1 Studies on 3-Hydroxypropionate Metabolism in Rhodobacter

Total Page:16

File Type:pdf, Size:1020Kb

1 Studies on 3-Hydroxypropionate Metabolism in Rhodobacter Studies on 3-Hydroxypropionate Metabolism in Rhodobacter sphaeroides Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Steven Joseph Carlson Graduate Program in Microbiology The Ohio State University 2018 Dissertation Committee Dr. Birgit E. Alber, Advisor Dr. F. Robert Tabita Dr. Venkat Gopalan Dr. Joseph A. Krzycki 1 Copyrighted by Steven Joseph Carlson 2018 2 Abstract In this work, the involvement of multiple biochemical pathways used by the metabolically versatile Rhodobacter sphaeroides to assimilate 3-hydroxypropionate was investigated. In Chapter 2, evidence of a 3-hydroxypropionate oxidative path is presented. The mutant RspdhAa2SJC was isolated which lacks pyruvate dehydrogenase activity and is unable to grow with pyruvate. Robust 3-hydropropionate growth with RspdhAa2SJC indicated an alternative mechanism exists to maintain the acetyl-CoA pool. Further, RsdddCMA4, lacking the gene encoding a possible malonate semialdehyde dehydrogenase, was inhibited for growth with 3-hydroxypropionate providing support for a 3-hydroxypropionate oxidative pathway which involves conversion of malonate semialdehyde to acetyl-CoA. We propose that the 3- hydroxypropionate growth of RspdhAa2SJC is due to the oxidative conversion of 3- hydroxypropionate to acetyl-CoA. In Chapter 3, the involvement of the ethylmalonyl-CoA pathway (EMCP) during growth with 3-hydroxypropionate was studied. Phenotypic analysis of mutants of the EMCP resulted in varying degrees of 3-hydroxypropionate growth. Specifically, a mutant lacking crotonyl-CoA carboxylase/reductase grew similar to wild type with 3- hydroxypropionate. However, mutants lacking subsequent enzymes in the EMCP exhibited 3-hydroxypropionate growth defects that became progressively more severe the ii later the enzyme participated in the EMCP. To resolve this finding, a late blockage EMCP strain has 3-hydroxypropionate growth restored by introducing an early blockage to the EMCP. Furthermore, the introduction of thioesterase YciA to inhibited mutant strains restored 3-hydroxypropionate growth with concomitant excretion of EMCP- derived metabolites showing a CoA-thioester intermediate accumulation most likely causes a decrease in free coenzyme A levels and the growth inhibition. The work confirms the EMCP is not essential for 3-hydroxypropionate growth. However, flux through the EMCP occurs. In Chapter 4, a novel way to alter flux through the EMCP was discovered. Late blockage EMCP mutants were inhibited for 3-hydroxypropionate growth, but spontaneously began growing after 100 hours. Whole genome sequencing of suppressor isolates identified a common mutation in the prkB gene, encoding phosphoribulokinase B of the Calvin-Benson-Bassham (CBB) cycle. The prkB mutation requirement for suppression was verified by introducing mutated alleles to the inhibited strains where 3- hydroxypropionate growth was restored. Finally, introduction of thioesterase YciA did not cause excretion of EMCP-derived metabolites during 3-hydroxypropionate growth in a suppressor strain indicating the prkB mutation decreases flux through the EMCP. In Chapter 5, the role of propionyl-CoA carboxylase during 3-hydroxypropionate, propionate, and acetate assimilation was investigated. Propionyl-CoA carboxylase (PccBA) catalyzes the conversion of propionyl-CoA to (2S)-methylmalonyl-CoA in the methylmalonyl-CoA pathway (MMCP) used for propionyl-CoA assimilation. The assimilation of acetyl-CoA and 3-hydroxypropionate also leads to formation of iii propionyl-CoA whereby the MMCP would be required. A pccB mutant strain could not - grow with propionate/HCO3 confirming the requirement of the MMCP for propionyl- CoA assimilation. However, the same mutant could still grow with acetate and 3- hydroxypropionate. For acetate growth, metabolite analysis showed that propionate was excreted indicating a mechanism to prevent accumulation of propionyl-CoA formed during flux through the EMCP. For 3-hydroxypropionate growth, redirection of the carbon toward acetyl-CoA via the 3-hydroxypropionate oxidative pathway and entry into the EMCP was shown to allow growth when the 3-hydroxypropionate reductive pathway is blocked in R. sphaeroides. iv Dedication To those I adore most – Jamie, Henry, and Theodore. v Acknowledgments Many thanks to all the past and present members of the Alber laboratory. To Dr. Birgit Alber, for the training, support, and