Timing of Tertiary Extension in the Railroad Valley Pioche Transect, Nevada: Constraints from Ar-40/ Ar-39 Ages of Volcanic Rocks Wanda J

Total Page:16

File Type:pdf, Size:1020Kb

Timing of Tertiary Extension in the Railroad Valley Pioche Transect, Nevada: Constraints from Ar-40/ Ar-39 Ages of Volcanic Rocks Wanda J The University of Maine DigitalCommons@UMaine Earth Science Faculty Scholarship Earth Sciences 1989 Timing of Tertiary Extension in the Railroad Valley Pioche Transect, Nevada: Constraints from Ar-40/ Ar-39 Ages of Volcanic Rocks Wanda J. Taylor John M. Bartley Daniel R. Lux University of Maine - Main, [email protected] Gary J. Axen Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub Part of the Earth Sciences Commons Repository Citation Taylor, Wanda J.; Bartley, John M.; Lux, Daniel R.; and Axen, Gary J., "Timing of Tertiary Extension in the Railroad Valley Pioche Transect, Nevada: Constraints from Ar-40/Ar-39 Ages of Volcanic Rocks" (1989). Earth Science Faculty Scholarship. 115. https://digitalcommons.library.umaine.edu/ers_facpub/115 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. JOORNALOF GEOPHYSICALRESEARCH, VOL. 94, NO. •6, PAGES 7757-7774, JUNE 10, 1989 TIMING OF TERTIARY EXTENSION IN THE RAILROAD VALLEY-PIOCHE TRANSECT, NEVADA: CONSTRAINTSFROM 40Ar/39Ar AGES OF VOLCANIC ROCKS Wanda J. Taylor and John M. Bartley Department of Geology and Geophysics, University of Utah, Salt Lake City Daniel R. Lux Department of Geology, University of Maine, Orono GaryJ. Axen1 Geology Department, Northern Arizona University, Flagstaff Abstract. Time-space relations of extension of active extensional domains in the Great Basin and volcanism place critical constraints on may be greater than 100 km across strike. models of Basin and Range extensional processes. This paper addresses such relations Introduction in a 130-km-wide transect in the eastern Great Basin, bounded on the east by the Ely Springs Timing relations of deformation and magmatism Range and on the west by the Grant and Quinn are among the most powerful tests of tectonic Canyon ranges. Stratigramhic and structural models. In the Tertiary evolution of the Great data, combinedwith 40Ar/B9Arisotopic ages of Basin of the western United States, fundamental volcanic rocks, document a protracted but questions regarding timing of tectonic processes distinctly episodic extensional history. Field include whether tectonic extension and magmatism relations indicate four periods of faulting. occurred coevally, and whether deformation was Only one of these periods was synchronous with episodic or occurred gradually as a temporal nearby volcanic activity, which implies that continuum. In this study we address these volcanism and faulting need not be associated questions within a 130 km wide transect in the closely in space and time. Based on published eastern Great Basin, combining detailed dates and the analyses reported here, the stratigraphic and structural field data with periods of extension were (1) prevolcanic (pre- 40Ar/3•Arisotopic ages of Tertiary volcanic 32 Ma), (2) early synvolcanic (30 to 27 Ma), (3) rocks in critical contact relations. immediately postvolcanic (about 16 to 14 Ma), In this paper, we address the patterns of and (4) Pliocene to Quaternary. The break extension-related magmatism in part of the Great between the second and third periods is Basin by looking at volcanism, because the distinct. The minimum gap between the first two plutonic parts of the systems are rarely periods is 2 Ma, but the separation may be much exposed. We assume that the patterns of larger. Temporal separation of the last two volcanism give a reasonable first-order image of periods is only suggested by the stratigraphic major crustal magmatic events. record and cannot be rigorously demonstrated The study area, which we call the Railroad with present data. The three younger periods of Valley-Pioche transect (see Figure 1 for faulting apparently occurred across the entire location), was chosen because it offers transect. The oldest period is recognized only important stratigraphic relations in the Great at the eastern end of the transect, but appears Basin for determining time-space relations of