United States Patent (19) 11 Patent Number: 5,066,582 Tsuruta Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 5,066,582 Tsuruta Et Al United States Patent (19) 11 Patent Number: 5,066,582 Tsuruta et al. (45) Date of Patent: Nov. 19, 1991 54 METHOD AND APPARATUS FOR THE mination of Human Chorionic Gonadotropin' & Anal. MEASUREMENT OF ANALYTE Lett. 1982 5(B2), 101-113. SUBSTANCES Chemical Abstracts, vol. 100, 1984, p. 270 abstract No. 75 Inventors: Hitoshi Tsuruta; Hideaki Yamada, 153448k, Columbus, Ohio, U.S., & JP-A-59 28 648 both of Kurashiki, Michihiro Kuraray Co. Ltd.) 15-02-84. Nakamura, Soja, all of Japan Chemical Abstracts, vol. 90, 1979, p. 244, abstract No. 164334w, Columbus, Ohio, U.S., & JP-A-78 149 392 73 Assignee: Kuraray Co., Ltd., Kurashiki, Japan (Kuraray Co., Ltd.) 26-12-1978. 21 Appl. No.: 311,779 Chemical Abstracts, vol. 103, 1985, p. 394, abstract No. 209457u, Columbus, Ohio, U.S.; R. R. Premier et al.: (22) Filed: Feb. 17, 1989 “An Evaluation of the Use of a pH Indicator for the 30 Foreign Application Priority Data Detection of Beta-Lactamase in Enzyme Immunoas Feb. 19, 1988 JP Japan .................................. 63-38274 say", & J. Immunol. Methods 1985, 83(2) 371-377. Boitieux, J-L, and Thomas, D; Clinical Biochemistry, (51 int. Cl. ........................................... G01N 33/543 17, 151-156. 52 U.S. C. ..................................... 435/7.1; 436/163; 204/403; 204/433; 422/56 Primary Examiner-David L. Lacey 58) Field of Search ..................... 436/163; 422/82.03, Assistant Examiner-Thomas E. Daley 422/82.04, 56-58; 204/403, 433; 435/7.1 Attorney, Agent, or Firm-Oblon, Spivak, McClelland, (56) References Cited Maier & Neustadt U.S. PATENT DOCUMENTS 57 ABSTRACT 4,318,709 3/1982 Fab ....................................... 23/230 A method for measuring trace amounts of analyte sub 4,73,165 12/1987 Conover .............................. 2O4/403 stance(s), which utilize a pH electrode is disclosed. This method is by far simpler than conventional optical de FOREIGN PATENT DOCUMENTS tecting systems. The apparatus for practicing the 0170375 6/1985 European Pat. Off. method is also disclosed. By the use of pH electrode, the O328380 10/1988 European Pat. Off. apparatus is compact, inexpensive and easy to operate, OTHER PUBLICATIONS and hence usable in small-size and medium-size hospi Chemical Abstracts, vol. 96, 1982 p. 96, abstract No. tals or clinical laboratories and by patient's bedside. 155710n, Columbus, Ohio, U.S.; M. Mascini et al.: "pH Eiectrode-Based Enzyme Immunoassay for the Deter 6 Claims, 8 Drawing Sheets -daV/dt (m V/SEC) -AW (mW) 60 40 20 1.2 00 .0 80 0.8 60 0.6 40 0.4 20 0.2 4. 6 8 TIME (MINUTE) U.S. Patent Nov. 19, 1991 Sheet 1 of 8 5,066,582 F. G. 4. F. G.2 U.S. Patent Nov. 19, 1991 Sheet 2 of 8 5,066,582 FG3 F G4 F. G.5 U.S. Patent Nov. 19, 1991 Sheet 3 of 8 5,066,582 U.S. Patent Nov. 19, 1991 Sheet 4 of 8 5,066,582 CN C. 3 S : 3 S. s S Al-Al-Aswar aZAZAZeze-de-SSa C Q U.S. Patent Nov. 19, 1991 Sheet 5 of 8 5,066,582 Ss3 3 É s O O C. e. Sp S O E se1 a U.S. Patent Nov. 19, 1991 Sheet 6 of 8 5,066,582 O C O t CN L SY S. S. 5 cd us 2. O an Cld - No 3, CD s L- CO L U.S. Patent Nov. 19, 1991 Sheet 7 of 8 5,066,582 S.3s c S S. E Na1 Dg U.S. Patent Nov. 19, 1991 Sheet 8 of 8 5,066,582 O 9. O No E s S CO El O Li L- C CN L SN O O es N5O c\O S. O arts DC S.E- N3S2 Sl 5,066,582 1. 2 an enzyme. After being washed, the solid phase is con METHOD AND APPARATUS FOR THE tacted with a substrate solution for the above-men MEASUREMENT OF ANALYTE SUBSTANCES tioned enzyme used as the label and, if necessary, a chromophore, whereby the optical property of the sys BACKGROUND OF THE INVENTION 5 tem is changed with the proceeding of the decomposi i. Field of the Invention tion reaction of the substrate, which change is then The present invention relates to a method for measur observed. ing analyte substance(s) and the apparatus therefor, and Several methods have been used for the purpose of in particular to a method and apparatus suited for the observing the change of the optical property of the quantitative immunoassay of specific substances con 10 substrate solution. Among them, there are methods tained in trace amounts in a multi-component solution utilizing optical instruments such as optical absorption such as specimens from biological sources and the appa instruments fluorophotometer, and chemiluminescence ratus therefor. While the present invention will herein photometer (see for example Ishikawa, Kawai and below be illustrated only for measurement of biosub Miyai, ENZYME IMMUNOASSAYS, 1982, published stances in clinical examination, the method and appara 