Imjj I Requirements for J^The Degree Of/Doctor of .^Philosophy of the Council for Na'tioharacademic Awards

Total Page:16

File Type:pdf, Size:1020Kb

Imjj I Requirements for J^The Degree Of/Doctor of .^Philosophy of the Council for Na'tioharacademic Awards University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 1979 STRUCTURE - ACTIVITY RELATIONSHIPS IN SOME HERBICIDAL FLUORENE DERIVATIVES HARTNELL, MICHAEL WILLIAM http://hdl.handle.net/10026.1/1838 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. STRUCTURE - ACTIVITY RELATIONSHIPS IN SOME HERBICIDAL FLUORENE DERIVATIVES BY MICHAEL WILLIAM HARTNELL B.Sc, C. Chem. ,M.R. I. C. Ph.D,._T}ffiSIS^ This thesis is submitted in partial fulfilment of the imjj i requirements for j^the degree of/Doctor of .^Philosophy of the Council for Na'tioharAcademic Awards... Sponsored by:' In collaboration with: The School of Environmental Chesterford Park Research Sciences Station Plymouth Polytechnic Fisons Limited Drake Circus Agrochemicals Division PLYMOUTH Nr.SAFFRON WALDEN Devon PL4 8AA Essex CBIO IXL January 1979 PLYMOUTH POLYtECHHIC LEARHiHB BESOURCES CEHTRE ACCIi. No. CLASS No. CONTENTS 1. INTRODUCTION 6 1.1 Morphactins 6 1.2 Effects of Morphactins 7 1.3 Chemistry of Morphactins 9 1.4 Objects of Research 11 2. THEORETICAL 13 2.1 Fluorene 13 2.2 Synthetic Methods 13 2.3 Structure 19 2.4 Properties 20 2.4.1 Oxidation 21 2.4.2 Hydrogenation 23 2.4.3 Electrophilic Substitution in the Benzenoid Rings 23 2.4.4 Substitution at the 9-Position 26 DISCUSSION 33 3.1 Chemistry of 9,9-Bishydroxymethylfluorene 33 3.2 Hydroxyl Modifications 37 3.2.1 Esters 37 3.2.2 Chloromethyl Derivatives 37 3.2.3 Miscellaneous Reactions 39 3.3 Ring Substituted Derivatives of 9,9-Bishydroxymethylfluorene 40 3.3.1 2-Nitro-9,9-bishydroxymethylfluorene 40 3.3.2 Halogen Substituents 42 3.3.3 Acetyl Substituents 42 3.3.4 4-Substituted Derivatives 43 3.4 Methyl 2-Chloro-9-hydroxymethylfluorene- 9-carboxylate 43 3.5 Biological Screening of 9,9-Bishydroxy- methylfluorene Derivatives 43 XH20H (21) Rl = R2 = R3 = H Similar hydroxymethylations are theoretically possible using a variety of substituted fluorenes. Consequently, although the level of (HCHO) ft- DMSO (11) (21) Scheme 6 activity of 9,9 - bishydroxymethylfluorene(21) was in all cases lower than that of Chlorflurecol Methyl(9) it v;as considered worthwhile to explore the structure-activity relationships in a series of hydroxy- methylated fluorenes with the object of producing a novel compound possessing enhanced morphactin-like activity- The objects of the work described in this thesis can therefore be stated as: 1) The synthesis of a series of derivatives of 9,9 - bishydroxy methylfluorene(21) containing ring substituents and/or modified hydroxyl groups. 11) A study of the herbicidal activities of such compounds in relation to their structure. 12 PLYMOUTH POLYTECHNIC "STRUCTURE - ACTIVITY RELATIONSHIPS IN SOf^E HERBICIDAL FLUORENE DERIVATIVES" by MICHAEL WILLIAM HARTNELL> B.Sc, C.Chem., M.R.I.C ABSTRACT OF THESIS Synthetic plant-growth regulators derived from fluorene-9-carbo)0'lic acid ('morphactins') are introduced and the literature on them is reviewed. Similar herbicidal activity has been found with 9,9-bishydroxymethylfluorene, a compound which can be obtained directly from the hydrocarbon fluorene. There follows a detailed review of the chemistry of fluorene and 9,9- bishydro)^methylfluorene. 