to correlate about 150 km northward along strike Tertiary faulting and volcanism. Early work by with extension in the Northern Snake Range-Kern Cook [1965] showed that, in this transect, Mountains area. Therefore the oldest period Oligocene ash flow tuffs present mainly north of also is regional in extent, but affected a the transect are overlapped by Miocene tuffs different area than that affected by younger that are thicker south of the transect. periods. This relation suggests that distinct Therefore this transect exposes a long Tertiary extensional structures and master detachment stratigraphic record. Based on older work and faults were active at different times. The this study, this record extends from roughly 32 correlation of deformation periods of a few to 15 Ma. The small age range of the rocks of million years duration across the Railroad interest and the scatter of existing Valley-Pioche transect suggests that the scale conventional K/Ar dates indicated that more precise dates were needed to resolve the relative ages of rocks that do not occur in stratigraphiccontact in the field. The 1Nowat Departmentof Earth and Planetary 40Ar/•Ar incremental-releasemethod has rarely Sciences, Harvard University, Cambridge, been used to date young volcanic rocks, but was Massachusetts. chosen for this study because it permits better accuracy and analytical precision than the K/Ar Copyright 1989 by the American Geophysical Union. method.Data for all 40Ar/39Aranalyses are shown in Table 1. In this paper, we distinguish local Paper number 88JB04047. "episodes" of faulting, in which a particular 0148-0227/89/88JB-04047505.00 fault or group of faults is found in a specific 7757 7758 Taylor et al.' Timingof Tertiary Extension, Central Nevada figure 90"--+ NEEDLESRANGE % + + ROUP CALDERAS nge.• Railroad Valley White figure 5 HIGHI AND + + + +++++ + + + +++ + + + + + .- DE TA C HMœN T, + Quinn Canyon+ + +++ + + + . 38 + + + + Ely Spring + + + + Rang Pioche Dry Lake Valley FAUL I ß 0 I0 miles ;-- , figures :5 & 6 + CALDRON %%N • COMPLEX Fig. 1. Location map of the studied transect with features mentioned in the text. Paleozoic rocks shownby block pattern. Mesozoic stock shownby random dashes. Tertiary rocks undivided shown by plus pattern. Pliocene to Quaternary rocks shown by no pattern. BSR represents Burnt Springs Range. LMF represents the Little Meadows fault. Locations of Figures 3, 4, 5, 6, and 9 are shown. time-bracketing relation at a specific locality, to minimize the importance of Tertiary extension from regional "periods" of faulting, in which [Fryxell, 1984• Bartley et al., 1985, 1987]. extensional faults, over a period of at most a The latter has been mitigated by recent work of few million years, were active across an area Fryxell [1984, 1988], Bartley et al. [1988], and encompassing several mountain ranges (i.e., Gleason [1988], which suggests an episodic thousands of square kilometers). Each period of extensional history from Oligocene to Recent. faulting is distinguished by recognition of one Stratigraphic constraints on timing at the west or more faulting episodes that are closely end of the transect are not as tight as in the related in time. Dry Lake Valley area. Regional Geology Stratigraphy Recent Work Understanding of map-scale structures depends upon knowledge of stratigraphy. Dacitic to Recent field work in the Railroad Valley- rhyolitic ash flow tuffs are the predominant Pioche transect has focused near its ends, mid-Tertiary rocks of much of the Basin and around Dry Lake Valley on the east and in the Range Province of the western United States Quinn Canyon and southern Grant Ranges on the [Cook, 1965; Lipmanet al., 1972]. Commonly, west. Earlier work on the Tertiary of the Dry different ash flow tuffs are petrographically Lake Valley area was by Tschanz and Pampeyan quite similar, and their distinction in the [1970] and Ekren et al. [1977]. Recent detailed field requires detailed knowledgeof phenocryst mapping by Axen [1986] in the Ely Springs Range modes, distinctive phenocryst characteristics and Taylor [1989] in the North Pahroc Range has such as crystal habit or color (e.g., smoky significantly improved understanding of both quartz or