Evolution of Ecological Communities Through the Lens of an Island Chronosequence

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Ecological Communities Through the Lens of an Island Chronosequence Evolution of ecological communities through the lens of an island chronosequence Rosemary Gillespie, Henrik Krehenwinkel, Andy Rominger Jun Ying Lim, Kari Goodman, Dan Gruner, John Harte University of California, Berkeley, USA NSF Dimensions of Biodiversity nature.berkeley.edu/evolab nature.berkeley.edu/hawaiidimensions Evolution of ecological communities through the lens of an island chronosequence Andy Rominger, Henrik Krehenwinkel, Dan Gruner, Jun Ying Lim, Kari Goodman, Ellie Armstrong, Gordon Bennett, Michael Henrik Brewer, Darko Cotoras, Curtis Ewing, Diana Percy, Patrick Krehenwinkel O’Grady, Don Price, George Roderick, Kerry Shaw Biodiversity Dynamics Fitness Fitness Microevolution Macroevolution Fitness Evolution Ecology Fitness Biodiversity dynamics Processes occur over different scales, so how to assess dynamics? Island chronosequence 5.1 my 2.6-3.7 my 0.7-1.8 my 0-0.4 my Dynamics of trait evolution Species diversity through time blue- extant lineages only Extant & extinct lineages (brown line) brown - extant & extinct lineages. extant lineages (blue line) Circles - true & reconstructed trait value Temporal dynamics in niche interactions for the most recent common ancestor Geographic space Environmental space Neontological & paleontological data Time Species shifts from orange to blue environment that appears only after T1 Environmental factor 1 Fritz et al 2013. Diversity in time and space... TREE 28, 509-516 Chronosequence 5 million years ago Necker Nihoa Kauai Niihau 2.5 million years ago Nihoa Kauai Oahu Niihau 1 million years ago Niihau Kauai Oahu Maui Nui Necker 5 million years ago Nihoa Kauai Niihau 2.5 million years ago Nihoa Kauai Oahu Niihau 1 million years ago Niihau Kauai Oahu Maui Nui 0.5 million years ago Kauai Niihau Oahu Maui Nui Can read chrono-sequence as a fossil record to look Hawaii at: Present Kauai • Dynamics of trait evolution Niihau • Species diversity through Maui Nui Oahu time • Temporal dynamics in niche interactions. Hawaii Island chronosequence 1. Microevolution 2 macroevolution 1. Evolutionary dynamics over time • Repetition of evolutionary process 2. Species diversity through time • How communities come together over time 3. Ecological interactions • Measurement of ecological metrics (space for time) 1. Micro- to macro-evolution • the early stages 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Youngest island ….. Dynamics on Hawaii Island as the “crucible of evolution” Carson et al. 1990 PNAS 87, pp. 7055-7057, 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Habitat fragmentation clearly limits gene flow Photograph by J.D. Griggs Forest habitat specialist Vandergast et al. 2004. Mol Ecol 13: 1729-1743 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Balance between isolation & time Isolation separates populations Fusion injects diversity How does this play out over time? 2. Evolutionary dynamics blue- extant lineages only brown - extant & extinct lineages. 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Evolutionary Dynamics 5.1 my 2.6-3.7 my 0.7-1.8 my Progression rule 0-0.4 my 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Hormiga, Arnedo & Gillespie 2003. Systematic Biology 52: 70-88 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions M. anguliventris Hawaii Diversification M. anguliventris Maui M. anguliventris Oahu early in radiation M. anguliventris Kauai • Adaptive M. naevigera Hawaii • Populations diverge M. naevigera Maui in allopatry M. naevigera Oahu M. discreta Molokai M. discreta Kauai M. cavata Hawaii M. cavata Necker M. nigrofrenata Hawaii M. nigrofrenata Kauai M. rufithorax Oahu M. imbricataOahu M. facunda Hawaii M. arida Maui M. sp Maui M. kanakana Hawaii M. kanakana Maui M. kanakana Oahu M. kanakana Kauai M. spinosa Oahu M. hiatus Maui M. perkinsi Oahu Garb & Gillespie, 2009. M. edita Oahu Molecular Ecology Radiation of long-jawed spiders, Tetragnatha, in Hawaii 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Based