Scamp Iv, Lecture V; History of the Invention And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IMPLEMENTASI ALGORITMA CAESAR, CIPHER DISK, DAN SCYTALE PADA APLIKASI ENKRIPSI DAN DEKRIPSI PESAN SINGKAT, Lumasms
Prosiding Seminar Ilmiah Nasional Komputer dan Sistem Intelijen (KOMMIT 2014) Vol. 8 Oktober 2014 Universitas Gunadarma – Depok – 14 – 15 Oktober 2014 ISSN : 2302-3740 IMPLEMENTASI ALGORITMA CAESAR, CIPHER DISK, DAN SCYTALE PADA APLIKASI ENKRIPSI DAN DEKRIPSI PESAN SINGKAT, LumaSMS Yusuf Triyuswoyo ST. 1 Ferina Ferdianti ST. 2 Donny Ajie Baskoro ST. 3 Lia Ambarwati ST. 4 Septiawan ST. 5 1,2,3,4,5Jurusan Manajemen Sistem Informasi, Universitas Gunadarma [email protected] Abstrak Short Message Service (SMS) merupakan salah satu cara berkomunikasi yang banyak digunakan oleh pengguna telepon seluler. Namun banyaknya pengguna telepon seluler yang menggunakan layanan SMS, tidak diimbangi dengan faktor keamanan yang ada pada layanan tersebut. Banyak pengguna telepon seluler yang belum menyadari bahwa SMS tidak menjamin integritas dan keamanan pesan yang disampaikan. Ada beberapa risiko yang dapat mengancam keamanan pesan pada layanan SMS, diantaranya: SMS spoofing, SMS snooping, dan SMS interception. Untuk mengurangi risiko tersebut, maka dibutuhkan sebuah sistem keamanan pada layanan SMS yang mampu menjaga integritas dan keamanan isi pesan. Dimana tujuannya ialah untuk menutupi celah pada tingkat keamanan SMS. Salah satu penanggulangannya ialah dengan menerapkan algoritma kriptografi, yaitu kombinasi atas algoritma Cipher Disk, Caesar, dan Scytale pada pesan yang akan dikirim. Tujuan dari penulisan ini adalah membangun aplikasi LumaSMS, dengan menggunakan kombinasi ketiga algoritma kriptografi tersebut. Dengan adanya aplikasi ini diharapkan mampu mengurangi masalah keamanan dan integritas SMS. Kata Kunci: caesar, cipher disk, kriptografi, scytale, SMS. PENDAHULUAN dibutuhkan dikarenakan SMS mudah digunakan dan biaya yang dikeluarkan Telepon seluler merupakan salah untuk mengirim SMS relatif murah. satu hasil dari perkembangan teknologi Namun banyaknya pengguna komunikasi. -
Pioneers in U.S. Cryptology Ii
PIONEERS IN U.S. CRYPTOLOGY II This brochure was produced by the Center for Cryptologic History Herbert 0. Yardley 2 Herbert 0. Yardley Herbert 0 . Yardley was born in 1889 in Worthington, Indiana. After working as a railroad telegrapher and spending a year taking an English course at the University of Chicago, he became a code clerk for the Department of State. In June 1917, Yardley received a commission in the Signal Officers Reserve Corps; in July Colonel Ralph Van Deman appointed him chief of the new cryptanalytic unit, MI-8, in the Military Intelligence division. MI-8, or the Cipher Bureau, consisted of Yardley and two clerks. At MI-8's peak in November 1918, Yardley had 18 officers, 24 civilians, and 109 typists. The section had expanded to include secret inks, code and cipher compilation, communications, and shorthand. This was the first formally organized cryptanalytic unit in the history of the U.S. government. When World War I ended, the Army was considering disbanding MI-8. Yardley presented a persuasive argument for retaining it for peacetime use. His plan called for the permanent retention of a code and cipher organization funded jointly by the State and War Departments. He demonstrated that in the past eighteen months MI-8 had read almost 11,000 messages in 579 cryptographic systems. This was in addition to everything that had been examined in connection with postal censorship. On 17 May Acting Secretary of State Frank L. Polk approved the plan, and two days later the Army Chief of Staff, General Peyton C. -
An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext
An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext By Isaac Quinn DuPont A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Faculty of Information University of Toronto © Copyright by Isaac Quinn DuPont 2017 ii An Archeology of Cryptography: Rewriting Plaintext, Encryption, and Ciphertext Isaac Quinn DuPont Doctor of Philosophy Faculty of Information University of Toronto 2017 Abstract Tis dissertation is an archeological study of cryptography. It questions the validity of thinking about cryptography in familiar, instrumentalist terms, and instead reveals the ways that cryptography can been understood as writing, media, and computation. In this dissertation, I ofer a critique of the prevailing views of cryptography by tracing a number of long overlooked themes in its history, including the development of artifcial languages, machine translation, media, code, notation, silence, and order. Using an archeological method, I detail historical conditions of possibility and the technical a priori of cryptography. Te conditions of possibility are explored in three parts, where I rhetorically rewrite the conventional terms of art, namely, plaintext, encryption, and ciphertext. I argue that plaintext has historically been understood as kind of inscription or form of writing, and has been associated with the development of artifcial languages, and used to analyze and investigate the natural world. I argue that the technical a priori of plaintext, encryption, and ciphertext is constitutive of the syntactic iii and semantic properties detailed in Nelson Goodman’s theory of notation, as described in his Languages of Art. I argue that encryption (and its reverse, decryption) are deterministic modes of transcription, which have historically been thought of as the medium between plaintext and ciphertext. -
Taschenchiffriergerat CD-57 Seite 1
s Taschenchiffriergerat CD-57 Seite 1 Ubung zu Angewandter Systemtheorie Kryptog raph ie SS 1997 - Ubungsleiter^ Dr. Josef Scharinger Taschenchiffriergerat CD-57 Michael Topf, Matr.Nr. 9155665, Kennz. 880 <?- Cm Johannes Kepler Universitat Linz Institut fur Systemwissenschaften Abteilung fur Systemtheorie und Informationstechnik Michael Topf Ubung zu Angewandter Systemtheorie: Kryptographic Seite 2 Taschenchiffriergerat CD-57 I n ha I ts verzei c h n i s I n h a l t s v e r z e i c h n i s 2 Einleitung 3 B o r i s H a g e l i n 3 Die Hagelin M-209 Rotormaschine 3 Das Taschenchiffriergerat CD-57 4 Die Crypto AG 5 Funktionsweise 6 Kryptographisches Prinzip 6 Mechanische Realisierung 7 Black-Box-Betrachtung 7 S c h i e b e r e g i s t e r 8 Ausgangsgewichtung und Summierung. 8 Daten 9 Anfangszustand der Schieberegister (Stiftposition) 9 Gewichtung der Schieberegister-Ausgange (Position der Anschlage) 9 Softwaremodell \\ Quelltext «CD-57.C » \\ Beispiel 12 Schliisseleinstellungen « Schluessel.txt » 12 Primartext « Klartext.txt » 13 Programmaufruf 13 Sekundartext « Geheimtext.txt » 13 Abbildungsverzeichnis 14 Tabellenverzeichnis 14 Quellenverzeichnis , 14 Ubung zu Angewandter Systemtheorie: Kryptographie Michael Topf Taschenchiffriergerat CD-57 Seite 3 Ei nleitu ng Der geistige Vater des betrachtelen Chiffriergerats sowie einer Reihe verwandter Gerate ist der Schwede Boris Hagelin. Daher sollen einleitend er, die Familie der Rotor-Kryptographierer sowie die von ihm gegriindete Schweizer Firma Crypto AG, vorgestellt werden. B o r i s H a g e l i n Boris Hagelin war ein Visionar, der bereits zu seiner Zeit die Probleme der Informationstechnologie erkannte. -
Original Paper Written & Signed by William F
/ I / I p. I I _., • CRYPTOGRAPHIC EQUIP~lliNT FOR EITHER -SINGLE-ORIGINATOR OR MULTI-ORIGINATOR COMMUNICATION 1. a. Progress in the cryptologic field-during the.past fevT yea.,:s has .led to a basic change in cryptologic philosophy, a change Which has already oeen recognized by and is of im., portant interest to the ASA. b. The t1~ust vrhich 'has heretofore been placed in the ordinary types of crypto-systems, the solution of which depends upon, or is directly or indirectly correlated with, the number of tests that have to be made to exhaust a multiplicity of , / hypotheses based upon keying possibilities, is daily decreasing. The beginning of this decreasing confidence i~ the degree of cryptographic security potentially offered by a vast number of permutations and combinations available of keying possibilities can be traced back to the advent of the application of ~abu~ lating machinery to the solution of cryptanalytic problems. _ Later, when specially designed cryptanalytic machines employ- ing electrical relays came to be constructed and applied, success fully to these problems, a real blow was struck at our former concepts of cryptographi·c security. And, now, the assurance that electronic cryptanalytic machinery can be a·pplied to ~?Peed up the solution 9f complex cryptographic systems is tend ing· slm1ly to undermine what faith was left in the systems or crypto-mechanisms currently considered as being the best there are, those using rotors with complicated stepping controls .. , ·· . c.