9-Substituted and ring-substituted derivatives of this diol have been synthesised and their chemistry and biological activity are discussed. The hydro)^methylation of substituted fluorenes is possible on a small scale in suitable solvents which do not stabilise the corresponding radical anions. This radical anion formation, when it occurs, seriously reduces the yield of hydroxymethylated product. Acetonitrile as solvent and aqueous benzyl- trimethyl ammonium hydroxide as base were found to be a particularly useful system for these reactions. Methyl 2-chloro-9-hydro)0'methylfluorene-9-carboxylate was found to be the most active compound synthesised. It was concluded that a 9-carbo>:*'lic acid group is required for high activity. None of the compounds examined were found to be more active than 'chlorflurecoT, the commercial product. ! /i 1 i CONCLUSION 47 EXPERIMENTAL A9 5.1 General Procedures 49 5.2 Hydroxyl Modifications 49 5.3 Ring Substituted Derivatives 61 5.4 Methyl 2-chloro-9-hydroxymethylfluorene- 9-carboxylate 68 REFERENCES 70 APPENDICES 75 1. Biological Screening Results 75 2. Herbicide Screening Methods 78 ACKNOWLEDGetENTS I wish to record my thanks to ray supervisors, Dr. R.W. Hanson and Dr. G.T. Newbold for their help throughout this project. Thanks are also due to Dr. R. Adams and Dr. Wendy Vincent for help v;ith the e.s.r. investigations. Finally,! would like to thank the tyuists, particularly Mrs. I.K. East, for their efforts. ABSTRACT . ^. , _ Synthetic plant-growth regulators derived from fluorene-9- cerboxyli'c acid ('morphfictins') are introduced and the literature on them is reviewed. Similar herbicidal activity has been found with 9,9-bishydroxymcthii1 fluorene, a compound which can be obtained directly from the hydrocarbon fluorene. There follows a detailed review of the chemistry of fluorene and 9,9-bishydroxyraethylfluorene. 9-Substituted and ring-substituted derivatives of this diol have been synthesiscd-and their chemistry and biological activity are discussed. The hydroxymethylation of substituted fluorenes is possible on a srr.all scale in suitable solvents which do not stabilise tho corresponding radical anions. This radical anion formation,when it occurs,seriously reduces the yield of hydroxymethylated product. Acetonitrile as solvent and aqueous benzyltriraethylammonium hydroxide as base were found to be a particularly useful system for these reactions. Methyl 2-chloro-9-hydroxymethylfluorene-9-carboxyiate was found to be the most active compound synthesised. It was concluc'cd that a 9-carboxylic acid group is required for high activity. None of the compounds examined v^re found to be more active than 'chlorflurecol', the commercial product. 1. INTRODUCTION 1.1 MORPHACTINS The different factors contributing to the growth and development of plants are controlled by a group of naturally occurring chemicals collectively called the phytohormones Some or all of these hormones act together in regulating the various growth processes. The natural growth control mechanisms can be interfered with chemically by several different types of synthetic growth regulator, one class of which is derived from fluorene - 9 • 2 carboxylic acid(l) . R (1) = R^ = H, R^ = CO^H = R2 = R3 = H •^1 (11) (2) = CI, R^ = OH.R^ = CO^H (14) = H, R^ = OH.R^ = CO^H ^1 h (6) = R2 = H, R^ = CN (15) = H,R2= CI, R3 = CO^Cl ^1 (7) = H, R^ = OHjR^ = CN (18) = H,R2/R3 = 0 \ ^1 (8) = R^ = H.R^ = ONO^ (19) = R2 = H.R^ = CONH^ (9) = CljR^ = OHjR^ = CO^Hc (20) = R^ = H,R3 = CI (10) = HjR^ = OHjR^ = CO^Bu" In 1953 Wain reported that fluorene - 9 - carboxylic acid(l) was active in the tomato leaf epinasty test (a downward curvature of the leaf petiole) and Went's pea test (the curvature of pieces of pea stem slit longitudinally). A year later,Jones, Metcalfe and Sexton showed that this compound inhibited the geotropism of various seedlings (downward curvature of the roots under the influence of gravity). Furthermore they discovered that certain derivatives of this acid, particularly 2 - chloro - 9 - hydroxyfluorene - 9 - carboxylic acid(2), were effective at very much lower concentrations. Similar effects were shown by N - 1 - naphthylphthalamic acid (Naptalam, 3) and 2, 3, 5 - tri-iodobenzoic acid(TIBA, 4) Their hypothesis was that since growth was not inhibited all of CH2C02^ NHCO CO2H (5) these antigeotropic substances competed with the phytohormone auxin or indole - 3 - acetic acid (lAA, 5) in its lateral transport mechanism, a process which occurs in plants influenced by gravity. Whilst these compounds have been shown to interfere with the