on mtDNA, minisatellites, & allozymes ….. ….. general progression down island chain Independent evolution of ecomorphs Hawaii Maui Nui Oahu Kauai Gillespie 2004, Science; Pons & Gillespie 2004. J. Mol Evolution 59: 632-641 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Argyrodes trigonum A. huinakolu Kauai Evolution of A. kahili Kauai “ecomorphs” A. uwepa Oahu A. sp (white) Oahu A. makue Oahu Repeated evolution A. sp (black) Molokai A. sp (gold) Molokai A. sp Molokai (like mele- kalikimaka) A. poele Molokai Gold – under leaves Gene-tree (mt A. melekalikimaka Maui COI & A. laau Maui nuclear EF1 A. alepe Maui White – seqs); output A. corniger Maui on lichen by Beast. Posterior A. waikula Hawaii Brown – bark/ rock probabilities A. hiwa Hawaii above nodes Rhomphaea metaltissima Ariamnes attenuata Spintharus flavidus 2. Evolutionary dynamics blue- extant lineages only Ariamnes spiders brown - extant & extinct lineages. “Onset” of diversification in a given lineage is reset on each island 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Therefore, we know that: • Taxa differ in • The interplay between ecological & genetic shifts during diversification • …. Can now look at patterns of diversity over time; whole communities 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions 3. Species Diversity Extant & extinct lineages (brown line) extant lineages (blue line) 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Insights from chronosequence Orsonwelles Mecaphesa 4 8 3.5 7 3 6 2.5 5 2 4 1.5 3 1 2 0.5 1 No. species/area 0 0 Hawaii Maui Nui Oahu Kauai Hawaii Maui Nui Oahu Kauai Youngest -- Island age -- Oldest Youngest -- Island age -- Oldest 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Insights from chronosequence Orsonwelles Mecaphesa 4 8 3.5 7 3 6 2.5 5 2 4 1.5 3 1 2 0.5 1 No. species/area 0 0 Hawaii Maui Nui Oahu Kauai Hawaii Maui Nui Oahu Kauai Ariamnes Tetragnatha – spiny leg clade 4.5 3 4 2.5 3.5 3 2 2.5 1.5 2 1.5 1 1 0.5 0.5 No. species/ area No. species/ 0 0 Hawaii Maui Nui Oahu Kauai Hawaii Maui Nui Oahu Kauai Youngest -- Island age -- Oldest Youngest -- Island age -- Oldest 0.025 Insights from chronosequence 0.02 R2 = 0.996 R2 = 0.8088 R2 = 0.9951 a 0.015 e r a / s e i c e p s . R2 = 0.8403 o N 0.01 R2 = 0.9917 No. Species/Area R2 = 0.9575 0.005 R2 = 0.9641 R2 = 0.96 R2 = 0.8238 0 0 1 2 3 4 5 6 Gillespie & Baldwin 2009 IslandIsland Age Age (My) Species diversity over time Chronosequence Extant & extinct lineages (brown line) extant lineages (blue line) 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Therefore, we know that: • Taxa differ in • The interplay between ecological & genetic shifts during diversification • Rate of accumulation of species • Patterns of diversity over time • Highlights how different groups perceive the chronosequence • …. and ecological theory can give us a guide as to what’s novel 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions 4. Ecological Interactions • Measurement of ecological metrics • Space for time Geographic space Environmental space Different environmental conditions (colors) Species (*) shifts from Time orange to blue environment that appears only after T1 Environmental factor 1 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Maximum Entropy Theory of Ecology • Community-wide genetic divergence across space, environment and time (chronosequence) • Testing novel theory Species Individuals Energy Harte (2011) Oxford University Press. 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Fitting species abundance data to METE predictions Deviation from predictions on youngest substrates may indicate that community has not yet reached steady state Rominger et al. 2015 Global Ecology and Biogeography 1. Micro-macroevolution 2. Evolutionary dynamics 3.Species diversity 4. Ecological interactions Interaction Networks • Nestedness decreases with site age. Perhaps due to high immigration of new species with high probabilities to eat / be eaten by generalist species already present • Modularity increases, likely due to coevolution Modularity - degree to which species interact in semi- autonomous