Unusual venom phospholipases A2 of two primitive tree vipers Trimeresurus puniceus and Trimeresurus borneensis Ying-Ming Wang, Hao-Fan Peng and Inn-Ho Tsai Institute of Biological Chemistry, Academia Sinica and Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan Keywords To explore the venom diversity of Asian pit vipers, we investigated the phospholipase A ; phylogenetic analysis; 2 structure and function of venom phospholipase A2 (PLA2) derived from snake venom; Trimeresurus borneensis; two primitive tree vipers Trimeresurus puniceus and Trimeresurus borneen- Trimeresurus puniceus sis. We purified six novel PLA2s from T. puniceus venom and another three Correspondence from T. borneensis venom. All cDNAs encoding these PLA2s except one I.-H. Tsai, Institute of Biological Chemistry, were cloned, and the molecular masses and N-terminal sequences of the Academia Sinica and Institute of purified enzymes closely matched those predicted from the cDNA. Three Biochemical Sciences, National Taiwan contain K49 and lack a disulfide bond at C61–C91, in contrast with the University, PO Box 23-106, Taipei, D49-containing PLA2s in both venom species. They are less thermally Taiwan 10798 stable than other K49-PLA2s which contain seven disulfide bonds, as indi- Fax: +886 223635038 cated by a decrease of 8.8 °C in the melting temperature measured by CD E-mail:
[email protected] spectroscopy. The M110D mutation in one of the K49-PLA2s apparently Note reduced its edematous potency. A phylogenetic tree based on the amino- Novel cDNA sequences encoding PLA2s acid sequences of 17 K49-PLA2s from Asian pit viper venoms illustrates have been submitted to EMBL Databank close relationships among the Trimeresurus species and intergeneric segre- and are available under accession numbers: gations.