Three Discomycetes (Helotiaceae) New to Taiwan

Total Page:16

File Type:pdf, Size:1020Kb

Three Discomycetes (Helotiaceae) New to Taiwan Fung. Sci. 20(1, 2): 41–45, 2005 Three discomycetes (Helotiaceae) new to Taiwan Yei-Zeng Wang National Museum of Natural Science, Taichung, Taiwan (Accepted: June 6, 2005) ABSTRACT Three discomycetes, Bisporella sulfurina, Hymenoscyphus lutescens, and Ionomidotis frondosa are described and illustrated. These species are new to Taiwan. Bisporella Hymenoscyphus Ionomidotis Key words: , , . Taxonomy yellow apothecia and narrow ascospores. Lizon and Korf (1995) doubted that B. claroflava Bisporella sulfurina (Quél.) S.E. Carp. Myco- (= B. discedens) is conspecific with it. The ana- taxon 1: 59, 1974. (Figs. 1, 4, & 5) morph of B. claroflava was described as a Apothecia gregarious, saucer- to plate- Cystodendron sp. by Carpenter (1975) and shaped, 1–1.5 mm wide, centrally short stipi- Johnston (1988) later decided it belongs to tate, disc brightly yellow, receptacle smooth, Bloxamia. I did not find any anamorphic state white. Ectal excipulum 50–60 µm thick, com- on these collections but observed Bloxamia posed of thick-walled, gelatinized, undulating anamorph on some Taiwanese collections of B. hyphae, 2–5 µm wide. Medullary excipulum of citrina (Fig. 4). textura intricata, 300–350 µm thick, hyphae hyaline, 3–5 µm wide. Asci 8-spored, cylindri- Hymenoscyphus lutescens (Hedwig: Fries) cal, 80–85 × 4.5–5 µm, pore turning pale blue Phillips, Brit. Discom. P. 131, 1887. (Figs. 2 in Melzer’s reagent. Ascospores ellipsoid, 1- & 6) septate, 9–12 × 2.5–3 µm, 2–3 guttulate. Para- Apothecia white, disc plane, 1–2 mm wide, physes filiform, 1–2 µm wide. Anamorph not short stipitate, ochraceous when dry, margin seen. slightly raised. Ectal excipulum of textura Specimens examined. Chiayi: Nanhsi For- angularis, cells 15–20 × 15–30 µm. Medullary est Road, on dead wood with Nectria sp., coll. excipulum of textura intricata, hyphae 3–5 µm S.Z. Chen, WAN 290, Jun. 13, 1996 (TNM wide. Asci 8-spored, cylindrical, pore turning 4708). Nantou: Juiyenhsi Nature Reserve, on pale bule in Melzer’s reagent, 70–90 × 7–8 µm. Hypoxylon sp., coll. Y.Z. Wang, WAN 961, Oct. Ascospores ellipsoid, 10–13 × 4–5 µm, 0–1 24, 2002 (TNM F15032). septate, full of guttules. Paraphyses filiform, This species is characterized by small lemon sparsely septate, straight, 2–3 µm at apex. 42 Fung. Sci. 20(1, 2), 2005 Fig. 1. Bisporella sulfurina. A. An ascus. B. Two pharaphyses tips. C. Four ascospores. E. A part of ectal excipulum. Bar = 10 µm. Fig. 2. Hymenoscyphus lutescens. A. An ascus. B. Three pharaphyses tips. C. Five ascospores. D. A part of ectal excipu- lum. Bar = 10 µm. Three discomycetes new to Taiwan 43 Specimen examined. Maioli: Kuanwu, on µm. Ascospores short ellipsoid, 5–7 × 1–2 µm, rotten wood. coll. W.N. Chou, WAN 1016, Mar. with guttules, slightly curved. Paraphyses fili- 23, 2004 (TNM F16522). form, straight or curved, apex 1–3 µm wide. Lizon (1992) described the paraphyses con- Specimens examined. Nantou: Juiyenhsi tain yellowish guttules, but I did not observe Nature Reserve, on rotten wood, coll. W.N. this characteristic in this specimen. Chou, WAN 974, Feb. 25, 2003 (TNM F15044). Taichung: Anmashan, on rotten wood, Ionomidotis frondosa (Kobayasi) Kobayasi & coll. W.N. Chou, WAN 964, Oct. 30, 2002 Korf in Korf, Sci. Rep. Yokohama Natl. (TNM F15035). Univ. Ser. 2, 7 : 19, 1958. (Figs. 3 & 7) This species is characterized by lobed apo- Apothecia black, ear-shaped at maturity, thecia with postulate receptacle surface, and