modules Nestedness - degree of asymmetry in interaction between specialists and generalists Rominger et al. 2015 Global Ecology and Biogeography Networks deviateKilauea most from KohalaMETE predictionsMaui on youngest &Kauai oldest sites 0 e 1 e r g e D ecol Incomplete specialization assembly 1 Linkage 1 . e 0 ● Cosmopolitans e r ● g Endemics e d ● ● ● d e z i l a m r o N More ….specialization … LessMore ….specialization… Linkage 0.001 0.010 0.100 1.000Bennett & O’Grady Age (mya) 2012 Mol. Phylo. Evol. • ecological theory can give us a guide as to what’s novel Top panels show that networks deviate most from MaxEnt on youngest and oldest sites. Deviation on Koh is not difRomingerfer entet al. 2015
Recommended publications
  • Memorias 2003
    F. Leizaola zientzi elkartea ARANZADI sociedad de ciencias Gomendatutako katalogo fitxa Ficha bibliogáfica recomendada ARANZADIANA Aranzadiko berriak 2003 124. Zbka. / Nº 124 Zuzendu gutunak helbide honetara: Diríjase toda la correspondencia a: ARANZADI Zientzi elkartea - Sociedad de ciencias Society of sciences - Société de sciences Zorroagagaina 11 20014 Donostia - San Sebastián Tl.: 943 466142 - Fax 943 455811 e-mail: [email protected] www.aranzadi-zientziak.org Edukien koordinaketa: Carmen Izaga Diseinua, maketazioa eta irudien tratamendua: Oihana Pagola ARANZADIANA Aranzadi Zientzi Elkarteko urtekaria da eta dohainik banatzen da bazkideen artean. ARANZADIANA es el anuario de la Sociedad de Ciencias Aranzadi y se distribuye gratuitamente a los socios. Donostia - San Sebastián 2003 ISSN: 1132 - 2292 D.L.: SS 445/92 Inprimatzen du: Michelena artes gráficas, s.l. Babesleak / Colaboran: Ministerio de Educación y Cultura Eusko Jaurlaritza - Gobierno Vasco Gipuzkoako Foru Aldundia - Diputación Foral de Gipuzkoa Kutxa Gipuzkoa - Donostia Euskadiko Kutxa - Caja Laboral Aranzadi Zientzi Elkarteak eskerrak eman nahi dizkie bazkide guztiei euren etengabeko babesagatik, eta baita urtean zehar lagundu diguten pertsona eta erakunde guztiei ere. Eskerrik asko denori. La Sociedad de Ciencias Aranzadi quiere agradecer a todas las personas y organismos que nos han ayudado a lo largo del año. Gracias a todos. www.aranzadi-zientziak.org Posta elektronikoen helbideak Direcciones de correo electrónico Zuzendaritza / Dirección: [email protected]
    [Show full text]
  • Local and Regional Influences on Arthropod Community
    LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network.
    [Show full text]
  • Molecular Insights Into the Phylogenetic Structure of the Spider
    MolecularBlackwell Publishing Ltd insights into the phylogenetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna MIQUEL A. ARNEDO, INGI AGNARSSON & ROSEMARY G. GILLESPIE Accepted: 9 March 2007 Arnedo, M. A., Agnarsson, I. & Gillespie, R. G. (2007). Molecular insights into the phylo- doi:10.1111/j.1463-6409.2007.00280.x genetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna. — Zoologica Scripta, 36, 337–352. The Hawaiian happy face spider (Theridion grallator Simon, 1900), named for a remarkable abdominal colour pattern resembling a smiling face, has served as a model organism for under- standing the generation of genetic diversity. Theridion grallator is one of 11 endemic Hawaiian species of the genus reported to date. Asserting the origin of island endemics informs on the evolutionary context of diversification, and how diversity has arisen on the islands. Studies on the genus Theridion in Hawaii, as elsewhere, have long been hampered by its large size (> 600 species) and poor definition. Here we report results of phylogenetic analyses based on DNA sequences of five genes conducted on five diverse species of Hawaiian Theridion, along with the most intensive sampling of Theridiinae analysed to date. Results indicate that the Hawai- ian Islands were colonised by two independent Theridiinae lineages, one of which originated in the Americas. Both lineages have undergone local diversification in the archipelago and have convergently evolved similar bizarre morphs. Our findings confirm para- or polyphyletic status of the largest Theridiinae genera: Theridion, Achaearanea and Chrysso.
