper motion data for binary or multiple star systems. 1. Introduction high proper motion speed might cause visually noticea- The answer to the question at which distance the ble position changes from year to year.
    [Show full text]
  • Useful Constants
    Appendix A Useful Constants A.1 Physical Constants Table A.1 Physical constants in SI units Symbol Constant Value c Speed of light 2.997925 × 108 m/s −19 e Elementary charge 1.602191 × 10 C −12 2 2 3 ε0 Permittivity 8.854 × 10 C s / kgm −7 2 μ0 Permeability 4π × 10 kgm/C −27 mH Atomic mass unit 1.660531 × 10 kg −31 me Electron mass 9.109558 × 10 kg −27 mp Proton mass 1.672614 × 10 kg −27 mn Neutron mass 1.674920 × 10 kg h Planck constant 6.626196 × 10−34 Js h¯ Planck constant 1.054591 × 10−34 Js R Gas constant 8.314510 × 103 J/(kgK) −23 k Boltzmann constant 1.380622 × 10 J/K −8 2 4 σ Stefan–Boltzmann constant 5.66961 × 10 W/ m K G Gravitational constant 6.6732 × 10−11 m3/ kgs2 M. Benacquista, An Introduction to the Evolution of Single and Binary Stars, 223 Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7, © Springer Science+Business Media New York 2013 224 A Useful Constants Table A.2 Useful combinations and alternate units Symbol Constant Value 2 mHc Atomic mass unit 931.50MeV 2 mec Electron rest mass energy 511.00keV 2 mpc Proton rest mass energy 938.28MeV 2 mnc Neutron rest mass energy 939.57MeV h Planck constant 4.136 × 10−15 eVs h¯ Planck constant 6.582 × 10−16 eVs k Boltzmann constant 8.617 × 10−5 eV/K hc 1,240eVnm hc¯ 197.3eVnm 2 e /(4πε0) 1.440eVnm A.2 Astronomical Constants Table A.3 Astronomical units Symbol Constant Value AU Astronomical unit 1.4959787066 × 1011 m ly Light year 9.460730472 × 1015 m pc Parsec 2.0624806 × 105 AU 3.2615638ly 3.0856776 × 1016 m d Sidereal day 23h 56m 04.0905309s 8.61640905309
    [Show full text]
  • Spectral Classification of Stars
    29:50 Astronomy Lab #6 Stars, Galaxies, and the Universe Name Partner(s) Date Grade Category Max Points Points Received On Time 5 Printed Copy 5 Lab Work 90 Total 100 Spectral Classification of Stars 1. Introduction Scientists across all fields use classification systems to help them sub-divide the vast universe of objects and phenomena into smaller groups, making them easier to study. In biology, life can be categorized by cellular properties. Animals are separated from plants, cats separated from dogs, oak trees separated from pine trees, etc. This framework allows biologists to better understand how processes are FIGURE 1: SPECTRUM OF VEGA interconnected and quickly predict characteristics of newly discovered species. In Astronomy, the stellar classification system allows scientists to understand the p r o p e r t i e s o f s t a r s . E a r l y astronomers began to realize that the extensive number of stars exhibited patterns related to the starʼs color and temperature. This classification was good, but had limitations (especially for studying distant stars). By the early 1900ʼs, a classification system based on the observed stellar spectra was developed and is still used today. A STELLAR SPECTRUM is a measurement of a 1 Spectral Classification of Stars starʼs brightness across of range of wavelengths (or frequencies). It is in a sense a “fingerprint” for the star, containing features that reveal the chemical composition, age, and temperature. This measurement is made by “breaking up” the light from the star into individual wavelengths, much like how a prism or a raindrop separates the sunlight into a rainbow.
    [Show full text]
  • Planet Searching from Ground and Space
    Planet Searching from Ground and Space Olivier Guyon Japanese Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan (NINS) University of Arizona Breakthrough Watch committee chair June 8, 2017 Perspectives on O/IR Astronomy in the Mid-2020s Outline 1. Current status of exoplanet research 2. Finding the nearest habitable planets 3. Characterizing exoplanets 4. Breakthrough Watch and Starshot initiatives 5. Subaru Telescope instrumentation, Japan/US collaboration toward TMT 6. Recommendations 1. Current Status of Exoplanet Research 1. Current Status of Exoplanet Research 3,500 confirmed planets (as of June 2017) Most identified by Jupiter two techniques: Radial Velocity with Earth ground-based telescopes Transit (most with NASA Kepler mission) Strong observational bias towards short period and high mass (lower right corner) 1. Current Status of Exoplanet Research Key statistical findings Hot Jupiters, P < 10 day, M > 0.1 Jupiter Planetary systems are common occurrence rate ~1% 23 systems with > 5 planets Most frequent around F, G stars (no analog in our solar system) credits: NASA/CXC/M. Weiss 7-planet Trappist-1 system, credit: NASA-JPL Earth-size rocky planets are ~10% of Sun-like stars and ~50% abundant of M-type stars have potentially habitable planets credits: NASA Ames/SETI Institute/JPL-Caltech Dressing & Charbonneau 2013 1. Current Status of Exoplanet Research Spectacular discoveries around M stars Trappist-1 system 7 planets ~3 in hab zone likely rocky 40 ly away Proxima Cen b planet Possibly habitable Closest star to our solar system Faint red M-type star 1. Current Status of Exoplanet Research Spectroscopic characterization limited to Giant young planets or close-in planets For most planets, only Mass, radius and orbit are constrained HR 8799 d planet (direct imaging) Currie, Burrows et al.