internal movement of auxin, it seems unlikely, because of their structural differences, that they would compete for any hypothetical indoleacetic acid transporting site. It was subsequently shown, in 1960, by workers at the Merck 2 6 7 Biological Research Laboratories, ' ' ' that derivatives of fluorene - 9- carboxylic acid{l) designated as raorphactins, exerted a pov/erful effect upon the growth and development of higher plants. Further research led to the discovery of other related active compounds, particularly 9 - cyanofluorene, 9 - cyano - 9 - hydroxyfluorene and 9 - fluorenyl nitrate (6,7,8). Two morphactins, methyl 2 - chloro - 9 - hydroxyfluorene - 9 - carboxylateCChlorflurecol Methyl, 9) and n - butyl 9 - hydroxyfluorene - 9 carboxylate(Flurecol Butyl, 10) were marketed as commercial products in 9 1965 ^. 1.2 EFFECTS OF MORPHACTINS The effects of morphactins on plants have been reviewed in detail by Schneider^^ and Ziegler^^. These active compounds are absorbed into the plant via the leaves and the roots to be subsequently translocated throughout the plant system. They become active in the Uegetative apex and -2 -7 meristematic tissues over a very wide range of concentration(10 to 10 mol.dm ) without any toxic side-effects . It is a feature of the morphactins that they have very little effect on organs which at the time of application are already developing. Their major effects are seen on new growth v/hich has developed after treatment. The appearance of symptoms is slow but progressive. Development of the plant in general is slowed down, growth of the main, axis is suppressed and branching occurs. However, the lateral shoots which are produced are stunted as well. The root system of the plant is similarly affected. The normal geotropism of roots and phototropism of shoots are affected too. When applied at the correct stage of growth, morphactins inhibit the development of flowers or cause premature shedding of the buds.
Recommended publications
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0046022 A1 Takahashi (43) Pub
    US 20140046022A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0046022 A1 Takahashi (43) Pub. Date: Feb. 13, 2014 (54) FLUORENE COMPOUND (30) Foreign Application Priority Data (71) Applicant: Ajinomoto Co., Inc., Tokyo (JP) Mar. 12, 2009 (JP) ................................. 2009-06O291 (72) Inventor: Daisuke Takahashi, Mie (JP) Publication Classification (73) Assignee: Ajinomoto Co., Inc., Tokyo (JP) (51) Int. Cl. C07K L/06 (2006.01) (21) Appl. No.: 14/027,961 CD7C 43/21 (2006.01) (52) U.S. Cl. (22) Filed: Sep. 16, 2013 CPC ................. C07K I/062 (2013.01); C07C 43/21 (2013.01) Related U.S. Application Data USPC ........................................... 530/335:568/634 (62) Division of application No. 12/723,027, filed on Mar. (57) ABSTRACT 12, 2010, now Pat. No. 8,569,453. Particular compounds having a fluorene skeleton are Superior (60) Provisional application No. 61/159,998, filed on Mar. in broad utility and stability, as a protecting reagent for liquid 13, 2009. phase synthesis of amino acids and/or peptides. US 2014/0046022 A1 Feb. 13, 2014 FLUORENE COMPOUND carrier, an isolation target compound can be selectively pre cipitated from a homogeneous solution state, in other words, CROSS REFERENCES TO RELATED a particular compound can be isolated after a liquid phase APPLICATIONS reaction when other soluble components still remain in a Solution, thus obviating the need to consider extraction and 0001. This application is a division of U.S. Ser. No. precipitation conditions for each compound. 12/723,027, filed Mar. 12, 2010, and claims priority to U.S. 0010. However, when a polymer is used as a carrier mol Provisional Patent Applications No.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • Coast Guard, DHS Pt. 150, App. I