    [Show full text]
  • The Complete Mitochondrial Genome Sequence of the Spider Habronattus Oregonensis Reveals 2 Rearranged and Extremely Truncated Trnas 3 4 5 Susan E
    1 The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals 2 rearranged and extremely truncated tRNAs 3 4 5 Susan E. Masta 6 Jeffrey L. Boore 7 8 9 10 11 DOE Joint Genome Institute 12 Department of Evolutionary Genomics 13 2800 Mitchell Drive 14 Walnut Creek, CA 94598 15 16 Corresponding author: 17 Susan E. Masta 18 Department of Biology 19 P.O. Box 751 20 Portland State University 21 Portland, Oregon 97207 22 email: [email protected] 23 telephone: (503) 725-8505 24 fax: (503) 725-3888 25 26 27 Key words: mitochondrial genome, truncated tRNAs, aminoacyl acceptor stem, gene 28 rearrangement, genome size, Habronattus oregonensis 29 30 31 Running head: mitochondrial genome of a spider 32 33 1 34 We sequenced the entire mitochondrial genome of the jumping spider Habronattus oregonensis 35 of the arachnid order Araneae (Arthropoda: Chelicerata). A number of unusual features 36 distinguish this genome from other chelicerate and arthropod mitochondrial genomes. Most of 37 the transfer RNA gene sequences are greatly reduced in size and cannot be folded into typical 38 cloverleaf-shaped secondary structures. At least nine of the tRNA sequences lack the potential to 39 form TYC arm stem pairings, and instead are inferred to have TV-replacement loops. 40 Furthermore, sequences that could encode the 3' aminoacyl acceptor stems in at least 10 tRNAs 41 appear to be lacking, because fully paired acceptor stems are not possible and because the 42 downstream sequences instead encode adjacent genes. Hence, these appear to be among the 43 smallest known tRNA genes.
    [Show full text]
  • En La Nomenclatura De Taxones Paleontológicos Y Zoológicos
    Bol. R. Soc. Esp. Hist. Nat., 114, 2020: 177-209 Desenfado (e incluso humor) en la nomenclatura de taxones paleontológicos y zoológicos Casualness (and even humor) in the nomenclature of paleontological and zoological taxa Juan Carlos Gutiérrez-Marco Instituto de Geociencias (CSIC, UCM) y Área de Paleontología GEODESPAL, Facultad CC. Geológicas, José Antonio Novais 12, 28040 Madrid. [email protected] Recibido: 25 de mayo de 2020. Aceptado: 7 de agosto de 2020. Publicado electrónicamente: 9 de agosto de 2020. PALABRAS CLAVE: Nombres científicos, Nomenclatura binominal, CINZ, Taxonomía, Paleontología, Zoología. KEY WORDS: Scientific names, Binominal nomenclature, ICZN, Taxonomy, Paleontology, Zoology. RESUMEN Se presenta una recopilación de más de un millar de taxones de nivel género o especie, de los que 486 corresponden a fósiles y 595 a organismos actuales, que fueron nombrados a partir de personajes reales o imaginarios, objetos, compañías comerciales, juegos de palabras, divertimentos sonoros o expresiones con doble significado. Entre las personas distinguidas por estos taxones destacan notablemente los artistas (músicos, actores, escritores, pintores) y, en menor medida, políticos, grandes científicos o divulgadores, así como diversos activistas. De entre los personajes u obras de ficción resaltan los derivados de ciertas obras literarias, películas o series de televisión, además de variadas mitologías propias de las diversas culturas. Los taxones que conllevan una terminología erótica o sexual más o menos explícita, también ocupan un lugar destacado en estas listas. Obviamente, el conjunto de estas excentricidades nomenclaturales, muchas de las cuales bordean el buen gusto y puntualmente rebasan las recomendaciones éticas de los códigos internacionales de nomenclatura, representan una ínfima minoría entre los casi dos millones de especies descritas hasta ahora.