lobed, gregarious, 0.5–2 cm long, 0.3–1 cm curved paraphyses. The ascospores of this col- wide, margin irregular. Receptacle furfura- lection are slightly larger than those of Japa- ceous, brown, tissues releasing dark purple- nese collections (4–4.5 × 1.0–1.4 µm, Zhuang brown pigment in KOH solution. Ectal- 1988). excipulum 50–75 µm thick, of texura angularis, cells 7–15 × 5–7 µm, thick-walled, immersed in Acknowledgements gel. Medullary excipulum 250–300 µm thick, of texutra intricate, hyphae 2–4 µm wide. Sub- Thanks are due to Miss S.Z. Chen and Mr. hymenium 20–30 µm thick, hyphae densely in- W.N. Chou for providing specimens studied in terwoven. Asci 8-spored, clavate, 35–40 × 4–5 this paper. Fig. 3. Ionomidotis frondosa. A. An ascus and two pharaphyses tips. B. Four ascospores. C. A part of ectal excipulum. Bar = 10 µm for A, B, and 20 µm for C. 44 Fung. Sci. 20(1, 2), 2005 Fig. 4. Bloxamia anamorph of Bisporella citrine. Bar = 20 µm. Fig. 5. Habitat of Bisporella sulfurina. Bar = 3 mm. Fig. 6. Habitat of Hymenoscyphus lutescens. Bar = 4 mm. Fig. 7. Habitat of Ionomidotis frondosa. Bar = 6 mm. References (Helotiales) in Slovakia, Czechoslovakia. Mycotaxon 45: 1–59. Carpenter, S.E. 1975. Bisporella discedens and Lizon, P. and R.P. Korf. 1995. Taxonomy and its Cystodendron state. Mycotaxon 2: 123– nomenclature of Bisporella claroflava (Leo- 126. tiaceae). Mycotaxon 54: 471–478. Johnston, P.R. 1988. The Bloxamia anamorph Zhuang, W.Y. 1988. Studies on some discomy- of Bisporella discedens. Mycotaxon 31: cete genera with an ionomidotic reaction: 345–350. Ionomidotis, Poloniodiscus, Cordierites, Lizon, P. 1992. The genus Hymenoscyphus Phyllomyces, and Ameghiniella. Three discomycetes new to Taiwan 45 臺灣產三種盤菌的新紀錄 王 也 珍 國立自然科學博物館,臺中市館前路一號 摘 要 本文描述三種臺灣的盤菌,硫色小雙孢盤菌 (Bisporella sulfurina)、透明膜盤菌 (Hymenoscyphus lutes- cens) 與複聚盤菌 (Ionomidotis frondosa)。均為臺灣的新紀錄。 關鍵詞:硫色小雙孢盤菌、透明膜盤菌、複聚盤菌。 46 Fung. Sci. 20(1, 2), 2005 .
Recommended publications
  • A Survey of Fungi at the University of Wisconsin-Waukesha Field Station
    University of Wisconsin Milwaukee UWM Digital Commons Field Station Bulletins UWM Field Station Spring 1993 A survey of fungi at the University of Wisconsin- Waukesha Field Station Alan D. Parker University of Wisconsin-Waukesha Follow this and additional works at: https://dc.uwm.edu/fieldstation_bulletins Part of the Forest Biology Commons, and the Zoology Commons Recommended Citation Parker, A.D. 1993 A survey of fungi at the University of Wisconsin-Waukesha Field Station. Field Station Bulletin 26(1): 1-10. This Article is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Field Station Bulletins by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. A Survey of Fungi at the University of Wisconsin-Waukesha Field Station Alan D. Parker Department of Biological Sciences University of Wisconsin-Waukesha Waukesha, Wisconsin 53188 Introduction The University of Wisconsin-Waukesha Field Station was founded in 1967 through the generous gift of a 98 acre farm by Ms. Gertrude Sherman. The facility is located approximately nine miles west of Waukesha on Highway 18, just south of the Waterville Road intersection. The site consists of rolling glacial deposits covered with old field vegetation, 20 acres of xeric oak woods, a small lake with marshlands and bog, and a cold water stream. Other communities are being estab- lished as a result of restoration work; among these are mesic prairie, oak opening, and stands of various conifers. A long-term study of higher fungi and Myxomycetes, primarily from the xeric oak woods, was started in 1978.
