Goals and Objectives for the Exploration and Investigation of the Solar System’S Small Bodies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NSF Current Newsletter Highlights Research and Education Efforts Supported by the National Science Foundation
March 2012 Each month, the NSF Current newsletter highlights research and education efforts supported by the National Science Foundation. If you would like to automatically receive notifications by e-mail or RSS when future editions of NSF Current are available, please use the links below: Subscribe to NSF Current by e-mail | What is RSS? | Print this page | Return to NSF Current Archive Robotic Surgery Systems Shipped to Medical Research Centers A set of seven identical advanced robotic-surgery systems produced with NSF support were shipped last month to major U.S. medical research laboratories, creating a network of systems using a common platform. The network is designed to make it easy for researchers to share software, replicate experiments and collaborate in other ways. Robotic surgery has the potential to enable new surgical procedures that are less invasive than existing techniques. The developers of the Raven II system made the decision to share it as the best way to move the field forward--though it meant giving competing laboratories tools that had taken them years to develop. "We decided to follow an open-source model, because if all of these labs have a common research platform for doing robotic surgery, the whole field will be able to advance more quickly," said Jacob Rosen, Students with components associate professor of computer engineering at the University of of the Raven II surgical California-Santa Cruz. Rosen and Blake Hannaford, director of the robotics systems. Credit: University of Washington Biorobotics Laboratory, led the team that Carolyn Lagattuta built the Raven system, initially with a U.S. -
Natural & Unnatural Disasters
Lesson 20: Disasters February 22, 2006 ENVIR 202: Lesson No. 20 Natural & Unnatural Disasters February 22, 2006 Gail Sandlin University of Washington Program on the Environment ENVIR 202: Lesson 20 1 Natural Disaster A natural disaster is the consequence or effect of a natural phenomenon becoming enmeshed with human activities. “Disasters occur when hazards meet vulnerability” So is it Mother Nature or Human Nature? ENVIR 202: Lesson 20 2 Natural Phenomena Tornadoes Drought Floods Hurricanes Tsunami Wild Fires Volcanoes Landslides Avalanche Earthquakes ENVIR 202: Lesson 20 3 ENVIR 202: Population & Health 1 Lesson 20: Disasters February 22, 2006 Naturals Hazards Why do Populations Live near Natural Hazards? High voluntary individual risk Low involuntary societal risk Element of probability Benefits outweigh risk Economical Social & cultural Few alternatives Concept of resilience; operationalized through policies or systems ENVIR 202: Lesson 20 4 Tornado Alley http://www.spc.noaa.gov/climo/torn/2005deadlytorn.html ENVIR 202: Lesson 20 5 Oklahoma City, May 1999 319 mph (near F6) 44 died, 795 injured 3,000 homes and 150 businesses destroyed ENVIR 202: Lesson 20 6 ENVIR 202: Population & Health 2 Lesson 20: Disasters February 22, 2006 World’s Deadliest Tornado April 26, 1989 1300 died 12,000 injured 80,000 homeless Two towns leveled Where? ENVIR 202: Lesson 20 7 Bangladesh ENVIR 202: Lesson 20 8 Hurricanes, Typhoons & Cyclones winds over 74 mph regional location 500,000 Bhola cyclone, 1970, Bangladesh 229,000 Typhoon Nina, 1975, China 138,000 Bangladesh cyclone, 1991 ENVIR 202: Lesson 20 9 ENVIR 202: Population & Health 3 Lesson 20: Disasters February 22, 2006 U.S. -
Barrett Senate Confirmation Hearings Begin Republicans Praise Nominee As Democrats Cast Judge As a Threat to ‘Obamacare’ Page 7