example you set in the lab. You gave me the freedom to explore through research and I am very grateful. To Dr. Marie Asao for teaching me my very first enzyme assay and your willingness (and patience) to answer all my questions. To Dr. Michael Carter for his sage wisdom, intriguing commentary on life, and continued support since his departure from the lab. To Daniel Ortiz, for your friendship. Un abrazo. Many thanks to Dr. Tabita and the members of his laboratory. Though I wasn’t an official member, I was treated as such and am grateful for their generosity, expertise, and friendship. Much of the work would not have been possible without their equipment or help. To my committee for the insight, suggestions, and time that was given to help throughout this process. I am forever grateful to my family for their unconditional love and support throughout my time as a graduate student. I am indebted to them for all that they sacrificed to see me through to the end. I love and cherish you all. vi Vita 2004………... ……………..……………………Logan High School 2008………………….................................…….B.S. Wildlife and Conservation Biology, Ohio University 2012-present ………………………...………….Graduate Teaching and Research Associate, Department of Microbiology, The Ohio State University Publications Carlson SJ, Fleig A, Baron MK, Berg IA, Alber BE. 2018. Barriers to 3- hydroxypropionate-dependent growth of Rhodobacter sphaeroides by distinct disruptions of the ethylmalonyl-Coenzyme A pathway. J. Bacteriol. (Published online November 19, 2018) Fields of Study Major Field: Microbiology vii Table of Contents Abstract .......................................................................................................................... ii Dedication .......................................................................................................................v Acknowledgments ......................................................................................................... vi Vita .............................................................................................................................. vii Table of Contents ........................................................................................................ viii List of Tables................................................................................................................xiv List of Figures ............................................................................................................... xv Chapter 1: Introduction ..................................................................................................1 1.1 Rhodobacter sphaeroides, a model organism for carbon assimilation .....................1 1.2 Carbon assimilation in R. sphaeroides during photoheterotrophic growth...............2 1.3 Using precursor metabolites to develop a metabolic scheme ...................................4 1.4 3-Hydroxypropionate, a tool to uncover to new physiological phenomenon ...........5 1.5 Assimilation of 3-hydroxypropionate – A tale of two pathways, the reductive path 6 1.6 Assimilation of 3-hydroxypropionate carbon beyond the reductive path: Propionyl- CoA assimilation using the methylmalonyl-CoA pathway.......................................... 11 1.7 Assimilation of 3-hydroxypropionate carbon beyond the reductive path: C4 to C3 conversion ................................................................................................................. 12 1.8 Assimilation of 3-hydroxypropionate carbon beyond the reductive path: Acetyl- CoA formation ........................................................................................................... 13 1.9 Assimilation of 3-hydroxypropionate – A tale of two pathways, the oxidative path .................................................................................................................................. 13 1.10 Assimilation of acetyl-CoA using the ethylmalonyl-CoA pathway ..................... 15 1.11 Early steps of the ethylmalonyl-CoA pathway and PHB metabolism .................. 16 1.12 The ethylmalonyl-CoA pathway ......................................................................... 17 Chapter 2: Evidence of a 3-hydroxypropionate oxidative pathway in Rhodobacter sphaeroides ................................................................................................................... 19 2.1 Introduction ......................................................................................................... 19 viii 2.2 Materials and Methods ......................................................................................... 25 2.2.1 Materials. ...................................................................................................... 25 2.2.2 Bacterial strains and growth conditions ......................................................... 25 2.2.3 NCBI Database search for enzymes capable of converting pyruvate to acetyl- CoA (or an intermediate requiring a second enzyme to form acetyl-CoA) .............. 25 2.2.4 Isolation