    [Show full text]
  • The Ascomycota
    Papers and Proceedings of the Royal Society of Tasmania, Volume 139, 2005 49 A PRELIMINARY CENSUS OF THE MACROFUNGI OF MT WELLINGTON, TASMANIA – THE ASCOMYCOTA by Genevieve M. Gates and David A. Ratkowsky (with one appendix) Gates, G. M. & Ratkowsky, D. A. 2005 (16:xii): A preliminary census of the macrofungi of Mt Wellington, Tasmania – the Ascomycota. Papers and Proceedings of the Royal Society of Tasmania 139: 49–52. ISSN 0080-4703. School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia (GMG*); School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia (DAR). *Author for correspondence. This work continues the process of documenting the macrofungi of Mt Wellington. Two earlier publications were concerned with the gilled and non-gilled Basidiomycota, respectively, excluding the sequestrate species. The present work deals with the non-sequestrate Ascomycota, of which 42 species were found on Mt Wellington. Key Words: Macrofungi, Mt Wellington (Tasmania), Ascomycota, cup fungi, disc fungi. INTRODUCTION For the purposes of this survey, all Ascomycota having a conspicuous fruiting body were considered, excluding Two earlier papers in the preliminary documentation of the endophytes. Material collected during forays was described macrofungi of Mt Wellington, Tasmania, were confined macroscopically shortly after collection, and examined to the ‘agarics’ (gilled fungi) and the non-gilled species, microscopically to obtain details such as the size of the
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Ascomyceteorg 06-05 Ascomyceteorg
    Typification of Hymenoscyphus sulphuratus (Ascomycota, Helotiales) Nicolas VAN VOOREN Summary: Hymenoscyphus sulphuratus is an uncommon species growing on conifer litter, but is typically found on Picea abies needles. As with many other historically described species, this name lacks a clearly de- fined type. The purpose of this note is to provide a type which covers all the features that agree with the protologue and our modern interpretation of this name. Keywords: Helotiaceae, conifer needles, neotypification, epitypification. Ascomycete.org, 6 (5) : 154-157. Décembre 2014 Résumé : Hymenoscyphus sulphuratus est une espèce peu commune se développant sur la litière de coni- Mise en ligne le 18/12/2014 fères, typiquement sur aiguilles de Picea abies. Comme d’autres espèces décrites par les auteurs anciens, ce nom manque d’un type clairement défini. L’objectif de cette note est de fournir un type qui couvre tous les caractères en accord avec le protologue et avec notre conception moderne de ce nom. Mots-clés : Helotiaceae, aiguilles de conifère, néotypification, épitypification. Introduction Asci cylindrical, 114–125 × 8–10 μm, 8-spored, apex conical, with an apical ring reacting blue (bb) in IKI without KOH-pretreatment, of the Hymenoscyphus type, occupying only the lower part of the In a previous article (VAN VOOREN & CHEYPE, 2008), a thorough des- apical thickening (which is 2–3 μm thick); base arising from croziers. cription was given off a Hymenoscyphus s.l. species growing on de- Paraphyses numerous, straight, cylindrical, not enlarged at the caying conifer needles, which was identified as Helotium apex (here 2–3 μm wide), hyaline, without visible contents, as long sulphuratum.
    [Show full text]
  • Hymenoscyphus Fraxineus
    Hymenoscyphus fraxineus Synonyms: Chalara fraxinea Kowalski (anamorph), Hymenoscyphus pseudoalbidus (teleomorph). Common Name(s) Ash dieback, ash decline Type of Pest Fungal pathogen Taxonomic Position Class: Leotiomycetes, Order: Helotiales, Family: Helotiaceae Reason for Inclusion in Figure 1. Mature Fraxinus excelsior showing Manual extensive shoot, twig, and branch dieback. CAPS Target: AHP Prioritized Epicormic shoot formation is also present. Photo Pest List – 2010-2016 credit: Andrin Gross. Background An extensive dieback of ash (Fig. 1) was observed from 1996 to 2006 in Lithuania and Poland. Trees were dying in all age classes, irrespective of site conditions and regeneration conditions. A fungus, described as a new species Chalara fraxinea, was isolated from shoots and some roots (Kowalski, 2006). The fungal pathogen varied from other species of Chalara by its small, short cylindrical conidia extruded in chains or in slimy droplets, morphological features of the phialophores, and by colony characteristics. Initial taxonomic studies concerning Chalara fraxinea established that its perfect state was the ascomycete Hymenoscyphus albidus (Gillet) W. Phillips, a fungus that has been known from Europe since 1851. Kowalski and Holdenrieder (2009b) provide a description and photographs of the teleomorphic state, Hymenoscyphus albidus. A molecular taxonomic study of Hymenoscyphus albidus indicated that there was significant evidence for the existence of two morphologically very similar taxa, H. albidus, and a new species, Hymenoscyphus pseudoalbidus (Queloz et al., 2010). Furthermore, studies suggested that H. albidus was likely a non-pathogenic species, whereas H. pseudoalbidus was the virulent species responsible for the current ash dieback epidemic in Europe (Queloz et al., 2010). A survey in Denmark showed that expansion of H.