amethyst), and relative sizes of stratigraphy and structure of Tertiary rocks in phenocrysts, as well as the nature of pumice this area. These results demonstrate that inclusions, type(s) of lithic fragments present, extension began before the mid-Oligocene and and vertical zonal variations. For example, continued episodically until the Quaternary large crystal-rich dacitic ash flow tuffs of [Axen, 1986; Taylor and Bartley, 1986; Taylor, Oligocene age, including the MonotonyTuff 1989]. The isotopic ages presented below place [Ekren et al., 1971] and the Needles RangeGroup constraints on the timing of these episodes. (CottonwoodWash Tuff, WahWah Springs Early work on the structure and stratigraphy Formation, and Lund Formation [Best and Keith, in the Quinn Canyon Range and southern Grant 1983]) are closely similar and widely knownto Range was by Sainsbury and Kleinhampl [1969] and be easily confused. In this regard, it is worth Cebull [1970] and was recently summarized by noting that the tripartite division of Needles Kleinhampl and Ziony [1985]. However, these Range Group dacites by Best and Keith [1983], authors concentrated on evidence for Mesozoic mainly using hand-specimen
Recommended publications
  • U.S. Department of the Interior Bureau of Land Management
    U.S. Department of the Interior Bureau of Land Management Environmental Assessment DOI-BLM-NV-L000-2017-0006-EA December 20, 2017 SEAMAN and WHITE RIVER HERD AREA WILD HORSE GATHER Location: Lincoln and Nye Counties Applicant/Address: U.S. Department of the Interior Bureau of Land Management Ely District Office Phone: (775) 289-1800 Fax: (775) 289-1910 Golden Gate, Seaman and White River Herd Area Wild Horse Gather Environmental Assessment DOI-BLM-NV-L010-2009-0023-EA 1.0 INTRODUCTION....................................................................................................... 3 1.1 Background: .......................................................................................................... 3 1.2 Purpose and Need ....................................................................................................... 8 1.3 Conformance with BLM Land Use Plan(s): ............................................................. 8 1.4 Relationship to Statutes, Regulations, or other Plans: ............................................ 8 2.0 DESCRIPTION OF ALTERNATIVES, INCLUDING PROPOSED ACTION 10 2.1 Introduction: ............................................................................................................. 10 2.2 Alternative A - Proposed Action: ............................................................................ 10 2.3 Alternative B - No Action: ........................................................................................ 14 2.4 Alternatives Considered, but Eliminated from Further Analysis .......................
    [Show full text]
  • Dry Lake Valley North SEZ Analysis
    1 11.4 DRY LAKE VALLEY NORTH 2 3 4 11.4.1 Background and Summary of Impacts 5 6 7 11.4.1.1 General Information 8 9 The proposed Dry Lake Valley North SEZ is located in Lincoln County in southeastern 10 Nevada (Figure 11.4.1.1-1). The SEZ has a total area of 76,874 acres (311 km2). In 2008, the 11 county population was 4,643, while adjacent Clark County to the south had a population 12 of 1,879,093. The closest population centers to the SEZ are Pioche, located about 15 mi (24 km) 13 to the east, and Caliente, located about 15 mi (24 km) to the southeast; both communities have 14 populations of about 1,000. The smaller communities of Caselton and Prince are located about 15 13 mi (21 km) to the east of the SEZ. Las Vegas is located about 110 mi (180 km) to the south. 16 17 The nearest major road to the Dry Lake Valley North SEZ is State Route 318, which is 18 about 7 mi (11 km) to the west of the SEZ, while U.S. 93 is about 8 mi (13 km) to the south. 19 Access to the interior of the SEZ is by dirt roads. The nearest railroad access is approximately 20 25 mi (40 km) away, while nearby airports include Lincoln County Airport in Panaca and Alamo 21 Landing Field in Alamo, which are located about 13 mi (21 km) south–southeast of and 35 mi 22 (56 km) southwest of the SEZ, respectively.