Recommended publications
  • Electromicrobial Transformations Using the Pyruvate Synthase System of Clostridium Sporogenes
    I I I 1 Bioelec~rochemistryand Bioenergetics, 21 (1989) 245-259 A section of J. Electroanal. Cheni., and constituting Vol. 275 (1989) Elsevier Sequoia S.A.. Lausanne - Printed in The Netherlands b ' I L Electromicrobial transformations using the pyruvate synthase system of Clostridium sporogenes Neil M. Dixon, Eurig W. James, Robert W. Lovitt * and Douglas B. Kell Departmen1 o/ Biological Sciences, University College of IVules, Aberystwylh, Djfed SY23 3DA (Great Britain) (Received 3 December 1988; in revised form 17 January 1989) I I J A bioelectrochemical method by which the enzymology of reductive carboxylations (RCOOH +C02 +6 [H]+RCH2COOH+2 H,O) could be investigated is described. This method was used for a I detailed study of the enynnology of the overall reaction (viz. acetyl phosphate to pyruvate) catalysed by I pyruvate synthase in Clostridium sporogenes. The same method could be utilised to harness such reductive I carboxylations for commercial biotransformations of xenobiotics. By adjusting the reaction conditions it was possible to alter the proportions of the products synthesised, and to synthesise compounds more reduced and/or with a greater number of carbon atoms than pyruvate. INTRODUCTION ! The proteolytic clostridia have been the subject of renewed interest, with the attention being focussed upon biotechnologically useful enyzmes that these I organisms produce. Apart from extracellular hydrolases, most notable are enoate [I-41, nitroaryl [5],linoleate [6],2-oxoacid [7], proline [8] and glycine reductases [9]. Recent investigations in this laboratory have concentrated upon Clostridiunz sporo- 1 genes[lO-171. Dixon [I71 detailed the effects of CO, on both the inhibition/stimulation and induction/repression of some of the "capnic" enzymes of CI.
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • The Photosynthetic Apparatus of Rhodobacter Sphaeroides André Verméglio and Pierre Joliot
    R EVIEWS The photosynthetic apparatus of Rhodobacter sphaeroides André Verméglio and Pierre Joliot he predominantly green Functional and ultrastructural studies have complement is synthesized in color of the biosphere indicated that the components of the fixed stoichiometric amounts attests to the essential photosynthetic apparatus of Rhodobacter with the RC, forming the T 3 role of photosynthesis on Earth. sphaeroides are highly organized. This RC–LH1 complexes . The large By this process, plants convert organization favors rapid electron transfer amount of antenna pigments light energy into chemical en- that is unimpeded by reactant diffusion. with respect to the RC (up to ergy to reduce carbon dioxide The light-harvesting complexes only 100 bacteriochlorophyll mol- to organic matter such as car- partially surround the photochemical ecules are present per RC) in- bohydrates. This capability is, reaction center, which ensures an efficient creases the cross section avail- however, not limited to plants. shuttling of quinones between the able for light capture. Certain bacteria are also able photochemical reaction center and the bc1 When a photon is absorbed to perform this energy conver- complex. by the LHC, the excitation sion for their growth and de- reaches the RC (where charge velopment. The molecular ma- A.Verméglio* is in the CEA/Cadarache–DSV, separation occurs) in less than chinery involved in the initial Département d’Écophysiologie Végétale et 100 picoseconds (ps). At the Microbiologie, Laboratoire de Bioénergétique steps is very similar in plant Cellulaire, 13108 Saint Paul lez Durance Cedex, RC, an electron is transferred and bacterial photosynthesis, France; P. Joliot is in the Institut de Biologie from the excited primary donor, and purple bacteria are the Physico-Chimique, CNRS UPR 9072, a bacteriochlorophyll dimer, model bacterial system for this 13 rue Pierre et Marie Curie, 75005 Paris, France.