VIRUS OUTBREAK NBA FINALS Stuttgart steps up virus Scientists say virus may Lakers defeat Heat restrictions after spike stay on touch screens, in Game 6 to capture puts city on red alert banknotes for weeks record-tying 17th title Page 4 Page 5 Back page US hits Taliban with airstrikes in Afghanistan’s Helmand province » Page 3 stripes.com Volume 79, No. 127 ©SS 2020 TUESDAY, OCTOBER 13, 2020 50¢/Free to Deployed Areas Barrett Senate confirmation hearings begin Republicans praise nominee as Democrats cast judge as a threat to ‘Obamacare’ Page 7 Supreme Court nominee Amy Coney Barrett is sworn in during a confirmation hearing Monday before the Senate Judiciary Committee on Capitol Hill in Washington. PATRICK SEMANSKY / AP First monument honoring military women at Arlington to be unveiled BY NIKKI WENTLING said Phyllis Wilson, president of ors all military women. Stars and Stripes the Women in Military Service The monument, titled The for America Memorial Founda- Pledge, will be unveiled during a WASHINGTON — The Women tion and a retired chief warrant ceremony Saturday. In bronze, it in Military Service for America officer. depicts a service woman outfitted Memorial, at the gateway to Ar- for combat, kneeling and staring lington National Cemetery, is The memorial has been closed for about seven months during face-to-face with a military work- regularly placed on lists of “hid- ing dog. The base of the monu- den gems” within the nation’s the coronavirus pandemic. It re- ment says it honors “all women capital — a perspective on the opens Oct. 18 with a new feature of the U.S. -
A Guide to Space Law Terms: Spi, Gwu, & Swf
A GUIDE TO SPACE LAW TERMS: SPI, GWU, & SWF A Guide to Space Law Terms Space Policy Institute (SPI), George Washington University and Secure World Foundation (SWF) Editor: Professor Henry R. Hertzfeld, Esq. Research: Liana X. Yung, Esq. Daniel V. Osborne, Esq. December 2012 Page i I. INTRODUCTION This document is a step to developing an accurate and usable guide to space law words, terms, and phrases. The project developed from misunderstandings and difficulties that graduate students in our classes encountered listening to lectures and reading technical articles on topics related to space law. The difficulties are compounded when students are not native English speakers. Because there is no standard definition for many of the terms and because some terms are used in many different ways, we have created seven categories of definitions. They are: I. A simple definition written in easy to understand English II. Definitions found in treaties, statutes, and formal regulations III. Definitions from legal dictionaries IV. Definitions from standard English dictionaries V. Definitions found in government publications (mostly technical glossaries and dictionaries) VI. Definitions found in journal articles, books, and other unofficial sources VII. Definitions that may have different interpretations in languages other than English The source of each definition that is used is provided so that the reader can understand the context in which it is used. The Simple Definitions are meant to capture the essence of how the term is used in space law. Where possible we have used a definition from one of our sources for this purpose. When we found no concise definition, we have drafted the definition based on the more complex definitions from other sources. -
UN Specialized Agencies and Governance for Global Risks
13 UN Specialized Agencies and Governance for Global Risks For the first time in human history, we have reached a level of scientific knowledge that allows us to develop an enlightened relationship to risks of catastrophic magnitude. Not only can we foresee many of the challenges ahead, but we are in a position to identify what needs to be done in order to mitigate or even eliminate some of those risks. Our enlightened status, however, also requires that we ... collectively commit to reducing them. 1 Allan Dafoe and Anders Sandberg The United Nations has grown far beyond the institutions directly provided for in the UN Charter. This chapter and those immediately following review a number of global issues and risks that have emerged largely since 1945 and the responses through the UN family of specialized agencies, programs and convention secretar- iats. We consider the efforts of the UN to develop more strategic and integrated approaches to the range of interrelated problems in sustainable development facing the world today. We then consider examples of reform in the economic, environ- mental and social dimensions, without attempting to be comprehensive. We first look at governance for the global economy, especially to address the major chal- lenges of growing inequality and the need for a level playing field for business. For the risks of instability in the financial system, we propose reinforcing the role of the International Monetary Fund (IMF) for enhanced financial governance. We then review global environmental governance, including climate change, as well as population and migration as significant global social issues. -