- To sum this up, it can be said that, save for orie exception, cryptologic theory and practice during the past 'quar,ter of a c~ntury serves only to corroborat.E? the theoretical validity of·the century-old dictum first enunciated by Edgar Allan Poe: "Yet it may be r·oundly asserted that ht1.man ingenuity cannot concoct a cipher which human ingenuity cannot solve.11 2. -
Cipher Disk A
Make It@Home: Cipher Disk A. Materials 1 Tack 1 Small Cipher Disk 1 Large Cipher Disk 1 Small Eraser Scissors B. Directions 1. Download and print the Cipher Disk.pdf document. 2. Cut out the two cipher disks. 3. Put the smaller disk on top of the larger disk and stick the tack thru the center of both disks. 4. Stick the sharp end of the tack into the eraser. This will prevent you from sticking yourself while turning the disks to make your ciphers. C. Encrypting A Code 1. Pick a letter from the smaller disk on top - this will be used as the KEY that will be shared between you and your friends to encrypt and decrypt the message. Once you have picked a letter from the smaller disk, line it up with the “A” from the larger disk. Example Key: LARGE DISK: A SMALL DISK: M KEY = A:M 2. Begin encrypting each letter of your secret message. Find the first letter of your message on the larger disk and write down the cipher letter which appears underneath it on the smaller disk. In the example below, A=M, B=L, C=K, etc. LARGE DISK: ABCDEFGHIJKLMNOPQRSTUVWXYZ SMALL DISK: MLKJIHGFEDCBAZYXWVUTSRQPON 3. Continue finding each letter until your message has been encrypted. Once you are finished, send your friend the encrypted message and KEY seperately. PLAINTEXT: MAKING CODES IS FUN CIPHERTEXT: AMCEZG KYJIU EU HSZ NOTE: Make sure your friend knows the KEY so they can use their Cipher Disk to break the code. For a super secure cipher, create a new KEY every time you send a message OR change the KEY every time you encrypt a letter. -
Cryptography Using Steganography: New Algorithms and Applications
Technological University Dublin ARROW@TU Dublin Articles School of Electrical and Electronic Engineering 2011 Cryptography Using Steganography: New Algorithms and Applications Jonathan Blackledge Technological University Dublin, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/engscheleart2 Part of the Dynamic Systems Commons, and the Theory and Algorithms Commons Recommended Citation Blackledge, J. (2011) Cryptography and Steganography: New Algorithms and Applications. Lecture Notes, Centre for Advanced Studies, Warsaw University of Technology, Warsaw, 2011. doi:10.21427/D7ZS63 This Article is brought to you for free and open access by the School of Electrical and Electronic Engineering at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License Cryptography and Steganography: New Algorithms and Applications Prof. Dr. Jonathan Blackledge Science Foundation Ireland Stokes Professor School of Electrical Engineering Systems Dublin Institute of Technology Distinguished Professor Centre for Advanced Studies Warsaw University of Technology http://eleceng.dit.ie/blackledge http://jmblackledge.web.officelive.com [email protected] [email protected] Editor: Stanislaw Janeczko Technical editors: Malgorzata Zielinska, Anna Zubrowska General layout and cover design: Emilia Bojanczyk c Centre for Advanced Studies, Warsaw University of Technology, Warsaw 2011 For additional information on this series, visit the CAS Publications Website at http://www.csz.pw.edu.pl/index.php/en/publications ISBN: 978-83-61993-01-83 Pinted in Poland Preface Developing methods for ensuring the secure exchange of information is one of the oldest occupations in history. -