    [Show full text]
  • Araneae, Linyphiidae) 109 Doi: 10.3897/Zookeys.703.13641 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 703:Callosa 109–128 gen. (2017) n., a new troglobitic genus from southwest China (Araneae, Linyphiidae) 109 doi: 10.3897/zookeys.703.13641 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Callosa gen. n., a new troglobitic genus from southwest China (Araneae, Linyphiidae) Qingyuan Zhao1,2, Shuqiang Li1,3 1 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2 Southeast Asia Biological Diver- sity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar 3 University of the Chinese Academy of Sciences, Beijing 100049, China Corresponding author: Shuqiang Li ([email protected]) Academic editor: Yuri Marusik | Received 12 May 2017 | Accepted 8 September 2017 | Published 28 September 2017 http://zoobank.org/0FF3A9EB-0AC1-45A8-8957-6D3AA945B5C8 Citation: Zhao Q, Li S (2017) Callosa gen. n., a new troglobitic genus from southwest China (Araneae, Linyphiidae). ZooKeys 703: 109–128. https://doi.org/10.3897/zookeys.703.13641 Abstract A new linyphiid genus Callosa gen. n., with two new species Callosa ciliata sp. n. (♂♀, type species) and Callosa baiseensis sp. n. (♂♀), from southwest China are described. Detailed description of genitalic char- acters and somatic features is provided, as well as light microscopy and SEM micrographs of each species. Callosa gen. n. was found in caves in Yunnan and Guangxi, and its copulatory organs are similar to those of Bathyphantes and Porrhomma, but differ greatly in details. The monophyly and placement of Callosa gen. n. are supported by the results of molecular analysis. Keywords Asia, cave spider, eyeless, Linyphiinae, morphology, photographs Introduction In previous collecting work conducted in caves in southwest China, a considerable number of troglobitic spider species belonging to Nesticidae, Leptonetidae, Telemidae, and Pholci- dae were found, but Linyphiidae were seldom encountered.
    [Show full text]
  • Cladistics Blackwell Publishing Cladistics 23 (2007) 1–71 10.1111/J.1096-0031.2007.00176.X
    Cladistics Blackwell Publishing Cladistics 23 (2007) 1–71 10.1111/j.1096-0031.2007.00176.x Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies Matjazˇ Kuntner1,2* , Jonathan A. Coddington1 and Gustavo Hormiga2 1Department of Entomology, National Museum of Natural History, Smithsonian Institution, NHB-105, PO Box 37012, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, The George Washington University, 2023 G St NW, Washington, DC 20052, USA Accepted 11 May 2007 The Pantropical spider clade Nephilidae is famous for its extreme sexual size dimorphism, for constructing the largest orb-webs known, and for unusual sexual behaviors, which include emasculation and extreme polygamy. We synthesize the available data for the genera Nephila, Nephilengys, Herennia and Clitaetra to produce the first species level phylogeny of the family. We score 231 characters (197 morphological, 34 behavioral) for 61 taxa: 32 of the 37 known nephilid species plus two Phonognatha and one Deliochus species, 10 tetragnathid outgroups, nine araneids, and one genus each of Nesticidae, Theridiidae, Theridiosomatidae, Linyphiidae, Pimoidae, Uloboridae and Deinopidae. Four most parsimonious trees resulted, among which successive weighting preferred one ingroup topology. Neither an analysis of an alternative data set based on different morphological interpretations, nor separate analyses of morphology and behavior are superior to the total evidence analysis, which we therefore propose as the working hypothesis of nephilid relationships, and the basis for classification. Ingroup generic relationships are (Clitaetra (Herennia (Nephila, Nephilengys))). Deliochus and Phonognatha group with Araneidae rather than Nephilidae. Nephilidae is sister to all other araneoids (contra most recent literature).