    [Show full text]
  • SRMP Stars Curriculum
    Science Research Mentoring Program STARS This course introduces students to stars, and research into stars. Topics covered include the lives of stars (“stellar evolution”), the HR Diagram, classification, types, the processes within, observational properties, catalogs of stellar properties, and other research tools associated with stellar astronomy. Organization: • Each activity and demonstration is explained under its own heading • If an activity has a handout, you will find that handout on a separate page • If an activity has a worksheet that students are expected to fill out, you will find that worksheet on a separate page. • Some additional resources (data set, images, a list used multiple times) are included as separate files. 2 Session 1: What is a Star? 4 Session 2: Necessary Mathematical Skills for Stellar Astronomy 10 Session 3: Magnitudes and Wien’s Law 23 Session 4: Spectroscopy, Photometry, and the HR Diagram 30 Session 5: Stellar Beginnings 34 Session 6: Age of Stars 37 Session 7: Stellar Death 40 Session 8: Stellar Motions 47 Session 9: Galaxies 49 Session 10: Substellar Objects – Brown Dwarfs and Exoplanets 56 Session 11: Exoplanet Properties 59 Session 12: Recent Discoveries To obtain a copy of the Journey to the Stars space show DVD, needed for session 12, please email [email protected] with your name, school or institution, grades you teach, and complete mailing address. The Science Research Mentoring Program is supported by NASA under grant award NNX09AL36G. 1 Science Research Mentoring Program STARS Session One: What is a star? LEARNING OBJECTIVES Students will understand what, in general, stars are; how many we can see; the best places to observe from; what groupings they come in; and what the relative sizes of stellar-related objects are.
    [Show full text]
  • 44 Closest Stars and How They Compare to Our Sun
    44 CLOSEST STARS AND HOW THEY COMPARE TO OUR SUN R = Solar radius (a unit of distance to express the size of stars relative to the sun) L = Solar luminosity (a unit of radiant flux used SUN System/constellation to compare the luminosity of stars, galaxies, Solar System Potential planets and other celestial objects in terms of the sunʼs output) 8 Distance From Earth 8.317 light-minutes EARTH 1R (432,288 miles) s) -year (light Proxima Centauri TH EAR Alpha Centauri OM E FR 1 ANC DIST 4.244 light-years 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 25 0.1542R 0.00005L L <=0.0001 α Centauri A (Rigil Kentaurus) 1 Alpha Centauri L 4.365 light-years 1.223R 1.519 L α Centauri B (Toliman) 5 Alpha Centauri light-years 4.37 light-years 0.863R 0.5002L Bernard’s Star Ophiuchus 1 5.957 light-years 0.196R 0.0035L Wolf 359 (CN Leonis) Leo 2 7.856 light-years 0.16R 0.0014L Lalande 21185 Ursa Major 1 8.307 light-years 0.393R 0.026L Sirius A Canis Major Luyten 726-8A 8.659 light-years Cetus 1.711 R 25.4L 8.791 light-years 0.14R 0.00004L Sirius B Canis Major 8.659 light-years Luyten 726-8B 0.0084R 0.056L Cetus 8.791 light-years 0.14R 0.00004L Ross 154 Sagittarius 9.7035 light-years 0.24R 0.0038L 10 light-years Epsilon Eridani Eridanus Ross 248 2 Andromeda 10.446 light-years 10.2903 light-years 0.735R 0.34L 0.16R 0.0018L Lacaille 9352 Piscis Austrinus 3 10.7211 light-years Ross 128 0.47R 0.0367L Virgo 1 EZ Aquarii A 11 light-years Aquarius 61 Cygni A 0.1967R 0.00362L 11.1 light-years Cygnus 0.175R 0.000087L 3 (part of triple star system) 11.4 light-years