    [Show full text]
  • Stratigraphy and Structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada
    Stratigraphy and Structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada U.S. GEOLOGICAL SURVEY BULLETIN 1988-B I 1 r^Hr-~"r-^S »:-«>'°-;>-.'; '£ '. -"* °-"^^io-'oO;ol!i-..e>L ^? :^~ty-":- o\: s--b>^.'d- .? " ? o..bTvo-r» ?:.-!:.»:-. "o'.-o'-o .- *^-o?.°:.--o : : ° o£\*>: ^-°:* '.« - "o-o- .-o - ^-.o.*'. ^» ' - 1 .". '. O- ' "" "- "* -" no: ^--'*^-o.yvo:»-c)^ - *>- : p.-by :o.;--p-/.-'o."-',c>-( 0 = ?.o'VO -V "±« -* «?'.<?o-oi ^ .. «- .*».-:»: -* ^^»-^ Chapter B Stratigraphy and Structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada By DONLON O. HURTUBISE and EDWARD A. DU BRAY A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern U.S. GEOLOGICAL SURVEY BULLETIN 1988 EVOLUTION OF SEDIMENTARY BASINS EASTERN GREAT BASIN HARRY E. COOK AND CHRISTOPHER J. POTTER, Project Coordinators U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Hurtubise, D.O. Stratigraphy and structure of the Seaman Range and Fox Mountain, Lincoln and Nye Counties, Nevada / by Donlon O. Hurtubise and Edward A. du Bray, p. cm. (Evolution of sedimentary basins Eastern Great Basin ; ch. B) (U.S. Geological Survey bulletin ; 1988-B) Includes bibliographical references.
    [Show full text]
  • Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA)
    Research Paper GEOSPHERE Lunar Crater volcanic field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA) 1 2,3 4 5 4 5 1 GEOSPHERE; v. 13, no. 2 Greg A. Valentine , Joaquín A. Cortés , Elisabeth Widom , Eugene I. Smith , Christine Rasoazanamparany , Racheal Johnsen , Jason P. Briner , Andrew G. Harp1, and Brent Turrin6 doi:10.1130/GES01428.1 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA 2School of Geosciences, The Grant Institute, The Kings Buildings, James Hutton Road, University of Edinburgh, Edinburgh, EH 3FE, UK 3School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, UK 31 figures; 3 tables; 3 supplemental files 4Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, Ohio 45056, USA 5Department of Geoscience, 4505 S. Maryland Parkway, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA CORRESPONDENCE: gav4@ buffalo .edu 6Department of Earth and Planetary Sciences, 610 Taylor Road, Rutgers University, Piscataway, New Jersey 08854-8066, USA CITATION: Valentine, G.A., Cortés, J.A., Widom, ABSTRACT some of the erupted magmas. The LCVF exhibits clustering in the form of E., Smith, E.I., Rasoazanamparany, C., Johnsen, R., Briner, J.P., Harp, A.G., and Turrin, B., 2017, overlapping and colocated monogenetic volcanoes that were separated by Lunar Crater volcanic field (Reveille and Pancake The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi­ variable amounts of time to as much as several hundred thousand years, but Ranges, Basin and Range Province, Nevada, USA): nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto­ without sustained crustal reservoirs between the episodes.
    [Show full text]
  • Estimated Potentiometric Surface of the Death Valley Regional Groundwater Flow System, Nevada and California by Michael T
    U.S. Department of the Interior Prepared in cooperation with the Scientific Investigations Report 2016-5150 U.S. Geological Survey Bureau of Land Management, National Park Service, U.S. Department of Energy National Nuclear Security Administration Sheet 1 (Interagency Agreement DE–AI52–01NV13944), and Office of Civilian Radioactive Waste Management (Interagency Agreement DE–AI28–02RW12167), U.S. Fish and Wildlife Service, and Nye County, Nevada 650000 115° 117° 550000 116° 600000 118° 450000 500000 San Antonio Mts Monte Cristo Range Monitor Range Big Smokey Stone Valley Cabin Grant Range Valley Railroad 1600 Tonopah Valley Quinn Canyon Range Reveille Range 38° 38° Lincoln County Reveille Valley 4200000 4200000 Esmeralda County 1700 1500 1800 1500 Cactus Penoyer Valley Goldfield 00 00 16 Flat 16 (Sand Spring Worthington Range Hill Valley) Nye County 1600 Cactus Range Clayton Valley Stonewall Montezuma Range Flat Kawich Range Timpahute Range Hiko Range Kawich Fish Lake Valley 1700 1500 Gold Valley North Pahranagat Range 1600 Flat Palmetto Mts 1400 Stonewall 1400 4150000 4150000 1500 Mtn 1600 1500 East Pahranagat Range Pahranagat Range 1300 Magruder Mtn Tikaboo Valley Belted Range EmigrantValley Groom Range Last Chance Range 1500 Slate Ridge 1200 1300 Eureka Valley 1200 Pahute 1100 Black Mesa 1100 Mtn 1000 Gold Rainier Eleana 1500 Range Mtn Stonewall Mesa 1000 White Mts Pass Desert Range 900 Halfpint Range Shoshone Yucca 800 Grapevine Mts Flat 1300 Timber Mtn 1500 Sarcobatus Mtn 700 4100000 4100000 1700 Flat 37° 37° 1400 Desert 1600 Valley