15 from Igaku Shoin, Tokyo). tus of the present invention are applicable to a wide There is also a method which comprises comparing a variety of fields such as pharmacy, biology, zoology, substrate solution with a control solution and observing botany, agriculture and chemistry. visually the difference in the color to judge the presence 2. Description of the Prior Art of a trace amount of an analyte substance (see for exam Substances participating in bioactivity of a living 20 ple Japanese Patent Application Laid-Open No. body are generally present in trace amounts, and still 128369/1985). many of them play very important roles for the living The above-mentioned optical measuring systems uti body. The quantitative determination of such bioactive lizing optical instruments, however, require expensive substances therefore is important in fields associated and large and complex equipment because they gener with living organisms, such as medical science and bio 25 ally need a stable light source, a photometer having chemistry. Various methods for that purpose have been high sensitivity, a photomultiplier circuit with high proposed and put to practical use, among which a deter mination method of analytereceptor system utilizing precision, and the like. Further, specialized technicians enzymes, radioactive isotopes, chemiluminescent sub must attend to the measurement since special technique stances or the like as a label has been widely used. The 30 is required for the measurement. analyte-receptor-type measurement comprises first con On the other hand, the direct visual observation tacting a solid phase having fixed a first receptor which method is a qualitative one. It is liable to personal varia can specifically bind an analyte which is the substance tion in judgement of color change and to the observer's to be determined, with a sample solution and a labelled subject. Further, judgement itself is sometimes difficult second receptor or a labelled analyte (hereinafter these 35 for measurement of an extreme trace substance where labelled substances are referred to as "the conjugates') the color change is very small. simultaneously or successively, thereby effecting an SUMMARY OF THE INVENTION analyte-receptor reaction, washing the reaction mix ture, and thereafter determining the amount of the con Accordingly, an object of the present invention is to jugates remaining on the solid phase to measure the provide a method for the measurement of an analyte amount of the analyte in the sample solution. In this case substance(s) in a sample by measuring the decomposi substances having a large amplification effect such as tion reaction of a substrate solution objectively and radioisotopes and enzymes are used as the label. As with high detection accuracy, with the method being regards the receptor, for an antigen or a hapten, an free from the indefiniteness of judgement which de antibody which can specifically bind it is used; for an 45 pends on the observer's subject; and the apparatus antibody, its antigen is used; for a DNA or RNA, an therefor. other DNA or RNA complementary thereto is used; Another object of the present invention is to provide and for a ligand, its receptor is used. The heterogeneous a method for the measurement of an analyte substan EIA, so-called Enzyme Linked Immuno Sorbent Assay ce(s), which has a measurement system which is far (ELISA) is known as a representative example of such 50 simpler from the optical measurement systems, and the determination. apparatus therefor. In ELISA, a solid phase obtained by fixing a receptor Still another object of the present invention is to capable of specifically binding the analyte to be deter provide an apparatus for measuring analyte substances, mined, on a test tube, microplate or the like is used for which can be operated by an untrained operator or capturing the substance to be determined in the sample 55 which is suited for use, when a quick decision is re solution. An enzyme is used as the label for signal ampli quired for diagnosis, by a person in charge of medical fication. For example where the analyte to be deter care or of other medical field. mined is an antigen, the sandwich-ELISA uses an en Yet another object of the present invention is to pro zyme-labelled second antibody (a second receptor) vide a compact and inexpensive apparatus for measur bindable to the antigen, and the competitive-ELISA ing analyte substances, which can be used in hospitals of uses an enzyme-labelled antigen as the conjugate. On small or medium size, clinical laboratories or at a pa the other hand, where the analyte to be determined is an tient's bed side.