    Coast Guard, DHS Pt. 150, App. I APPENDIX I TO PART 150—EXCEPTIONS Member of reactive group Compatible with TO THE CHART Propylene glycol (20) (a) The binary combinations listed below Oleum (0) ............................... Hexane (31) have been tested as prescribed in Appendix Dichloromethane (36) III and found not to be dangerously reactive. Perchloroethylene (36) These combinations are exceptions to the 1,2-Propylene glycol (20) ...... Diethylenetriamine (7) Compatibility Chart (Figure 1) and may be Polyethylene polyamines (7) Triethylenetetramine (7) stowed in adjacent tanks. Sodium dichromate, 70% (0) Methyl alcohol (20) Member of reactive group Compatible with Sodium hydrosulfide solution Methyl alcohol (20) (5). Acetone (18) .......................... Diethylenetriamine (7) Iso-Propyl alcohol (20) Acetone cyanohydrin (0) ....... Acetic acid (4) Sulfuric acid (2) ..................... Coconut oil (34) Acrylonitrile (15) ..................... Triethanolamine (8) Coconut oil acid (34) Palm oil (34) 1,3-Butylene glycol (20) ......... Morpholine (7) Tallow (34) 1,4-Butylene glycol (20) ......... Ethylamine (7) Sulfuric acid, 98% or less (2) Choice white grease tallow Triethanolamine (8) (34) gamma-Butyrolactone (0) ...... N-Methyl-2-pyrrolidone (9) Caustic potash, 50% or less Isobutyl alcohol (20) (b) The binary combinations listed below (5). Ethyl alcohol (20) have been determined to be dangerously re- Ethylene glycol (20) active, based on either data obtained in the Isopropyl alcohol (20) Methyl alcohol (20) literature or on laboratory testing which has iso-Octyl alcohol (20) been carried out in accordance with proce- Caustic soda, 50% or less (5) Butyl alcohol (20) dures prescribed in Appendix III. These com- tert-Butyl alcohol, Methanol binations are exceptions to the Compat- mixtures ibility Chart (Figure 1) and may not be Decyl alcohol (20) stowed in adjacent tanks.
    [Show full text]
  • ALABAMA SEAFOOD SURVEILLANCE SAMPLES NPH = Naphthalene, FLU = Fluorene, PHN = Phenanthrene, ANT = Anthracene, FLA = Fluoranthene
    ALABAMA SEAFOOD SURVEILLANCE SAMPLES NPH = Naphthalene, FLU = Fluorene, PHN = Phenanthrene, ANT = Anthracene, FLA = Fluoranthene, Polycyclic Aromatic Hydrocarbon (PAH) and PYR = Pyrene, BaA = Benz(a)anthracene, CHR = Chrysene, BbF = Benzo(b)fluoranthene, DOSS Results Summary BkF = Benzo(k)fluoranthene, BaP = Benzo(a)pyrene, DBA = Dibenz(a,h)anthracene, IcdPy = Indeno(1,2,3-cd)pyrene, DOSS = Dioctylsulfosuccinate **The estimated maximum total PAH value represents a "worst case" estimate of the PAHs including alkyl homologs that could potentially be in the that happens to yield fluorescence responsesample. Results reported using FDACS Screening Method 521, based on It may include fluorescent compounds other than PAHs and background signal that happens to yield fluorescence response FDA LC Fluorescence Screening Method and FDACS DOSS Levels of Concern bases on FDA's Protocol for Interpretation and Use of Sensory Testing and Analytical Chemistry Results for Reopening In order to "PASS" Method 522 based on FDA's Determination of Levels of Concern (ppm) Oil-Impacted Areas closed to Seafood Harvesting. 7/26/10 samples must not Dioctylsulfosuccinate in Select Seafoods using LC/MS Shrimp and Crab 123 246 1846 246 185 1.32 1.32 13.2 0.132 0.132 1.32 61.5 500 exceed any Sorted by seafood type (crab, finfish, oyster, shrimp), Oysters 133 267 2000 267 200 1.43 143 1.43 14.3 0.143 0.143 1.43 66.5 500 FDA Levels of harvest area and sample # Finfish 32.7 65.3 490 65.3 49 0.35 35 0.35 0.35 0.035 0.035 0.35 16.35 100 Concern <LOD = less than Limit of Detection,
    [Show full text]
  • Azulene—A Bright Core for Sensing and Imaging