(U) a History of Secure Voice Codin~: Insights Drawn from the Career of One of Tile Earliest Practitioners of the Art of Speech Coding JOSEPH P
DOCID: 3860926 UNCLASSIFIED Cryptologic Quarter1y (U) A History of Secure Voice Codin~: Insights Drawn from the Career of One of tile Earliest Practitioners of the Art of Speech Coding JOSEPH P. CAMPBELL, JR., and RICHARD A. DEAN Editor's Note: This artrde Is basecl on one publlshecl In Dlgittl Signal Processing, July 1993, wfth permission ofthe authors. The history of speech coding is closely tied to tion of PCM. A "Buzz" /"Hiss" generator was used the career of Tom Tremain. He joined the as an exciter for the vocoder corresponding to the National Security Agency i~ 1959 as an Air Force voiced/unvoiced attribute of each 20-ms speech lieutenant assigned to duty at the Agency. Llttle segment. Balance of the "Buzz" /"Hiss" generator, did he know then that this assignment would or voicing, represented a major factor in the qual shape his career as well as' the future of speech ity of the speech. Early practitioners of speech coding. 1 coders, like Tom, can still be found today speak I . ing"Aaahhh" /"Sshhhhh" into voice coders to test Thomas E. Tremain was the U.S. govern- this balance. ment's senior speech scientist. He was a recog nized leader and an expert in speech science. From the time of SIGSALY until Tom arrived 1 Tom's work spanned five dife3des of state-of-the- at NSA, several generations of voice coders had art modem and speech co<;Iing innovations that been developed in conjunction with Bell Labs. are the basis of virtually e~ery U.S. and NATO The K0-6 voice coder, developed in 1949 and modem and speech coding standard. -
William F. Friedman, Notes and Lectures
f?~~A63403 SECOND PERIOD _ COMMUNICATIONS SECURITY Gentl.emen, this period will be devoted to_the subject of communications security, how it can be establ.ished and maintained. Three or four years ago I gave a talk before the student officers of another Service School. on this subject. About that time there was being hammered into our ears over the radio in Washington a sl.ogan concerned with automobil.e traffic safety rul.es. The sl.oga.n was: "Don't l.earn your traffic l.aws by accident." I thought the sl.ogan useful. as a titl.e for my tal.k but I modified it a l.ittl.e-- Don't l.earn your COMSEC l.aws by accident. I began my tal.k on that occasion, as on this one, by reading the Webster Dictionary definition of the word "accident". I know, of course, that this group here today is not directl.y concerned with COMSEC duties but as potential. future cQJD17!8nders of fighting units the definition of' the word "accident11 shoul.d be of' interest in connection with what wil.l. be said in a moment or two, so I wil.l. read Webster's definition if' you wil.l. bear with me. "Accident: Literally a befal.l.ing,; an event which takes pl.ace without one •s foresight or 7x~ctation,; an undesigned, sudden and unexpected ' event, hence, often an undesigned or unforeseen occurrence of an " affl.ictive or unfortunate character; a mishap resul.ting in injury to a person or damage to a thing; a casual.ty, as to die by accident." . -
The First Devices to Secure Transmission of Voice Were Developed Just After World War I
F, 5 January Cabinet War Rooms SIGSALY The first devices to secure transmission of voice were developed just after World War I. They were substitution devices; they inverted frequencies. High frequencies were substituted for low frequencies and low frequencies were substituted for high frequencies. This was easy to do electronically. But, it was also easy to break. In fact, because much voice is in the middle frequencies and the middle frequencies are not changed much by inversion, it was sometimes possible to get a sense of the message just from the ciphertext. The A-3 scrambler … was based upon 1920s concepts. It divided the voice-frequency band into five subbands, inverted each of them, and then shifted the voice from one