Recommended publications
  • General Physics
    GENERAL PHYSICS I. MOLECULE MICROSCOPY Academic and Research Staff Prof. John G. King Dr. Stanley R. Rosenthal Dr. John W. Peterson Dr. James C. Weaver Graduate Students H. Frederick Dylla Dusan G. Lysy Bruce R. Silver Joseph A. Jarrell Peter W. Stephens RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH JSEP Joint Services Electronics Program (Contract DAAB07-74-C-0630) National Institutes of Health (Grants 1 PO1 HL14322-03 and 5 SO5 RR07047-08) John G. King, James C. Weaver Two basic types of microscopy, light and electron microscopy (and related ion versions), are well established, and are of importance to a diversity of applied and basic research problems. We are continuing our development of a new, third type, molecule microscopy, in which neutral molecules carry image-generating information from the sample. Neutral molecules are uniquely suited for probing interactions based on the chemistry of a sample; thus, molecule micrographs obtain contrast based on spatial variations of the permeability, diffusion, and binding of neutral molecules. For this reason, spatial variation in the permeation of molecules through a thin sample, dif- fusion along grain boundaries, binding of applied neutral molecules to a sample surface, and the existence of constituent molecules can all be revealed directly by some type of molecule microscope. Molecule microscopy should be useful in many fields of science and engineering, particularly in materials science and biology, since molecules carrying information from the sample interact through the same weak forces that are significant in deter- mining surface properties, and because the interactions are highly surface-specific (in contrast to photons and electrons which penetrate many atomic layers).
    [Show full text]
  • Uracil and Beta-Alanine Degradation in Saccharomyces Kluyveri - Discovery of a Novel Catabolic Pathway
    Downloaded from orbit.dtu.dk on: Sep 30, 2021 Uracil and beta-alanine degradation in Saccharomyces Kluyveri - discovery of a novel catabolic pathway Andersen, Gorm Publication date: 2006 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Andersen, G. (2006). Uracil and beta-alanine degradation in Saccharomyces Kluyveri - discovery of a novel catabolic pathway. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Uracil and beta-alanine degradation in Saccharomyces kluyveri - Discovery of a novel catabolic pathway Ph.D. Thesis Gorm Andersen BioCentrum-DTU Technical University of Denmark May 2006 PREFACE The thesis presented here is a part of the requirements for the Ph.D. degree under the ”Chemistry and Biotechnology Programme” at the Technical University of Denmark (DTU). Since October 2002, I have been enrolled at BioCentrum-DTU. The study was financed by DTU and has been carried out under supervision of former Associate Professor at BioCentrum-DTU, (now Professor at Department of Cell and Organism Biology, Lund University, Sweden) Jure Piskur.
    [Show full text]
  • Study on Yeast Enzymes Urc1p and Urc4p in a Novel Uracil Catabolic Pathway (URC)
    Study on yeast enzymes Urc1p and Urc4p in a novel uracil catabolic pathway (URC) Dineshkumar Kandasamy Degree project in molecular biotechnology, 2012 Examensarbete i molekylär bioteknik 45 hp till masterexamen, 2012 Biology Education Centre, Uppsala University, and Department of Biology, Lund University Supervisors: Jure Piškur and Anna Rasmussen ABSTRACT Purine and pyrimidine bases are central precursors of DNA and RNA and their intracellular concentration is balanced by three pathways- de novo, salvage and catabolic pathways. Uracil catabolism pathway has been found in several bacteria and in some fungi (including yeast). Seven genes, URC1-7 have been found to be involved in this novel pathway. There are two “unknown genes” in the yeast Saccharomyces (Lachancea) kluyveri, namely URC1 and URC4, which play a central role in this pathway and their exact function remains a mystery. In this project, two S. kluyveri genes, URC1&URC4, were over-expressed in the bacterial system and successfully purified. Our preliminary functional assay showed that uridine monophosphate (UMP) is a likely substrate for Urc1p at pH 7, 25ºC. It was shown clearly that both uracil and uridine were not the substrate for Urc1p.We tried to phosphorylate chemically synthesized ribosylurea (RU) using Drosophila melanogaster deoxyribonucleoside kinase and compared the activity between phosphorylated and non- phosphorylated RU at different conditions. Phosphorylated ribosylurea seemed to be a likely substrate for Urc4p at pH 7, 37ºC. Keywords: Uridine monophosphate (UMP), ribosylurea (RU), uracil catabolism. Study on yeast enzymes Urc1p and Urc4p in a novel uracil catabolic pathway (URC) Popular science summary Dineshkumar Kandasamy Purines and pyrimidines are important constituent of nucleic acids and they are called building blocks of DNA and RNA.