    [Show full text]
  • Superposed Compressional and Extensional Strain in Lower Paleozic Rocks of the Northwestern Grant Range, Nevada
    AN ABSTRACT OF THE THESIS OF Phyllis A. Camilleri for the degree of Master ofScience in Geology presented on December 15, 1988. Title: Superposed Compressional and Extensional Strain in Lower Paleozoic Rocks in the Northwestern Grant Range, Nevada Redacted for Privacy Abstract approved: Karen Lund The Grant Range, in east-central Nevada, isa north-east trending range bounded on the west bya west-dipping normal fault system. Rocks within therange record a complex polyphase Mesozoic ductile compressional and Cenozoic brittle extensional deformational history. The northwestern Grant Range exposes deformed, regionally metamorphosed and unmetamorphosed, Cambrian to Mississippian carbonate and clastic strata, and minor Tertiary granitic and andesitic dikes. Cambrian and Ordovician rocks are ductilely strained and metamorphosed. Metamorphic grade decreases stratigraphically upwards, generally commensurate with the degree of ductile strain. Two Mesozoic compressional events are recorded in the rocks of the northwestern Grant Range. The first event produced mesoscopic, east-vergent folds with spaced axial-planar cleavage. These folds were overprinted by small-scale, west-vergent thrust faults and folds of the second event. Regional metamorphism began during the first folding event, but outlasted deformation. Static metamorphism was followed by west-vergent deformation, which marked the end of metamorphism. The compressional structures may have been part of an east-vergent anticline or the hanging wall of an east-vergent thrust fault. Ductile Mesozoic compressional structures and fabrics are cut by an arched, imbricate stack of Cenozoic low-angle normal faults of a more brittle character. The low-angle normal faults omit stratigraphic section, and each successively structurally higher fault is generally younger than the one below it.
    [Show full text]
  • University of Nevada Reno Analysis of the White River Groundwater Flow System Using a Deuterium-Calibrated Discrete-State Compar
    MINIS lilR A ftt University of Nevada Reno Analysis of the White River Groundwater Flow System Using a Deuterium-Calibrated Discrete-State Compartment Model A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Hydrology and Hydrogeology Mines Library University of Nevada - Reno Reno, Nevada 89557-0044 by Stephen T. Kirk i' * July 1987 II WINtS UMARY " i i t S ' S The thesis of Stephen Thomas Kirk is approved: \AAjiC&OjJ C. Cr Thesis Advisor " University of Nevada Reno July 1987 ACNOWLED GEMENTS The author gratefully acknowledges the advice and guidance of Dr. Michael Cam- pana throughout this project. Additional advice was provided by Dr. W. Miller and Dr. D. Tibbitts. Special thanks go to Marcia Olson Kirk for her advice, en­ couragement, and patience. Financial support for this project was provided by the State of Nevada’s Carbonate Aquifers Studies Program and Desert Research Institute, Water Resources Center. IV ABSTRACT The White River Flow System (WRFS), a regional carbonate flow system in eastern Nevada, can be delineated with a discrete-state compartment model using environmental isotope (deuterium) data. Calibrated model results yield the following differences with an earlier conceptual model of WRFS: 1) minimum underflow out of the system along the Pahranagat Shear Zone is 4,000 acre feet per year; 2) minimum recharge from the Sheep Range to Coyote Springs Valley is 5,000 acre feet per year; and 3) minimum underflow from Meadow Valley Wash to Upper Moapa Valley is 4,500 acre feet per year. Calibration of the model using a paleoclimatically induced shift in re­ charge amounts (+35%) and deuterium concentrations (-8<5D) during the Pleistocene support these results.