    [Show full text]
  • 3-D Starmap 12.0 All Stars Within 12 Parsecs (40 Light-Years) of Sol
    3-D Starmap 12.0 All stars within 12 parsecs (40 light-years) of Sol. All units are in parsecs. (1 parsec = 3.26 light-years) Stars are plotted in cartesian x,y,z coordinates. GJ 1243 X-Y plane is the plane of the galaxy. 1.9:11.6:2.1 +x is Coreward, -x is Rimward, NN 4201 +y is Spinward, -y is Trailing 2.9:11.3:-4.1 Star data is from HYG database. 2.1 2.9 Stars circled in green are likely to host 11.0 1.8 human-habitable planets, according to NN 4098 1.6 5.4:10.9:2.3 GJ 1234 the HabCat database. 3.8:10.8:2.4 Gray lines link each star with its two closest neighbors. 1.7 24 Iota Pegasi 1.4:10.6:-4.8 Green lines link habitable stars with their two 2.5 NN 4122 closest habitable neighbors. 4.3:10.5:0.8 Gl 4 B Links are labeled with their distance in parsecs. -4.7:10.3:-3.3 1.5 GJ 1288 0.3 -2.9:10.2:-6.1 1.5 Winchell Chung: Nyrath the nearly wise 1.2 Gl 4 10.0 http://www.projectrho.com/starmap.html 1.2 -4.6:10.0:-3.2 1.0 Gl 851 GJ 1223 2.0:9.7:-5.8 0.9 4.8:9.7:5.1 GJ 1004 GJ 1238 NN 4048 1.7 Gl 766 NN 4070 -4.8:9.6:-2.3 -3.0:9.6:4.5 4.2:9.6:4.42.0 4.9:9.6:0.2 5.3:9.6:3.1 2.8 1.0 3.0 Gl 671 0.4 1.8 3.9 4.0:9.4:6.9 2.4 Gl 909 BD+38°3095 3.7 -5.1:9.2:2.4 3.2 4.2:9.2:4.5 GJ 1253 -0.6:9.1:1.9 0.9 Gl 82 1.9 Gl 47 9.0 -8.0:9.0:-0.7 -6.1:9.0:-0.3 1.8 1.6 1.7 2.8 3.3 3.2 4.8 1.5 1.2 1.2 4.8 GJ 1053 NN 3992 -7.9:8.7:2.8 0.8 1.7 3.5 4.5:8.7:6.9 V 547 Cassiopeiae GJ 1206 -5.2:8.6:0.8 0.2:8.6:6.9 2.9 Gl 63 -7.0:8.5:-1.0 1.1 2.0 1.8 1.8 1.7 1.7 BD+61°195 NN 4247 3.4 GJ 1235 0.9 GJ 1232 -5.7:8.3:-0.1 3.1 1.0:8.3:-3.2 5.8:8.3:0.5 6.7:8.3:0.7 Hip 109119 GJ
    [Show full text]
  • Habitable Zone of a Star
    The Search for Life around Nearby Stars: from Remote Sensing to Interstellar Travel Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) JAXA Sept 29, 2016, University of Arizona Habitable zone of a star Every star has a habitable zone What makes planets habitable ? The planet must be in the habitable zone of its star: not be too close or too far Venera 13 lander, survived 127mn at 457 C, 89 atm Venus: too close, too hot Image credit: NASA/JPL-Caltech/MSSS Mars: too far, too cold What makes planets habitable ? Size matters: not too big, not too small Earth Moon: too small Jupiter: too big No atmosphere Mostly gas lots of planets, ~>10% of stars have potentially habitable planets ~300 billion stars in our galaxy ~300 billion stars in our galaxy ~30 billion habitable planets If 100 explorers were sent to visit each habitable for 10 seconds (only 300 million planets/explorer)... … it would take 95 yrs to complete the habitable exoplanets tour … in our galaxy alone 200 billion galaxies in the observable universe How do astronomers identify exoplanets ? HIGH PRECISION OPTICAL MEASUREMENTS OF STARLIGHT (indirect techniques) Earth around Sun at ~30 light year → Star position moves by 0.3 micro arcsecond (thickness of a human hair at 20,000 miles) → Star velocity is modulated by 10cm / sec (changes light frequency by 1 part in 3,000,000,000) If Earth-like planet passes in front of Sun-like star, star dims by 70 parts per million (12x12 pixel going dark on a HD TV screen 70 miles away) Exoplanet transit If the planet passes in front of its star, we see the star dimming slightly Transit of Venus, June 2012 Kepler (NASA) Directly imaging planet is necessary to find life Woolf et al.