    [Show full text]
  • Fifth Southeast Enzyme Conference Saturday, April 5, 2014
    Saturday,April5,2014 Georgia State University Atlanta, GA Urban Life Building College of Law 140 Decatur Street Room 220 1 2 Fifth Southeast Enzyme Conference Saturday, April 5, 2014 Sponsored by generous contributions from: Department of Biochemistry, Cellular Department of Chemistry and Molecular Biology Georgia State University University of Tennessee, Knoxville Department of Biology Office of Research Engagement Georgia State University University of Tennessee, Knoxville Additional support provided by College of Arts and Sciences Anonymous donors to the SEC University of Tennessee, Knoxville Foundation Account. To become one yourself, see details on the next page. 3 Southeast Enzyme Conference Fund- 020183 The Chemistry Department at Georgia State University is the lead organizer and founder of the Southeast Enzyme Conference. This conference attracts students, research scientists and faculty members from colleges and universities throughout the southeastern region. With the assistance of the GSU Foundation, conference organizers are seeking charitable contributions to help sustain future conferences. Gifts will be used to cover conference-related expenses such as speaker fees, public relations and marketing, material and supplies, awards and administrative costs. Please consider making a charitable, tax-deductible donation to help achieve the goal. Donor(s) name(s) – First, Middle, Last Name (s) Street Address City State Zip Home Phone Cell Phone Preferred E-mail Address Outright Gift I/we would like to make a gift to the Georgia State University Foundation in the amount of $ _____ My check is enclosed. ____ Charge my credit card upon receipt (see information below). *Please make checks payable to GSU Foundation Annual Pledge I/we would like to pledge a total of $ ______________ to the Georgia State University Foundation over a period of _____ month(s).
    [Show full text]
  • 1 Silencing Branched-Chain Ketoacid Dehydrogenase Or
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Silencing branched-chain ketoacid dehydrogenase or treatment with branched-chain ketoacids ex vivo inhibits muscle insulin signaling Running title: BCKAs impair insulin signaling Dipsikha Biswas1, PhD, Khoi T. Dao1, BSc, Angella Mercer1, BSc, Andrew Cowie1 , BSc, Luke Duffley1, BSc, Yassine El Hiani2, PhD, Petra C. Kienesberger1, PhD, Thomas Pulinilkunnil1†, PhD 1Department of Biochemistry and Molecular Biology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada, 2Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada. †Correspondence to Thomas Pulinilkunnil, PhD Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada. Telephone: (506) 636-6973; Fax: (506) 636-6001; email: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International
    [Show full text]
  • Molecular Profiling and Optimization Studies for Growth and PHB
    energies Article Molecular Profiling and Optimization Studies for Growth and PHB Production Conditions in Rhodobacter sphaeroides 1,2, 1,3, 1, 4 1 Yu Rim Lee y , Hana Nur Fitriana y, Soo Youn Lee y, Min-Sik Kim , Myounghoon Moon , Won-Heong Lee 5, Jin-Suk Lee 1 and Sangmin Lee 1,* 1 Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Korea; [email protected] (Y.R.L.); [email protected] (H.N.F.); [email protected] (S.Y.L.); [email protected] (M.M.); [email protected] (J.-S.L.) 2 Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea 3 Renewable Energy Engineering Department, Korea Institute of Energy Research Campus, University of Science and Technology, Daejeon 34113, Korea 4 Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea; [email protected] 5 Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-62-717-2425 These authors contributed equally to this work. y Received: 21 October 2020; Accepted: 25 November 2020; Published: 7 December 2020 Abstract: In the recent climate change regime, industrial demand for renewable materials to replace petroleum-derived polymers continues to rise. Of particular interest is polyhydroxybutyrate (PHB) as a substitute for polypropylene. Accumulating evidence indicates that PHB is highly produced as a carbon storage material in various microorganisms. The effects of growth conditions on PHB production have been widely studied in chemolithotrophs, particularly in Rhodobacter.