    [Show full text]
  • STATE of NEVADA Brian Sandoval, Governor
    STATE OF NEVADA Brian Sandoval, Governor DEPARTMENT OF WILDLIFE Tony Wasley, Director GAME DIVISION Brian F. Wakeling, Chief Mike Cox, Big Game Staff Biologist Pat Jackson, Carnivore Staff Biologist Cody McKee, Elk Staff Biologist Cody Schroeder, Mule Deer Staff Biologist Peregrine Wolff, Wildlife Health Specialist Western Region Southern Region Eastern Region Regional Supervisors Mike Scott Steve Kimble Tom Donham Big Game Biologists Chris Hampson Joe Bennett Travis Allen Carl Lackey Pat Cummings Clint Garrett Kyle Neill Cooper Munson Matt Jeffress Ed Partee Kari Huebner Jason Salisbury Jeremy Lutz Kody Menghini Tyler Nall Scott Roberts Cover photo credit: Mike Cox This publication will be made available in an alternative format upon request. Nevada Department of Wildlife receives funding through the Federal Aid in Wildlife Restoration. Federal Laws prohibit discrimination on the basis of race, color, national origin, age, sex, or disability. If you believe you’ve been discriminated against in any NDOW program, activity, or facility, please write to the following: Diversity Program Manager or Director U.S. Fish and Wildlife Service Nevada Department of Wildlife 4401 North Fairfax Drive, Mailstop: 7072-43 6980 Sierra Center Parkway, Suite 120 Arlington, VA 22203 Reno, Nevada 8911-2237 Individuals with hearing impairments may contact the Department via telecommunications device at our Headquarters at 775-688-1500 via a text telephone (TTY) telecommunications device by first calling the State of Nevada Relay Operator at 1-800-326-6868. NEVADA DEPARTMENT OF WILDLIFE 2017-2018 BIG GAME STATUS This program is supported by Federal financial assistance titled “Statewide Game Management” submitted to the U.S.
    [Show full text]
  • Geology and Resources of Fluorine in the United States
    Geology and Resources of Fluorine in the United States GEOLOGICAL SURVEY PROFESSIONAL PAPER 933 COVER PHOTOGRAPHS 1. Asbestos ore 8. Aluminum ore, bauxite, Georgia 1 2 3 4 2. Lead ore, Balmat mine, N . Y. 9. Native copper ore, Keweenawan 5 6 3. Chromite-chromium ore, Washington Peninsula, Mich. 4. Zinc ore, Friedensville, Pa. 10. Porphyry molybdenum ore, Colorado 7 8 5. Banded iron-formation, Palmer, 11. Zinc ore, Edwards, N. Y. Mich. 12. Manganese nodules, ocean floor 9 10 6. Ribbon asbestos ore, Quebec, Canada 13. Botryoidal fluorite ore, Poncha Springs, Colo. 11 12 13 14 7. Manganese ore, banded rhodochrosite 14. Tungsten ore, North Carolina Geology and Resources of Fluorine in the United States Edited by DANIEL R. SHAWE With sections by D. R. SHAWE, R. E. VAN ALSTINE, R. G. WORL, A. V. HEYL, R. D. TRACE, R. L. PARKER, W. R. GRIFFITTS, C. L. SAINSBURY, and J. B. CATHCART GEOLOGICAL SURVEY PROFESSIONAL PAPER 933 An evaluation of the geochemistry, geographic distribution, and geologic environments of fluorine, and descriptions of major United States fluorine mineral deposits UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 76-600061 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02901-4 APPRAISAL OF MINERAL RESOURCES Continuing appraisal of the mineral resources of the United States is conducted by the U.S. Geological Survey in accordance with the provisions of the Mining and Minerals Policy Act of 1970 (Public Law 91-631, Dec.