    [Show full text]
  • Taxonomic Study of Lambertella (Rutstroemiaceae, Helotiales) and Allied Substratal Stroma Forming Fungi from Japan
    Taxonomic Study of Lambertella (Rutstroemiaceae, Helotiales) and Allied Substratal Stroma Forming Fungi from Japan 著者 趙 彦傑 内容記述 この博士論文は全文公表に適さないやむを得ない事 由があり要約のみを公表していましたが、解消した ため、2017年8月23日に全文を公表しました。 year 2014 その他のタイトル 日本産Lambertella属および基質性子座を形成する 類縁属の分類学的研究 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2013 報告番号 12102甲第6938号 URL http://hdl.handle.net/2241/00123740 Taxonomic Study of Lambertella (Rutstroemiaceae, Helotiales) and Allied Substratal Stroma Forming Fungi from Japan A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Agricultural Science (Doctoral Program in Biosphere Resource Science and Technology) Yan-Jie ZHAO Contents Chapter 1 Introduction ............................................................................................................... 1 1–1 The genus Lambertella in Rutstroemiaceae .................................................................... 1 1–2 Taxonomic problems of Lambertella .............................................................................. 5 1–3 Allied genera of Lambertella ........................................................................................... 7 1–4 Objectives of the present research ................................................................................. 12 Chapter 2 Materials and Methods ............................................................................................ 17 2–1 Collection and isolation
    [Show full text]
  • Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne Sarcoides
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Gianoulis, Tara A., Meghan A. Griffin, Daniel J. Spakowicz, Brian F. Dunican, Cambria J. Alpha, Andrea Sboner, A. Michael Sismour, et al. 2012. Genomic analysis of the hydrocarbon- producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genetics 8(3): e1002558. Published Version doi:10.1371/journal.pgen.1002558 Accessed February 19, 2015 9:56:05 AM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9696331 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA (Article begins on next page) Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides Tara A. Gianoulis1,2,3.{, Meghan A. Griffin4., Daniel J. Spakowicz4., Brian F. Dunican4, Cambria J. Alpha4, Andrea Sboner3,4, A. Michael Sismour1,2, Chinnappa Kodira5, Michael Egholm6, George M. Church1,2, Mark B. Gerstein3,4*, Scott A. Strobel4* 1 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Wyss Institute for Biologically Inspired
    [Show full text]
  • Notes on Ascomycetes 11: Discomycetes
    ACTA BOT. ISL. 10: 31-36, 1990. Notes on Ascomycetes 11: Discomycetes Helgi Hallgrfmsson and Henrik F. G~tzsche Lagarasi 2, 700 Egilsstaoir, Iceland and Institut for Sporeplanter, 0ster-Farirnagsgade 2D, 1353 Copenhagen K, Denmark ABSTRACT: Sixteen species of, Helotiales and Pezizales (Discomy­ cetes) are recorded, whereof 9 species are new to the Icelandic flora: Lachnellula suecica. Ciboria polygoni, Peziza cf. cerea, Peziza fimeti. Peziza granulosa. Geopora sp.. Melastiza eha teri, Otide8 cf. alutacea and T8rzetta spurcata. HELOTIALES Helotiaceae ASCOCORYNE SARCOIDES (Jacq.) Groves & Wils. The species was reported by ROSTRUP (1903, p.313) under the name Coryne sarcoides (Jacq.) Tul., from Halssk6gur in N-Ice­ land, based on a specimen collected by 6lafur Daviosson. It has been found many times in the Public Park in Akureyri (AMNH 199, 9958), growing on stumps of different trees, mainly Betula and Sorbus spp., also in Arnarh6ll near Akureyri, in a garden. In SW-Iceland it has been found by Eirikur Jensson in Fossvogur 1988, and in Vifilsstaoahlio near Hafnarfjorour 1978. In the East it has been collected in the forests of Egilsstaoir and Hallormsstaour in 1987-1988 (AMNH 11642, 11856). The growing season is from late August to October. Since the species is rarely found in the ascus-state, it can­ not be ascertained whether A. cylichnum might also be present in the material or not. Hyaloscyphaceae HYMENOSCYPHUS cf. CALYCULUS (Sow.) Phill. The species was reported by ROSTRUP (1903, p. 315) as Phialea virgultorum (Vahl.) Sacc., from Halssk6gur and Horgar- 32 ACTA BOTANICA ISLANDICA NO. 10 dalur, N. -Iceland, collected by 6lafur Daviosson on branches of Betula pubescens and Salix lanata.