    [Show full text]
  • Identifying Spiders Through DNA Barcodes
    481 Identifying spiders through DNA barcodes Rowan D.H. Barrett and Paul D.N. Hebert Abstract: With almost 40 000 species, the spiders provide important model systems for studies of sociality, mating systems, and sexual dimorphism. However, work on this group is regularly constrained by difficulties in species identi- fication. DNA-based identification systems represent a promising approach to resolve this taxonomic impediment, but their efficacy has only been tested in a few groups. In this study, we demonstrate that sequence diversity in a standard segment of the mitochondrial gene coding for cytochrome c oxidase I (COI) is highly effective in discriminating spider species. A COI profile containing 168 spider species and 35 other arachnid species correctly assigned 100% of subse- quently analyzed specimens to the appropriate species. In addition, we found no overlap between mean nucleotide di- vergences at the intra- and inter-specific levels. Our results establish the potential of COI as a rapid and accurate identification tool for biodiversity surveys of spiders. Résumé : Avec presque 40 000 espèces, les araignées constituent un modèle important pour l’étude de la vie sociale, des systèmes d’accouplement et du dimorphisme sexuel. Cependant, la recherche sur ce groupe est souvent restreinte par les problèmes d’identification des espèces. Les systèmes d’identification basés dur l’ADN présentent une solution prometteuse à cette difficulté d’ordre taxonomique, mais leur efficacité n’a été vérifiée que chez quelques groupes. Nous démontrons ici que la diversité des séquences dans un segment type du gène mitochondrial de la cytochrome c oxydase I (COI) peut servir de façon très efficace à la reconnaissance des espèces d’araignées.
    [Show full text]
  • FILMOTECA REGIÓN DE MURCIA PROGRAMACIÓN MARZO ABRIL MAYO JUNIO 2015 C Olaboran
    FILMOTECA REGIÓN DE MURCIA PROGRAMACIÓN MARZO ABRIL MAYO JUNIO 2015 olaboran C // FILMOTECA ESPAÑOLA / AULA DE CULTURA CAJAMEDITERRANEO / VIDEO MERCURY / UNIVERSIDAD DE MURCIA / INSTITUTO DE CULTURA POLACA DE MADRID / ACCEM / FUNDACIÓN INTEGRA / COLECTIVO NO TE PRIVES // Precio entrada 2.5 € • La Filmoteca Regional de Murcia se re- Abono 10 entradas 20 € serva el derecho a variar el horario o la Taquilla abierta 30 minutos antes de la pri- programación de las películas. mera sesión (tambén para venta anticipada) • La duración es orientativa y aproxi- mada. • Versión, formato y sala consultar car- telera en filmotecamurcia.es/ // CINE EN FAMILIA / PANORAMA DE ACTUALIDAD / UNA MIRADA CERCA- NA: CINE CONTEMPORÁNEO EN ESPAÑOL/ OBRAS MAESTRAS DE LA HIS- TORIA DEL CINE: LA PELÍCULA DE TU VIDA / REALIZADORES MURCIANOS / LA MEMORIA FILMADA / C-FEM / X MUESTRA LGTB DE LA REGIÓN DE MURCIA / CENTENARIO ORSON WELLES / VIVIR RODANDO: EL CINE DEN- TRO DEL CINE / MEDIA ART FUTURES / 70ª ANIVERSARIO DEL FINAL DE LA SEGUNDA GUERRA MUNDIAL / MARGARITA LOZANO: DOCTOR HONORIS CAUSA UNIVERSIDAD DE MURCIA // PANORAMA DE ACTUALIDAD pueblo de Gales en graves problemas económicos. El film trata de mostrar La minimalista obra del cineasta brasi- como dos colectivos aparentemente an- leño Michael Wahrmann “Avanti Popolo”, tagónicos pueden llegar a entenderSE y inaugurará nuestro “Panorama de Actua- luchar por una causa común. lidad”, en una cinta que dirige la mirada hacia el Brasil sacudido por la dictadura Para celebrar el “Día Internacional de Áfri- militar de
    [Show full text]
  • British Nineteenth-Century Literature and the Hollywood Studio
    ADAPTATION AS AN INTERTEXTUAL MODE OF PRACTICE: British Nineteenth-Century Literature and the Hollywood Studio Era Penny Chalk BA (Hons), MA This thesis is submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth April 2018 1 DECLARATION While registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in the thesis are the work of the named candidate and have not been submitted for any other academic award. Signed……………………………………… Date…………………………………… Total word count 71,051 i ABSTRACT This thesis is an interdisciplinary study of adaptations produced in the Hollywood studio era, focussing on British nineteenth-century literature adapted between the years 1930 to 1949. Based on the critical fields of adaptation criticism and historical scholarship of film, it emphasizes adaptations in relation to production practices, examining how and why a range of British literary texts were adapted in this era. The study uses a specially-created dataset collected from the American Film Institute Catalog of Motion Pictures, and archival evidence from the Margaret Herrick library, New York Public Library and British Film Institute. The introductory chapter provides an overview of the period, considering the impact of economic constraints, censorship, and war. This chapter argues that adaptations were an integral part of the industry in this period, driving innovation and production trends. Following this overview of the period, five case studies are presented in order to consider the diverse range of strategies employed in the adaptation of literary texts.