    molecules Review Azulene—A Bright Core for Sensing and Imaging Lloyd C. Murfin * and Simon E. Lewis Department of Chemistry, University of Bath, Bath BA2 7AY, UK; [email protected] * Correspondence: lloyd.murfi[email protected] Abstract: Azulene is a hydrocarbon isomer of naphthalene known for its unusual colour and fluores- cence properties. Through the harnessing of these properties, the literature has been enriched with a series of chemical sensors and dosimeters with distinct colorimetric and fluorescence responses. This review focuses specifically on the latter of these phenomena. The review is subdivided into two sec- tions. Section one discusses turn-on fluorescent sensors employing azulene, for which the literature is dominated by examples of the unusual phenomenon of azulene protonation-dependent fluorescence. Section two focuses on fluorescent azulenes that have been used in the context of biological sensing and imaging. To aid the reader, the azulene skeleton is highlighted in blue in each compound. Keywords: fluorescence; azulene; sensor; dosimeter; bioimaging; chemosensor; chemodosimeter 1. Introduction Azulene, 1, is an isomer of naphthalene, 2, composed of fused 5- and 7-membered ring systems (Figure1) and named for its vibrant blue colour. Unlike naphthalene, azulene is a non-alternant hydrocarbon, possessing nodal points at C-2 and C-6 of the HOMO and C-1 and C-3 of the LUMO [1]. The location of these nodes results in low electronic repulsion in the S1 singlet excited state, affording a relatively small HOMO-LUMO gap. Hence, the S0!S1 transition arises from absorption in the visible region. Conversely, in naphthalene, coefficient magnitudes remain consistent for each position in both the HOMO Citation: Murfin, L.C.; Lewis, S.E.
    [Show full text]
  • Massachusetts Chemical Fact Sheet
    Massachusetts Chemical Fact Sheet Hexavalent Chromium Table 1: HEXAVALENT CHROMIUM COMPOUNDS: Compounds SELECTED EXAMPLES* Compound Chemical Formula CAS # This fact sheet is part of a series of chemical fact sheets Ammonium chromate (NH ) Cr0 7788-98-9 developed by TURI to help Massachusetts companies, 4 2 4 community organizations and residents understand the Ammonium dichromate (NH4)2Cr2O7 7789-09-5 chemical’s use and health and environmental effects, as Barium chromate BaCrO4 10294-40-3 well as the availability of safer alternatives. tert-Butyl Chromate [(CH3)3CO]2CrO2 1189-85-1 Hexavalent chromium compounds are a toxic form of Calcium chromate CaCrO4 13765-19-0 chromium and are used in a variety of industrial processes Chromic acid H2CrO4 7738-94-5 and products. Chromium VI chloride CrCl6 14986-48-2 Hexavalent chromium compounds are human carcinogens, Chromic trioxide CrO3 1333-82-0 mutagens and developmental toxicants and are acutely Hexavalent chromium ion Cr6+ 18540-29-9 toxic. Non-hexavalent chromium compounds do not pose Lead chromate PbCrO4 7758-97-6 the same level of concern with regard to either chronic or Lead chromate oxide PbCrO4-PbO 8454-12-1 acute toxicity. Potassium chlorochromate KCrO3Cl 16037-50-6 Until 2011, all chromium compounds were treated as Potassium chromate K2CrO4 7789-00-6 a single category under TURA. Beginning with Potassium dichromate K Cr O 7778-50-9 reporting year 2012, hexavalent chromium 2 2 7 compounds are reportable under TURA as a Silver chromate Ag2CrO4 7784-01-2 separate category and are designated as a Higher Sodium chromate Na2CrO4 7775-11-3 Hazard Substance, which lowers the reporting Sodium dichromate 7789-12-0 threshold to 1,000 lb/year.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons (Pahs)
    Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet 4th edition Donata Lerda JRC 66955 - 2011 The mission of the JRC-IRMM is to promote a common and reliable European measurement system in support of EU policies. European Commission Joint Research Centre Institute for Reference Materials and Measurements Contact information Address: Retiewseweg 111, 2440 Geel, Belgium E-mail: [email protected] Tel.: +32 (0)14 571 826 Fax: +32 (0)14 571 783 http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 66955 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Belgium Table of contents Chemical structure of PAHs................................................................................................................................. 1 PAHs included in EU legislation.......................................................................................................................... 6 Toxicity of PAHs included in EPA and EU