    [Show full text]
  • 29:50/29:51 Stars, Galaxies and the Universe
    29:50/29:51 Stars, Lab Galaxies and the Universe Manual Lab manual for the introductory astronomy course of Stars, Galaxies and the Universe. Topics covered in this manual include units of measurement, star charts, parallax, spectroscopy, the sun, stellar classification, Plus Appendices and basic astronomical image analysis. Last edited August 2009 by T. Jaeger ABOUT THIS MANUAL This packet contains a series of lab projects intended to supplement the material covered in your introductory astronomy course. As this is a separate lab course, the subjects covered may not always directly follow material discussed in the lecture. Instead, the projects are meant to support the concepts taught in the lecture and teach you techniques used by past (and present) astronomers to reveal the secrets of the universe around them. Along with instructive text, the individual lab exercises contain a series of questions designed both to guide your progress and test your understanding of the concepts discussed. Your score for the project will be determined by how well you answer these questions. If you are confused about questions as you progress, ask your lab instructor for assistance. Questions near the end of the project often build on earlier ones, so it is better that you ask now than to be confused later. Each project is designed to take one full lab period and (unless otherwise instructed) is to be completed and returned to your lab instructor at the end of the allotted lab time. Projects are intended to be done with a lab partner. While discussion is encouraged, make sure that the answers to each question are your own.
    [Show full text]
  • Monografia De Railson Carneiro.Pdf
    UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS BACHARELADO EM CIÊNCIAS EXATAS E TECNOLÓGICAS MONOGRAFIA ESTRELAS: UMA ANÁLISE DA SEQUÊNCIA PRINCIPAL DO DIAGRAMA H-R RAILSON CARNEIRO ALEXANDRINO RODRIGUES CRUZ DAS ALMAS, 17 DE MAIO DE 2013 UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS BACHARELADO EM CIÊNCIAS EXATAS E TECNOLÓGICAS ESTRELAS: UMA ANÁLISE DA SEQUÊNCIA PRINCIPAL DO DIAGRAMA H-R RAILSON CARNEIRO ALEXANDRINO RODRIGUES Monografia apresentada ao curso de Bacharelado em Ciências Exatas e Tecnológicas como Trabalho de Conclusão de Curso orientado pelo professor Kilder Leite Ribeiro. CRUZ DAS ALMAS, 17 DE MAIO DE 2013 FICHA CATALOGRÁFICA R696e Rodrigues, Railson Carneiro Alexandrino. Estrelas: uma análise da sequência principal do Diagrama H-R / Railson Carneiro Alexandrino Rodrigues._ Cruz das Almas, BA, 2013. 65f.; il. Orientador: Kilder Leite Ribeiro. Monografia (Graduação) – Universidade Federal do Recôncavo da Bahia, Centro de Ciências Exatas e Tecnológicas. 1.Estrelas – Diagrama. 2.Astrofísica – Análise. I.Universidade Federal do Recôncavo da Bahia, Centro de Ciências Exatas e Tecnológicas. II.Título. CDD: 523.01 Ficha elaborada pela Biblioteca Universitária de Cruz das Almas - UFRB. DEDICATÓRIA Dedico esta monografia aos meus pais por todo o apoio e suporte que me deram desde o início de minha jornada acadêmica. Bem como, a todos os leitores que se beneficiarem da leitura deste trabalho. AGRADECIMENTOS Aos meus pais, pelo incentivo diário que me fornecem. Ao meu orientador, Kilder Leite Ribeiro, pela paciência e pelo direcionamento do trabalho a ser feito. Aos grandes cientistas do passado e do presente, por seus incríveis feitos que servem de base para a sociedade atual.
    [Show full text]
  • Can TMT Image Habitable Planets ?
    Can TMT Image Habitable Planets ? Olivier Guyon Japanese Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan (NINS) University of Arizona Breakthrough Watch committee chair May 12, 2017 Why directly imaging ? Woolf et al. Spectra can also be obtained by transit, but : - Low probability (few %) - High atmosphere only Spectra of Earth (taken by looking at Earthshine) shows evidence for life and plants Taking images of exoplanets: Why is it hard ? 3 4 Contrast and Angular separation 1 λ/D 1 λ/D 1 λ/D Around about 50 stars (M type), λ=1600nm λ=1600nm λ=10000nm rocky planets in habitable zone D = 30m D = 8m D = 30m could be imaged and their spectra acquired [ assumes 1e-8 contrast limit, 1 l/D IWA ] K-type and nearest G-type stars M-type stars are more challenging, but could be accessible if raw contrast can be pushed to ~1e-7 (models tell us it's possible) Thermal emission from habitable planets around nearby A, F, G log10 contrast type stars is detectable with ELTs K-type stars G-type stars 1 Re rocky planets in HZ for stars within 30pc (6041 stars) F-type stars Angular separation (log10 arcsec) Contrast and Angular separation (updated) 1 λ/D 1 λ/D 1 λ/D Around about 50 stars (M type), λ=1600nm λ=1600nm λ=10000nm rocky planets in habitable zone D = 30m D = 8m D = 30m could be imaged and their spectra acquired [ assumes 1e-8 contrast limit, 1 l/D IWA ] K-type and nearest G-type stars M-type stars are more challenging, but could be accessible if raw contrast can be
    [Show full text]