    [Show full text]
  • Geology of the Southern Reveille Range, Nye County, Nevada
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-2008 Geology of the southern Reveille Range, Nye County, Nevada Matthew Alan McKelvey University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geology Commons, Stratigraphy Commons, and the Volcanology Commons Repository Citation McKelvey, Matthew Alan, "Geology of the southern Reveille Range, Nye County, Nevada" (2008). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1447. http://dx.doi.org/10.34917/3434676 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. GEOLOGY OF THE SOUTHERN REVEILLE RANGE, NYE COUNTY, NEVADA by Matthew Alan McKelvey Bachelor of Science Austin Peay State University 2001 A thesis submitted in partial fulfillment of the requirements for the Master Degree of Science in Geoscience Department of Geoscience
    [Show full text]
  • South Railroad Valley Is Located West of Tonopah, Nevada Along Nevada Highway 6
    Site Description S. Railroad Valley (updated 2014) Geologic setting: South Railroad Valley is located west of Tonopah, Nevada along Nevada Highway 6. Towards the west of the valley lies the Quinn Canyon Range and towards the east lies the Reveille Range. The Reveille Range was found to be trending north-northwest as an uplifted fault block within the Basin and Range. The fault block is bounded by the Reveille Valley graben towards the west and the Railroad Valley graben towards the east. The geology of the Reveille Range has shown the presences of rhyolite, quartz latite, basalt, and volcaniclastic sedimentary rocks (Neubert, 1985). The geology of the Quinn Canyon Range is complex with relatively recent faulting and structural valleys with small erosional valleys. The faulting throughout the range has divided it into several structural blocks made up of a range of mineralogy. Paleozoic limestone is a dominant rock type throughout the area with Tertiary volcanic rocks also present. Geothermal features: Deep Well: (Sec. 28, T1S, R53E) According to the Great Basin Groundwater Geochemical Database the well has a temperature of 21°C. Freds Well: (Sec. 7, T1S, R53E) According to the Great Basin Groundwater Geochemical Database the well has a temperature of 17°C. Fangs Ridge Seep. Located just south of Fangs Ridge is a stagnant seep, presumed to be Fangs Ridge Seep. The site was visited 8/11/13 and the seep had a measured temperature of 26°C. This site is located right next to a dried up well, possibly Freds Well. Leasing information: N/A Bibliography: Great Basin Groundwater Geochemical Database, Nevada Bureau of Mines and Geology: <http://www.nbmg.unr.edu/Geothermal/GeochemDatabase.html>.
    [Show full text]
  • Relations Between Hinterland and Foreland Shortening Sevier Orogeny
    TECTONICS, VOL. 19, NO. 6, PAGES 1124-1143 DECEMBER 2000 Relations between hinterland and foreland shortening: Sevier orogeny,central North American Cordillera WandaJ. Taylor •, JohnM. BartIcy2,Mark W. Martin3, John W. Geissmann, J.Douglas Walker •, Phillip A. Armstrong6,and Joan E. Fryxell7 Abstract. The tectonic relations between foreland and hinterland betweencentral Nevada and Utah thrusts,or that the Utah thrusts deformationin noncollisionalorogens are criticalto understanding persistinto southeastern Nevada but are located east of thelongitude theoverall development of orogens.The classiccentral Cordilleran of the central Nevada thrust belt. As a result of overall cratonward forelandfold-and-thrust belt in the United States(Late Jurassicto migrationof thrusting,the centralNevada thrust belt probably earlyTertiary Sevier belt) andthe moreinternal zones to the west formed the Cordilleran foreland fold-thrust belt early in the (centralNevada thrust belt) providedata critical to understanding shorteningevent but later lay in thehinterland of theSevier fold- the developmereof internaland externalparts of orogens. The thrustbelt of Idaho-Wyoming-Utah. GardenValley thrustsystem, part of the centralNevada thnkst belt, crops out in south-centralNevada within a region generally considered to be the hinterland of the Jurassic to Eocene Sevier 1. Introduction thrustbelt. The thrustsystem consists of at leastfour principal Manyinvestigations in the North American Cordillera and the thrustplates composed of strataas youngas Pennsylvanianin age
    [Show full text]