    [Show full text]
  • NON-TARGET ANALYSIS of BIOREMEDIATED SOIL Zhenyu
    NON-TARGET ANALYSIS OF BIOREMEDIATED SOIL Zhenyu Tian A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Environmental Sciences and Engineering in the Gillings School of Global Public Health. Chapel Hill 2018 Approved by: Michael D. Aitken Wanda M. Bodnar Avram Gold Kun Lu Jason D. Surratt © 2018 Zhenyu Tian ALL RIGHTS RESERVED ii ABSTRACT Zhenyu Tian: Non-target Analysis of Bioremediated Soil (Under the direction of Michael D. Aitken) Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of environmental concern. Bioremediation, relying on stimulation of natural microbial degradation processes, is a well-established technology to clean up PAH-contaminated soils. However, bioremediation does not necessarily lead to a reduction in soil toxicity. PAH-contaminated sites are affected by extremely complex mixtures, like coal tar or creosote, and biotransformation products or co- occurring compounds can also contribute to the overall toxicological effects of contaminated soil before and after bioremediation. Therefore, the objective of this dissertation was to use non- target analysis workflows to identify the genotoxic transformation products, important co- occurring pollutants, and the unrecognized biotransformation pathways that could contribute to explain the toxicological effects observed beyond parent PAHs. To identify the source(s) of increased genotoxicity in bioremediated soil, we pursued a non-target analytical approach combining effect-directed analysis (EDA) and metabolite profiling to compare extracts of PAH-contaminated soil before and after bioremediation. A compound with the composition C15H8O2 and four methylated homologues were shown to accumulate as a result of bioreactor treatment, and the C15H8O2 compound was determined to be genotoxic.
    [Show full text]
  • Oxidation of 9-Fluorenol to 9-Fluorenone with Sodium Hypochlorite
    CHEM 2229 EXP 1: Oxidation of 9-Fluorenol to 9-Fluorenone with Sodium Hypochlorite Objective: In this experiment you will learn how to perform an oxidation reaction by oxidizing an alcohol (9- hydroxyfluorene) to a ketone (9-fluorenone) using sodium hypochlorite in an acidic environment; how to perform TLC to monitor a reaction; how to perform an extraction to isolate a product; and, how to verify purity of a product using TLC and melting point. * Chromatography is a useful method for separating components of a mixture of compounds based on their polarity. Thin layer chromatography is especially useful for determining the number of components in a mixture, the identity of the compounds, and the purity of a compound. **Solvent Extraction is also known as Liquid–liquid extraction (LLE) or partitioning. It is a method used to separate compounds based on their relative solubilities in two different immiscible liquids: usually the polar solvent water and a non-polar organic solvent. Immiscible means that the liquids do not mix and because of this form two distinct layers. ***The melting point (MP) is a physical property of a solid also used for the purpose of identification and purity determination. Reading Assignment: OCLT: OCLT, pp. 83-108 (chromatography generalities & TLC), pp. 368-369 (TLC technique summary), pp. 203-246 (extraction); pp. 376-381 (extraction illustrations); 366 (vacuum filtration); and 309-315 (melting point). Solomons Organic Chemistry, 12th ed. (Note: Pages correspond to 12th ed.) pp. 542-547 (12.4 Oxidation of Alcohols) Concepts: Acids, Bases, Decantation, Drying Agents, Exothermic Reactions, Extraction, Half Cell Method, Oxidation/Reduction, Oxidizing Agents, Reducing Agents, Reflux, Salting Out Chemicals: acetic acid (glacial), acetone, 9-fluorenol, 9-fluorenone, hexane, sodium bicarbonate, sodium chloride, sodium hypochlorite (aq soln) / bleach, sodium sulfate Safety Precautions: Wear chemical splash-proof goggles and appropriate attire at all times.