    [Show full text]
  • Regulation of Bacterial Photosynthesis Genes by the Small Noncoding RNA Pcrz
    Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ Nils N. Mank, Bork A. Berghoff, Yannick N. Hermanns, and Gabriele Klug1 Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, D-35392 Giessen, Germany Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved August 10, 2012 (received for review April 27, 2012) The small RNA PcrZ (photosynthesis control RNA Z) of the faculta- and induces transcription of photosynthesis genes at very low tive phototrophic bacterium Rhodobacter sphaeroides is induced oxygen tension or in the absence of oxygen (5, 10–13). Further- upon a drop of oxygen tension with similar kinetics to those of more, the FnrL protein activates some photosynthesis genes at genes for components of photosynthetic complexes. High expres- low oxygen tension (13) and the PpaA regulator activates some sion of PcrZ depends on PrrA, the response regulator of the PrrB/ photosynthesis genes under aerobic conditions (14). More re- cently CryB, a member of a newly described cryptochrome family PrrA two-component system with a central role in redox regula- R. sphaeroides (15), was shown to affect expression of photosynthesis genes in tion in . In addition the FnrL protein, an activator of R. sphaeroides and to interact with AppA (16, 17). Remarkably, some photosynthesis genes at low oxygen tension, is involved in the different signaling pathways for control of photosynthesis redox-dependent expression of this small (s)RNA. Overexpression genes are also interconnected, e.g., the appA gene is controlled of full-length PcrZ in R. sphaeroides affects expression of a small by PrrA (18, 19) and a PpsR binding site is located in the ppaA subset of genes, most of them with a function in photosynthesis.
    [Show full text]
  • SUPPY Liglucosexlmtdh
    US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec.
    [Show full text]
  • Catabolic and Anabolic Enzyme Activities and Energetics of Acetone Metabolism of the Sulfate-Reducing Bacterium Desulfococcus Biacutus
    JOURNAL OF BACTERIOLOGY, Jan. 1995, p. 277–282 Vol. 177, No. 2 0021-9193/95/$04.0010 Copyright q 1995, American Society for Microbiology Catabolic and Anabolic Enzyme Activities and Energetics of Acetone Metabolism of the Sulfate-Reducing Bacterium Desulfococcus biacutus PETER H. JANSSEN* AND BERNHARD SCHINK Fakulta¨t fu¨r Biologie, Universita¨t Konstanz, D-78434 Konstanz, Germany Received 1 August 1994/Accepted 7 November 1994 Acetone degradation by cell suspensions of Desulfococcus biacutus was CO2 dependent, indicating initiation by a carboxylation reaction, while degradation of 3-hydroxybutyrate was not CO2 dependent. Growth on 3-hydroxybutyrate resulted in acetate accumulation in the medium at a ratio of 1 mol of acetate per mol of substrate degraded. In acetone-grown cultures no coenzyme A (CoA) transferase or CoA ligase appeared to be involved in acetone metabolism, and no acetate accumulated in the medium, suggesting that the carboxylation of acetone and activation to acetoacetyl-CoA may occur without the formation of a free intermediate. Catab- olism of 3-hydroxybutyrate occurred after activation by CoA transfer from acetyl-CoA, followed by oxidation to acetoacetyl-CoA. In both acetone-grown cells and 3-hydroxybutyrate-grown cells, acetoacetyl-CoA was thiolyti- Downloaded from cally cleaved to two acetyl-CoA residues and further metabolized through the carbon monoxide dehydrogenase pathway. Comparison of the growth yields on acetone and 3-hydroxybutyrate suggested an additional energy requirement in the catabolism of acetone. This is postulated to be the carboxylation reaction (DG&* for the carboxylation of acetone to acetoacetate, 117.1 kJ z mol21). At the intracellular acyl-CoA concentrations measured, the net free energy change of acetone carboxylation and catabolism to two acetyl-CoA residues would be close to 0 kJ z mol of acetone21, if one mol of ATP was invested.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Peter D Karp Ingrid Keseler An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Anamika Kothari Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000789375Cyc: Thermotoga sp. Cell2 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • The Transition of Rhodobacter Sphaeroides Into a Microbial Cell Factory