    [Show full text]
  • Three New Species and a New Combination Of
    A peer-reviewed open-access journal MycoKeys 60: 1–15 (2019) News species of Triblidium 1 doi: 10.3897/mycokeys.60.46645 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Three new species and a new combination of Triblidium Tu Lv1, Cheng-Lin Hou1, Peter R. Johnston2 1 College of Life Science, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China 2 Manaaki Whenua Landcare Research, Private Bag 92170, Auckland 1142, New Zealand Corresponding author: Cheng-Lin Hou ([email protected]) Academic editor: D.Haelewaters | Received 17 September 2019 | Accepted 18 October 2019 | Published 31 October 2019 Citation: Lv T, Hou C-L, Johnston PR (2019) Three new species and a new combination of Triblidium. MycoKeys 60: 1–15. https://doi.org/10.3897/mycokeys.60.46645 Abstract Triblidiaceae (Rhytismatales) currently consists of two genera: Triblidium and Huangshania. Triblidium is the type genus and is characterised by melanized apothecia that occur scattered or in small clusters on the substratum, cleistohymenial (opening in the mesohymenial phase), inamyloid thin-walled asci and hyaline muriform ascospores. Before this study, only the type species, Triblidium caliciiforme, had DNA sequences in the NCBI GenBank. In this study, six specimens of Triblidium were collected from China and France and new ITS, mtSSU, LSU and RPB2 sequences were generated. Our molecular phylogenetic analysis and morphological study demonstrated three new species of Triblidium, which are formally de- scribed here: T. hubeiense, T. rostriforme and T. yunnanense. Additionally, our results indicated that Huang- shania that was considered to be distinct from Triblidium because of its elongated, transversely-septate ascospores, is congeneric with Triblidium.
    [Show full text]
  • Ascocoryne Sarcoides and Ascocoryne Cylichnium
    Ascocoryne sarcoides and Ascocoryne cylichnium. Descriptions and comparison FINN ROLL-HANSEN AND HELGA ROLL-HANSEN Roll-Hansen, F. & Roll-Hansen, H. 1979. Ascocoryne sarcoides and Ascocoryne cylichnium. Descriptions and comparison. Norw. J. Bot. Vol. 26, pp. 193-206. Oslo. ISSN 0300-1156. Descriptions are given and characters evaluated of apothecia and cultures of Ascocoryne sarcoides (Jacq. ex S. F. Gray) Groves & Wilson and A. cylichnium (L. R. Tul.) Korf. The separation into the two species may be justified by the occurrence of typical ascoconidiain/4. cylichnium, by a relatively sharp boundary between ectal and medullary excipulum in^4. sarcoides, and to some extent by other characters. F. Roll-Hansen & H. Roll-Hansen, Norwegian Forest Research Institute, Forest Pathology, P. O. Box 62, 1432 As, Norway. Ascocoryne species have been isolated by many Former descriptions authors from wood in living spruce trees both in North America and in Europe. In Norway the Ascocoryne sarcoides (Jacq. ex S. F. Ascocoryne species seem to be more common Gray) Groves & Wilson than any other group of fungi in unwounded Groves & Wilson (1967) gave the diagnosis of the stems oiPicea abies. They do not seem to cause genus Ascocoryne and transferred Octospora any rot or discoloration of importance, but they sarcoides Jacq. ex S. F. Gray (Coryne sarcoides may influence the development of other fungi in [Jacq. ex S. F. Gray] Tul.) to that genus. The the stems. conidial state is Coryne dubia Pers. ex S. F. Great confusion exists regarding identification Gray (Pirobasidium sarcoides Hohn.). Descrip­ of isolates of the Ascocoryne species. In a pre­ tions of the apothecia with the asci and the liminary paper (Roll-Hansen & Roll-Hansen ascospores have been given by, for example, 1976) the authors reported isolation of Knapp (1924), Dennis (1956), Gremmen (1960), Ascocoryne sarcoides (Jacq.
    [Show full text]