    [Show full text]
  • Design and Synthesis of Novel Symmetric Fluorene-2,7-Diamine Derivatives As Potent Hepatitis C Virus Inhibitors
    pharmaceuticals Article Design and Synthesis of Novel Symmetric Fluorene-2,7-Diamine Derivatives as Potent Hepatitis C Virus Inhibitors Mai H. A. Mousa 1, Nermin S. Ahmed 1,*, Kai Schwedtmann 2, Efseveia Frakolaki 3, Niki Vassilaki 3, Grigoris Zoidis 4 , Jan J. Weigand 2 and Ashraf H. Abadi 1,* 1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; [email protected] 2 Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; [email protected] (K.S.); [email protected] (J.J.W.) 3 Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; [email protected] (E.F.); [email protected] (N.V.) 4 Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; [email protected] * Correspondence: [email protected] (N.S.A.); [email protected] (A.H.A.); Tel.: +202-27590700 (ext. 3429) (N.S.A.); +202-27590700 (ext. 3400) (A.H.A.); Fax: +202-27581041 (N.S.A. & A.H.A.) Abstract: Hepatitis C virus (HCV) is an international challenge. Since the discovery of NS5A direct-acting antivirals, researchers turned their attention to pursue novel NS5A inhibitors with optimized design and structure. Herein we explore highly potent hepatitis C virus (HCV) NS5A Citation: Mousa, M.H.A.; Ahmed, inhibitors; the novel analogs share a common symmetrical prolinamide 2,7-diaminofluorene scaffold. N.S.; Schwedtmann, K.; Frakolaki, E.; Modification of the 2,7-diaminofluorene backbone included the use of (S)-prolinamide or its isostere Vassilaki, N.; Zoidis, G.; Weigand, J.J.; (S,R)-piperidine-3-caboxamide, both bearing different amino acid residues with terminal carbamate Abadi, A.H.
    [Show full text]
  • Sodium Dichromate Listing Background Document for the Inorganic Chemical Listing Determination
    SODIUM DICHROMATE LISTING BACKGROUND DOCUMENT FOR THE INORGANIC CHEMICAL LISTING DETERMINATION This Document Does Not Contain Confidential Business Information August 2000 U.S. ENVIRONMENTAL PROTECTION AGENCY ARIEL RIOS BUILDING 1200 PENNSYLVANIA AVENUE, N.W. WASHINGTON, D.C. 20460 i TABLE OF CONTENTS 1. SECTOR OVERVIEW ....................................................1 1.1 SECTOR DEFINITION, FACILITY NAMES AND LOCATIONS .....1 1.2 PRODUCTS, PRODUCT USAGE, AND MARKETS ....................1 1.3 PRODUCTION CAPACITY .........................................4 1.4 PRODUCTION, PRODUCT AND PROCESS TRENDS ...................4 2. ELEMENTIS CHROMIUM ................................................5 2.1 PRODUCTION PROCESS DESCRIPTION .............................5 2.2 PRODUCTION TRENDS, CHANGES AND IMPROVEMENTS ............7 2.3 RESIDUAL GENERATION AND MANAGEMENT ......................7 2.3.1 Spent Post-Neutralization Ore Residue .............................7 2.3.2 Caustic Filter Sludge ..........................................9 2.3.3 Sodium Dichromate Evaporation Unit Wastewater ...................10 2.3.4 Sodium Chromate Evaporation Unit Wastewater ....................10 2.3.5 Reduced Chromium Treatment Residues from Spent Ore Residue Treatment Unit .....................................................11 2.3.6 Reduced Chromium Treatment Residues from Wastewater Treatment Unit .........................................................12 2.3.7 Commingled Treated Wastewaters ...............................13 2.3.8 Process Filters, Membranes,
    [Show full text]