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • 01 Front.Pdf (761.4Kb)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. I BARBITURIC ACID METABOLISM IN NOCARDIA CORALLINA A thesis presented in partial fulfilment of the requirements for the degree of M.Sc. in Biochemistry at Massey University. Philip David Pearce 1974 (ii) AC KNOWLEDGEMENTS I woul1 like to thank Professor R.D. Batt, my supervisor, for suggesting this topic and for the guidance he has given me during this investigation. Thanks are also extended to members of Chemistry, Biochemistry and Biophysics Department, Massey University, and to my fellow students. I am very grateful to the Department of Scientific and Industrial Research for the granting of full time study leave to follow this work. I should like to thank Dr. G.W. Butler and Dr. R.W. Bailey (former and present Directors of Applied Biochemistry Division, D.S.I.R. Palmerston North) for their interest and for the support they have given me. Thanks are also due to Dr. K.A.C. James (Applied Biochemistry Division), for his helpful advice during the writing of this thesis, and to Miss Cynthia Owen, D.S.I.R. librarian. Mrs. Lesley James is to be thanked for her excellent work in typing this thesis. Finally I should like to thank my wife Vonette for her assistance, patience and encouragement. (iii) ABSTRACT Barbituric acid utilisation in Nocardia corallina has been investigated. The enzyme barbiturase was induced using barbituric acid as the sole carbon and nitrogen source and a study of the optimum conditions for isolation of the enzyme was undertaken.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • A Novel Decarboxylating Amidohydrolase Involved in Avoiding Metabolic Dead Ends During Cyanuric Acid Catabolism in Pseudomonas Sp
    RESEARCH ARTICLE A novel decarboxylating amidohydrolase involved in avoiding metabolic dead ends during cyanuric acid catabolism in Pseudomonas sp. strain ADP 1,2☯ 3☯ 2,3 1 Lygie Esquirol , Thomas S. PeatID , Matthew Wilding , Carol J. Hartley , 3 1,4 Janet Newman , Colin ScottID * a1111111111 1 Biocatalysis and Synthetic Biology Team, CSIRO Land & Water, Canberra, ACT, Australia, 2 Research School of Chemistry, Australian National University, Canberra, ACT, Australia, 3 CSIRO Biomedical a1111111111 Manufacturing, Parkville, Melbourne, VIC, Australia, 4 Synthetic Biology Future Science Platform, CSIRO a1111111111 Land & Water, Canberra, ACT, Australia a1111111111 a1111111111 ☯ These authors contributed equally to this work. * [email protected] Abstract OPEN ACCESS Citation: Esquirol L, Peat TS, Wilding M, Hartley Cyanuric acid is a common environmental contaminant and a metabolic intermediate in the CJ, Newman J, Scott C (2018) A novel catabolism of s-triazine compounds, including atrazine and other herbicides. Cyanuric acid decarboxylating amidohydrolase involved in is catabolized via a number of bacterial pathways, including one first identified in Pseudomo- avoiding metabolic dead ends during cyanuric acid nas sp. strain ADP, which is encoded by a single, five-gene operon (atzDGEHF) found on a catabolism in Pseudomonas sp. strain ADP. PLoS ONE 13(11): e0206949. https://doi.org/10.1371/ self-transmissible plasmid. The discovery of two of the five genes (atzG and atzH) was journal.pone.0206949 reported in 2018 and although the function of atzG was determined, the role of atzH was Editor: Monika Oberer, Karl-Franzens-Universitat unclear. Here, we present the first in vitro reconstruction of the complete, five-protein cyan- Graz, AUSTRIA uric acid catabolism pathway, which indicates that AtzH may be an amidase responsible for Received: August 29, 2018 converting 1,3-dicarboxyurea (the AtzE product) to allophanate (the AtzF substrate).