    [Show full text]
  • Speciation on a Conveyor Belt: Sequential Colonization of the Hawaiian Islands by Orsonwelles Spiders (Araneae, Linyphiidae)
    Syst. Biol. 52(1):70–88, 2003 DOI: 10.1080/10635150390132786 Speciation on a Conveyor Belt: Sequential Colonization of the Hawaiian Islands by Orsonwelles Spiders (Araneae, Linyphiidae) GUSTAVO HORMIGA,1 MIQUEL ARNEDO,2,3 AND ROSEMARY G. GILLESPIE2 1Department of Biological Sciences, George Washington University, Washington, D.C. 20052, USA; E-mail: [email protected] 2Division of Insect Biology, ESPM, 201 Wellman Hall, University of California, Berkeley, California 94720-3112, USA; E-mail (R.G.G.): [email protected] Abstract.— Spiders of the recently described linyphiid genus Orsonwelles (Araneae, Linyphiidae) are one of the most conspic- uous groups of terrestrial arthropods of Hawaiian native forests. There are 13 known Orsonwelles species, and all are single- island endemics. This radiation provides an excellent example of insular gigantism. We reconstructed the cladistic relation- ships of Orsonwelles species using a combination of morphological and molecular characters (both mitochondrial and nuclear sequences) within a parsimony framework. We explored and quantified the contribution of different character partitions and their sensitivity to changes in the traditional parameters (gap, transition, and transversion costs). The character data show a strong phylogenetic signal, robust to parameter changes. The monophyly of the genus Orsonwelles is strongly supported. The parsimony analysis of all character evidence combined recovered a clade with of all the non-Kauai Orsonwelles species; the species from Kauai form a paraphyletic assemblage with respect to the latter former clade. The biogeographic pattern of the Hawaiian Orsonwelles species is consistent with colonization by island progression, but alternative explanations for our data exist. Although the geographic origin of the radiation remains unknown, it appears that the ancestral colonizing species arrived first on Kauai (or an older island).
    [Show full text]
  • BMC Evolutionary Biology
    Comparative phylogeography of arthropod communities through the lens of an island chronosequence Famous for adaptive radiation … But not all radiations are created equal Only by understanding the differences, &2018 © IIthe Joint Congress conditions on Evolutionary Biology 2018. All rights reservedcreating - Any reproduction even in them,part is prohibited. will we ever understand the process of adaptive radiation Rosemary Gillespie, Univ California,2018 © II Joint CongressBerkeley on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. nature.berkeley.edu/evolab2018 © 48th European Contact Lens Society Of Ophthalmologists. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited] . Hotspot Island s 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. – Multiple adaptive radiations Space for time substitution allows insights into process 2018 © II Joint Congress on Evolutionary Biology 2018. All rights reserved - Any reproduction even in part is prohibited. 2018 © 48th European Contact Lens Society Of Ophthalmologists.
    [Show full text]