Volume 1, #1 2021 May 14 Published on Behalf of the International Astronomical Union by the WG Small Bodies Nomenclature
Volume 1, #1 2021 May 14 Published on behalf of the International Astronomical Union by the WG Small Bodies Nomenclature. ISSN <applied for> Cover image: Navigation image of (1) Ceres, obtained by the DAWN mission. Courtesy NASA/JPL-CALTECH. WGSBN Bull. 1, #1 Table of Contents Editorial Notice.....................................................................................................................8 New Names of Minor Planets...............................................................................................8 (3708) Socus = 1974 FV1...............................................................................................9 (4035) Thestor = 1986 WD1...........................................................................................9 (4489) Dracius = 1988 AK..............................................................................................9 (4715) Medesicaste = 1989 TS1.....................................................................................9 (5258) Rhoeo = 1989 AU1..............................................................................................9 (5311) Rutherford = 1981 GD1.......................................................................................9 (5346) Benedetti = 1981 QE3.........................................................................................9 (5648) Axius = 1990 VU1...............................................................................................9 (5766) Carmelofalco = 1986 QR3..................................................................................9 -
The Orbital Distribution of Near-Earth Objects Inside Earth’S Orbit
Icarus 217 (2012) 355–366 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The orbital distribution of Near-Earth Objects inside Earth’s orbit ⇑ Sarah Greenstreet a, , Henry Ngo a,b, Brett Gladman a a Department of Physics & Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, British Columbia, Canada b Department of Physics, Engineering Physics, and Astronomy, 99 University Avenue, Queen’s University, Kingston, Ontario, Canada article info abstract Article history: Canada’s Near-Earth Object Surveillance Satellite (NEOSSat), set to launch in early 2012, will search for Received 17 August 2011 and track Near-Earth Objects (NEOs), tuning its search to best detect objects with a < 1.0 AU. In order Revised 8 November 2011 to construct an optimal pointing strategy for NEOSSat, we needed more detailed information in the Accepted 9 November 2011 a < 1.0 AU region than the best current model (Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, Available online 28 November 2011 H.F., Michel, P., Metcalfe, T.S. [2002]. Icarus 156, 399–433) provides. We present here the NEOSSat-1.0 NEO orbital distribution model with larger statistics that permit finer resolution and less uncertainty, Keywords: especially in the a < 1.0 AU region. We find that Amors = 30.1 ± 0.8%, Apollos = 63.3 ± 0.4%, Atens = Near-Earth Objects 5.0 ± 0.3%, Atiras (0.718 < Q < 0.983 AU) = 1.38 ± 0.04%, and Vatiras (0.307 < Q < 0.718 AU) = 0.22 ± 0.03% Celestial mechanics Impact processes of the steady-state NEO population. -
The Physical Characterization of the Potentially-‐Hazardous