subband to another every 20 seconds. David Kahn Cryptology and the origin of spread spectrum In 1941, the United States was not at war although we were supporting the Allies, especially Britain, materially. The United States had a device to secure voice transmission called the A-3 Scrambler. This device used both substitution and transposition to encipher voice. Messages were chopped into small pieces, in each piece substitution was made by inverting frequencies, and the pieces were scrambled. This device was broken by the Germans during Fall 1941. The United States military was aware that the A-3 was not secure. On December 7, 1941, cryptanalysts in Washington, D.C., were in the process of breaking a long ciphertext from Tokyo to the Japanese embassy in Washington, D.C. William Friedman’s SIS team had earlier broken the Japanese diplomatic ciphers, but the naval ciphers had not yet been broken. -
Work Load of the Maintenance Branch
HEADQUARTERS ARMY SECURITY AGENCY WASHINGTON 25, D. C. WDGSS-85 15 May 1946 SUBJECT: Work Load of the Maintenance Branch TO: Chief, Security Division 1. The Repair Section of Maintenance Branch is .faced with an ex tremely heavy backlog of' work due to the large amounts of' cryptographic equipment returned from overseas for rehabilitation. Awaiting rehabili tation by the Repair Section is the followi~g list of equipment and the man hours estimated to complete the work required.: EQUIPMENT MAN HOURS REQUIRED TOTAL 1808 SIGABA 36 65,088 1182 SIGCUM 12 14,184 300 SIGNIN 4 1,200 2297 SIGIVI 4 9,188 533 SIGAMUG 4, 2,132 Total man hours 91,792 These figures represent the number of equipments on hand as of 1 May 1946 and will be continually increased by the arrival of additional equipment . from overseas. 2. It is considered probable that the SIGABA will be modified along the lines proposed by the Navy. It is proposed that all SIGABA 1s be modi fied at this Headquarters before shipment is made to the field, thus in creasing the work load as follows: EQUIPMENT MAN HOURS REQUIRED 3241 SIGABA 12 The above figure of' twelve hours per machine is an estimate based on preliminary studies of' the proposed change. It may be possible to greatly reduce this total af'ter the changes have been f inaJ.ly agreed on by the .Army and the Navy, and time studies can be made under actual conditions. ,3. In order to properly preserve these equipments while in extended storage, it is recommended that the proposals set .forth in a memorandum to the Chief, Security Division, 4 December 1945, subject "Preparation of Declassified and approved for release by NSA on 01-16-2014 pursuantto E .0. -
Cryptology: an Historical Introduction DRAFT
Cryptology: An Historical Introduction DRAFT Jim Sauerberg February 5, 2013 2 Copyright 2013 All rights reserved Jim Sauerberg Saint Mary's College Contents List of Figures 8 1 Caesar Ciphers 9 1.1 Saint Cyr Slide . 12 1.2 Running Down the Alphabet . 14 1.3 Frequency Analysis . 15 1.4 Linquist's Method . 20 1.5 Summary . 22 1.6 Topics and Techniques . 22 1.7 Exercises . 23 2 Cryptologic Terms 29 3 The Introduction of Numbers 31 3.1 The Remainder Operator . 33 3.2 Modular Arithmetic . 38 3.3 Decimation Ciphers . 40 3.4 Deciphering Decimation Ciphers . 42 3.5 Multiplication vs. Addition . 44 3.6 Koblitz's Kid-RSA and Public Key Codes . 44 3.7 Summary . 48 3.8 Topics and Techniques . 48 3.9 Exercises . 49 4 The Euclidean Algorithm 55 4.1 Linear Ciphers . 55 4.2 GCD's and the Euclidean Algorithm . 56 4.3 Multiplicative Inverses . 59 4.4 Deciphering Decimation and Linear Ciphers . 63 4.5 Breaking Decimation and Linear Ciphers . 65 4.6 Summary . 67 4.7 Topics and Techniques . 67 4.8 Exercises . 68 3 4 CONTENTS 5 Monoalphabetic Ciphers 71 5.1 Keyword Ciphers . 72 5.2 Keyword Mixed Ciphers . 73 5.3 Keyword Transposed Ciphers . 74 5.4 Interrupted Keyword Ciphers . 75 5.5 Frequency Counts and Exhaustion . 76 5.6 Basic Letter Characteristics . 77 5.7 Aristocrats . 78 5.8 Summary . 80 5.9 Topics and Techniques . 81 5.10 Exercises . 81 6 Decrypting Monoalphabetic Ciphers 89 6.1 Letter Interactions . 90 6.2 Decrypting Monoalphabetic Ciphers .