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Protein Family to the Fungal Kingdom Expanding the Cyanuric Acid
    Downloaded from http://jb.asm.org/ on November 6, 2013 by guest more» 2013, 195(23):5233. DOI: 10.1128/JB.00965-13. http://journals.asm.org/site/subscriptions/ http://jb.asm.org/content/195/23/5233#ref-list-1 http://journals.asm.org/site/misc/reprints.xhtml Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), This article cites 39 articles, 20 of which can be accessed free at: Updated information and services can be found at: http://jb.asm.org/content/195/23/5233 These include: Supplemental material Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom Anthony G. Dodge, Chelsea S. Preiner and Lawrence P. Wackett J. Bacteriol. Published Ahead of Print 13 September 2013. REFERENCES CONTENT ALERTS To subscribe to to another ASM Journal go to: SUPPLEMENTAL MATERIAL Information about commercial reprint orders: Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom Anthony G. Dodge,a Chelsea S. Preiner,a Lawrence P. Wacketta,b BioTechnology Institute,a and Department of Biochemistry, Molecular Biology, and Biophysics,b University of Minnesota, St. Paul, Minnesota, USA The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the pres- ent study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two ex- ons and one intron.
    [Show full text]
  • Ust 31, 2007 Appendix G: Bibliography of ECOTOX Open Literature Not Evaluated and Papers Not Accepted by ECOTOX
    Appendix G: Bibliography of ECOTOX Open Literature Not Evaluated and Papers Not Accepted by ECOTOX August 31, 2007 Appendix G: Bibliography of ECOTOX Open Literature Not Evaluated and Papers Not Accepted by ECOTOX ATRAZINE IRED 2003 Papers that Were Accepted ECOTOX Acceptable for ECOTOX and OPP Belden, J. B. and Lydy, M. J. (2000). Impact of Atrazine on Organophosphate Insecticide Toxicity. Environ.Toxicol.Chem. 19: 2266-2274. EcoReference No.: 56553 Chemical of Concern: ATZ,CPY,MLN,MP,DZ; Habitat: A; Effect Codes: ACC,BEH,BCM; Rejection : Less sensitive endpoint. EG&G Bionomics (1973). Acute Toxicity of Atrazine to Mud Crab (Neopanope texana). Bioassay Rep.Submitted to CIBA-Giegy Chemical Corp., Greensboro, NC 1-9. EcoReference No.: 61020 Chemical of Concern: ATZ; Habitat: A; Effect Codes: MOR; Rejection Code: Less sensitive endpoint. El Jay, A. (1996). Effects of Organic Solvents and Solvent-Atrazine Interactions on Two Algae, Chlorella vulgaris and Selenastrum capricornutum. Arch.Environ.Contam.Toxicol. 31: 84-90. EcoReference No.: 17086 Chemical of Concern: ATZ; Habitat: A; Effect Codes: BCM,POP; Rejection Code: Less sensitive endpoint. Fairchild, J. F., Ruessler, D. S., and Carlson, A. R. (1998). Comparative Sensitivity of Five Species of Macrophytes and Six Species of Algae to Atrazine, Metribuzin, Alachlor, and Metolachlor. Environ.Toxicol.Chem. 17: 1830-1834. EcoReference No.: 19461 Chemical of Concern: ACR,ATZ,MBZ,MTL,DMM; Habitat: A; Effect Codes: POP; Rejection Code: Less sensitive endpoint. Forget, J., Pavillon, J. F., Menasria, M. R., and Bocquene, G. (1998). Mortality and LC50 Values for Several Stages of the Marine Copepod Tigriopus brevicornis (Muller) Exposed to the Metals Arsenic and Cadmium and the.
    [Show full text]
  • The Biosynthesis of Pyrimidines by Mutants of Aerobacter Aerogenes Elaine Virginia Nelson Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1954 The biosynthesis of pyrimidines by mutants of Aerobacter aerogenes Elaine Virginia Nelson Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Food Microbiology Commons, and the Microbiology Commons Recommended Citation Nelson, Elaine Virginia, "The biosynthesis of pyrimidines by mutants of Aerobacter aerogenes " (1954). Retrospective Theses and Dissertations. 13742. https://lib.dr.iastate.edu/rtd/13742 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI THE BIOSYNTHESIS OF PYRIMIDINES BY MUTANTS OF AEROBACTER AEROGENES by Elaine Virginia Nelson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Reqtiirements for the Degree of DOCTOR OF PHILOSOPHY Major Subjectr PkyjBiological Bacteriology Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dean of Graduate Ck>Uege Iowa State College 1954 UMI Number: DP12876 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]