The Physical Characterization of the Potentially-Hazardous Asteroid 2004 BL86: A Fragment of a Differentiated Asteroid Vishnu Reddy1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Email: [email protected] Bruce L. Gary Hereford Arizona Observatory, Hereford, AZ 85615, USA Juan A. Sanchez1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Driss Takir1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Cristina A. Thomas1 NASA Goddard Spaceflight Center, Greenbelt, MD 20771, USA Paul S. Hardersen1 Department of Space Studies, University of North Dakota, Grand Forks, ND 58202, USA Yenal Ogmen Green Island Observatory, Geçitkale, Mağusa, via Mersin 10 Turkey, North Cyprus Paul Benni Acton Sky Portal, 3 Concetta Circle, Acton, MA 01720, USA Thomas G. Kaye Raemor Vista Observatory, Sierra Vista, AZ 85650 Joao Gregorio Atalaia Group, Crow Observatory (Portalegre) Travessa da Cidreira, 2 rc D, 2645- 039 Alcabideche, Portugal Joe Garlitz 1155 Hartford St., Elgin, OR 97827, USA David Polishook1 Weizmann Institute of Science, Herzl Street 234, Rehovot, 7610001, Israel Lucille Le Corre1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Andreas Nathues Max-Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany 1Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. Pages: 27 Figures: 8 Tables: 4 Proposed Running Head: 2004 BL86: Fragment of Vesta Editorial correspondence to: Vishnu Reddy Planetary Science Institute 1700 East Fort Lowell Road, Suite 106 Tucson 85719 (808) 342-8932 (voice) [email protected] Abstract The physical characterization of potentially hazardous asteroids (PHAs) is important for impact hazard assessment and evaluating mitigation options. -
THE DISTRIBUTION of ASTEROIDS: EVIDENCE from ANTARCTIC MICROMETEORITES. M. J. Genge and M. M. Grady, Department of Mineralogy, T
Lunar and Planetary Science XXXIII (2002) 1010.pdf THE DISTRIBUTION OF ASTEROIDS: EVIDENCE FROM ANTARCTIC MICROMETEORITES. M. J. Genge and M. M. Grady, Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD (email: [email protected]). Introduction: Antarctic micrometeorites (AMMs) due to aqueous alteration. Some C2 fgMMs contain are that fraction of the Earth's cosmic dust flux that tochilinite and are probably directly related to the CM2 survive atmospheric entry to be recovered from Antar- chondrites, however, others may differ from CMs in tic ice. Models of atmospheric entry indicate that, due their mineralogy. to their large size (>50 µm), unmelted AMMs are de- C1 fgMMs are particles with compact matrices that rived mainly from low geocentric velocity sources such are homogeneous in Fe/Mg and show little contrast in as the main belt asteroids [1]. The production of dust in BEIs. These are similar to the CI1 chondrites and do the main belt by small erosive collisions and the deliv- not contain recognisable psuedomorphs after anhy- ery of dust-sized debris to Earth by P-R light drag drous silicates and thus have been intensely altered by should ensure that AMMs are a much more representa- water. C1 fgMMs often contain framboidal magnetite tive sample of main belt asteroids than meteorites. clusters. The relative abundances of different petrological C3 fgMMs have porous matrices (often around types amongst 550 AMMs collected from Cap Prud- 50% by volume) and are dominated by micron-sized homme [2] is reported and compared with the abun- Mg-rich olivine and pyroxenes linked by a network of dances of asteroid spectral-types in the main belt. -
Detection of Exocometary CO Within the 440 Myr Old Fomalhaut Belt: a Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets
UCLA UCLA Previously Published Works Title Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets Permalink https://escholarship.org/uc/item/1zf7t4qn Journal Astrophysical Journal, 842(1) ISSN 0004-637X Authors Matra, L MacGregor, MA Kalas, P et al. Publication Date 2017-06-10 DOI 10.3847/1538-4357/aa71b4 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Astrophysical Journal, 842:9 (15pp), 2017 June 10 https://doi.org/10.3847/1538-4357/aa71b4 © 2017. The American Astronomical Society. All rights reserved. Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets L. Matrà1, M. A. MacGregor2, P. Kalas3,4, M. C. Wyatt1, G. M. Kennedy1, D. J. Wilner2, G. Duchene3,5, A. M. Hughes6, M. Pan7, A. Shannon1,8,9, M. Clampin10, M. P. Fitzgerald11, J. R. Graham3, W. S. Holland12, O. Panić13, and K. Y. L. Su14 1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; [email protected] 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3 Astronomy Department, University of California, Berkeley CA 94720-3411, USA 4 SETI Institute, Mountain View, CA 94043, USA 5 Univ. Grenoble Alpes/CNRS, IPAG, F-38000 Grenoble, France 6 Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Dr., Middletown, CT 06459, USA 7 MIT Department of Earth, Atmospheric, and -