    Received: 18 May 2020 | Revised: 29 July 2020 | Accepted: 9 October 2020 DOI: 10.1002/bit.27593 REVIEW The transition of Rhodobacter sphaeroides into a microbial cell factory Enrico Orsi1,2 | Jules Beekwilder3 | Gerrit Eggink1,4 | Servé W. M. Kengen5 | Ruud A. Weusthuis1 1Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands Abstract 2Max Planck Institute of Molecular Plant Microbial cell factories are the workhorses of industrial biotechnology and improving Physiology, Potsdam‐Golm, Germany their performances can significantly optimize industrial bioprocesses. Microbial strain 3Wageningen Plant Research, Wageningen, ‐ The Netherlands engineering is often employed for increasing the competitiveness of bio based product 4Wageningen Food and Biobased Research, synthesis over more classical petroleum‐based synthesis. Recently, efforts for strain Wageningen, The Netherlands optimization have been standardized within the iterative concept of “design‐build‐test‐ 5 Laboratory of Microbiology, Wageningen learn” (DBTL). This approach has been successfully employed for the improvement of University, Wageningen, The Netherlands traditional cell factories like Escherichia coli and Saccharomyces cerevisiae. Within the Correspondence past decade, several new‐to‐industry microorganisms have been investigated as novel Ruud A. Weusthuis, Bioprocess Engineering, cell factories, including the versatile α‐proteobacterium Rhodobacter sphaeroides. Wageningen University, 6708PB Wageningen, The Netherlands. Despite its history as a laboratory strain for fundamental studies, there is a growing Email: [email protected] interest in this bacterium for its ability to synthesize relevant compounds for the bioeconomy, such as isoprenoids, poly‐β‐hydroxybutyrate, and hydrogen. In this study, Funding information Nederlandse Organisatie voor we reflect on the reasons for establishing R. sphaeroides as a cell factory from the Wetenschappelijk Onderzoek, perspective of the DBTL concept.
    [Show full text]
  • Potential of Rhodobacter Capsulatus Grown in Anaerobic-Light Or Aerobic-Dark Conditions As Bioremediation Agent for Biological Wastewater Treatments
    water Article Potential of Rhodobacter capsulatus Grown in Anaerobic-Light or Aerobic-Dark Conditions as Bioremediation Agent for Biological Wastewater Treatments Stefania Costa 1, Saverio Ganzerli 2, Irene Rugiero 1, Simone Pellizzari 2, Paola Pedrini 1 and Elena Tamburini 1,* 1 Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari, 46 | 44121 Ferrara, Italy; [email protected] (S.C.); [email protected] (I.R.); [email protected] (P.P.) 2 NCR-Biochemical SpA, Via dei Carpentieri, 8 | 40050 Castello d’Argile (BO), Italy; [email protected] (S.G.); [email protected] (S.P.) * Correspondence: [email protected]; Tel.: +39-053-245-5329 Academic Editors: Wayne O’Connor and Andreas N. Angelakis Received: 4 October 2016; Accepted: 2 February 2017; Published: 10 February 2017 Abstract: The use of microorganisms to clean up wastewater provides a cheaper alternative to the conventional treatment plant. The efficiency of this method can be improved by the choice of microorganism with the potential of removing contaminants. One such group is photosynthetic bacteria. Rhodobacter capsulatus is a purple non-sulfur bacterium (PNSB) found to be capable of different metabolic activities depending on the environmental conditions. Cell growth in different media and conditions was tested, obtaining a concentration of about 108 CFU/mL under aerobic-dark and 109 CFU/mL under anaerobic-light conditions. The biomass was then used as a bioremediation agent for denitrification and nitrification of municipal wastewater to evaluate the potential to be employed as an additive in biological wastewater treatment. Inoculating a sample of mixed liquor withdrawn from the municipal wastewater treatment plant with R.
    [Show full text]