1950 Da, 205, 269 1979 Va, 230 1991 Ry16, 183 1992 Kd, 61 1992
Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. Burbine Index More Information 356 Index 1950 DA, 205, 269 single scattering, 142, 143, 144, 145 1979 VA, 230 visual Bond, 7 1991 RY16, 183 visual geometric, 7, 27, 28, 163, 185, 189, 190, 1992 KD, 61 191, 192, 192, 253 1992 QB1, 233, 234 Alexandra, 59 1993 FW, 234 altitude, 49 1994 JR1, 239, 275 Alvarez, Luis, 258 1999 JU3, 61 Alvarez, Walter, 258 1999 RL95, 183 amino acid, 81 1999 RQ36, 61 ammonia, 223, 301 2000 DP107, 274, 304 amoeboid olivine aggregate, 83 2000 GD65, 205 Amor, 251 2001 QR322, 232 Amor group, 251 2003 EH1, 107 Anacostia, 179 2007 PA8, 207 Anand, Viswanathan, 62 2008 TC3, 264, 265 Angelina, 175 2010 JL88, 205 angrite, 87, 101, 110, 126, 168 2010 TK7, 231 Annefrank, 274, 275, 289 2011 QF99, 232 Antarctic Search for Meteorites (ANSMET), 71 2012 DA14, 108 Antarctica, 69–71 2012 VP113, 233, 244 aphelion, 30, 251 2013 TX68, 64 APL, 275, 292 2014 AA, 264, 265 Apohele group, 251 2014 RC, 205 Apollo, 179, 180, 251 Apollo group, 230, 251 absorption band, 135–6, 137–40, 145–50, Apollo mission, 129, 262, 299 163, 184 Apophis, 20, 269, 270 acapulcoite/ lodranite, 87, 90, 103, 110, 168, 285 Aquitania, 179 Achilles, 232 Arecibo Observatory, 206 achondrite, 84, 86, 116, 187 Aristarchus, 29 primitive, 84, 86, 103–4, 287 Asporina, 177 Adamcarolla, 62 asteroid chronology function, 262 Adeona family, 198 Asteroid Zoo, 54 Aeternitas, 177 Astraea, 53 Agnia family, 170, 198 Astronautica, 61 AKARI satellite, 192 Aten, 251 alabandite, 76, 101 Aten group, 251 Alauda family, 198 Atira, 251 albedo, 7, 21, 27, 185–6 Atira group, 251 Bond, 7, 8, 9, 28, 189 atmosphere, 1, 3, 8, 43, 66, 68, 265 geometric, 7 A- type, 163, 165, 167, 169, 170, 177–8, 192 356 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. -
Aas 14-267 Design of End-To-End Trojan Asteroid
AAS 14-267 DESIGN OF END-TO-END TROJAN ASTEROID RENDEZVOUS TOURS INCORPORATING POTENTIAL SCIENTIFIC VALUE Jeffrey Stuart,∗ Kathleen Howell,y and Roby Wilsonz The Sun-Jupiter Trojan asteroids are celestial bodies of great scientific interest as well as potential natural assets offering mineral resources for long-term human exploration of the solar system. Previous investigations have addressed the auto- mated design of tours within the asteroid swarm and the transition of prospective tours to higher-fidelity, end-to-end trajectories. The current development incorpo- rates the route-finding Ant Colony Optimization (ACO) algorithm into the auto- mated tour generation procedure. Furthermore, the potential scientific merit of the target asteroids is incorporated such that encounters with higher value asteroids are preferentially incorporated during sequence creation. INTRODUCTION Near Earth Objects (NEOs) are currently under consideration for manned sample return mis- sions,1 while a recent NASA feasibility assessment concludes that a mission to the Trojan asteroids can be accomplished at a projected cost of less than $900M in fiscal year 2015 dollars.2 Tour concepts within asteroid swarms allow for a broad sampling of interesting target bodies either for scientific investigation or as potential resources to support deep-space human missions. However, the multitude of asteroids within the swarms necessitates the use of automated design algorithms if a large number of potential mission options are to be surveyed. Previously, a process to automatically and rapidly generate sample tours within the Sun-Jupiter L4 Trojan asteroid swarm with a mini- mum of human interaction has been developed.3 This scheme also enables the automated transition of tours of interest into fully optimized, end-to-end trajectories using a variety of electrical power sources.4,5 This investigation extends the automated algorithm to use ant colony optimization, a heuristic search algorithm, while simultaneously incorporating a relative ‘scientific importance’ ranking into tour construction and analysis.