Gas Content of Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Gas Content of Galaxies 4 Gas content of galaxies Interstellar space is very vast: the nearest star is about 4 light years away, but is not empty, filled with gas and dust. Light produced by stars may be absorbed and reemitted by the gas and dust, and so the observed spectrum of a galaxy may be different from that of its stellar populaion. 4.1 Main components of interstellar medium • cold (∼ 1000K) neutral gas, mainly atomic H in the disk, ∼ 90%; • cold (∼ 100K) molecular gas, mainly H2, in disk, ∼ 10% • dust grains, mainly in disk, ∼ 1%. • warm (∼ 10, 000K) ionized gas near hot stars • hot (106K) gas near supernova remnants • other components: magnetic fields, ∼ 10−6 Gauss; Cosmic rays: very high energy particles (electrons and protons). The total amount of gas in the Milky Way is about 1/5 of the total stellar mass. 1 2 Fig. 4.1. The images of the Milky Way in various wavebands. From top to bottom: radio continuum at 408 MHz; 21 cm lines of atomic hydrogen; radio continuum at 2.5 GHz; CO lines of molecular hydrogen; infrared (mainly dust), mid-infrared, near infrared, optical (mainly stars), X-ray (hot gas associated with supernova remnants), and gamma ray. [Courtesy of Astrophysics Data Facility at the NASA Goddard Space Flight Center] 4.2 Emission and absorption of interstellar gas Here is the electronic energy level of a hydrogen atom 4.2.1 Basic structure of an atom (2π)2m e4 E = − e n 2n2h2 νn = c/λn = |En|/h En0 − En ν 0 = nn h ch λnn0 = En0 − En −18 E1 = −2.17 × 10 Joule = −13.6eV Gas content of galaxies 3 Fig. 4.2. The electronic energy level for hydrogen atom 1eV = 1.60 × 10−19Joule 15 ν1 = |E1|/h = 3.3 × 10 Hz which is the Lyman-limit frequency λ1 = 91.2nm = 912A˚ E2 = E1/4; E3 = E1/9 Thus Lyman α: 3 E12 = E2 − E1 = − E1 , λ12 = 121.6nm. 4 Balmer (H) α: 5 E23 = E3 − E2 = −E1/9+ E1/4= − E1 , λ12 = 656nm. 36 4 4.2.2 Ionization, recombination and de-excitation Hydrogen as an example: • Photo-ionization H+ γ → H+ + e− Absorbing a photon with energy above 13.6 eV (912A);˚ surplus energy heats the gas • Photo-excitation: H(ground − state) + γ → H(excited − state) Absorbing a photon with energy equal to the energy difference of the two level, e.g. Lyman α (1216A˚). This selective absorption produces an absorption line at this wavelength. • Recombination: the capture of an electron by an ion: H+ + e− → H+ γ The capture is usually in an excited state. • De-excitation: an atom in an excited state can make a transition to a lower-energy state either due to spontaneous transition or due to the stimulated transition by collisions with a particle (electron and ion) or a photon. This kind of transitions can produce emission lines. For a given atom, all the processes can be calculated through quantum mechanics. 4.3 Detecting neutral hydrogen by absorption Neutral hydrogen can absorb UV photons from a background source. At the temperture of a few hundred K, almost all hydrogen atoms are in the ground level. Absorbing UV photons from the source, re-emitted photons in random direction, producing absorption lines, mainly in Lyman series (i.e. Lyman alpha, beta etc.) Shortcoming of this approach: The line absorptions are in the UV band, difficult to observe from the ground. You also need to have background sources. 4.4 21 cm emissions from neutral gas At a temperature T ∼ 10 - 100 K, all hydrogen atoms must be at the ground state Reminder, to excite a hydrogen atom from ground state to the first exited state, the energy is ∆E = E2 − E1 = 10.02eV, This energy corresponds to a temperture T =∆E/k ∼ 105K Gas content of galaxies 5 Fig. 4.3. The transition of spin state of hydrogen atom at ground state produce 21 cm emission. No emission is expected? Not quite!! 4.4.1 Radio observation at 21 cm In 1945, van de Hulst proposed to observe HI at a radio waveband at 21 cm. Physical principle: hyperfine structure of the ground state • The coupling of the spin of the proton (spin 1/2) and that of the electron (spin 1/2) • Two states of total spin: F = 0, and F = 1 (three degenerate states with quantum number, −1, 0, 1. • Energy: 6 × 10−6eV, between F = 0 and F = 1. • Wavelength: 21 cm: in radio band • Frequency: 1.43 GHz • Corresponds to a temperture of about 0.06 K ! • The lifetime of F = 1 state, τ = 11 milion years. Rate of collisional excitation and de-excitation ∝ n2. For typical ISM, n ∼ 106m−3, the rate is about 400 per year. Thus collisional excitation and de-excitation can establish thermodynam- ical equilibrium: n ∝ ge−E/kT . 6 Fig. 4.4. The observed 21 cm line profile showing two components. n2 g2 = e−hνkT ≈ 3 , n1 g1 independent of temperature! Thus the strength of 21 cm emission provides a direct measure of the total amount of neutral hydrogen gas. If density is lower than ∼ 104m−3, collision may not be able to establish thermodynamical equilibrium, then n2/n1 may not be equal to the equilib- rium value. In this case, one can define a ‘spin’ temperature: n2 = 3e−hν/kTspin . n1 4.4.2 Line profiles Line broadening due to Doppler’s effect caused by random motions of gas particles: • Cold component: 100 K • Warm component: 10,000 K 4.4.3 21 emission from the Milky Way For optically thin case, the total flux is directly proportional to the gas column density NHI (number of hydrogen atoms per unit area in the galaxy) Gas content of galaxies 7 Fig. 4.5. The production of a Stromgren sphere. Thus, 21 cm flux map tells us directly the HI gas distribution Total HI mass can be obtained by integrating NHI over the entire galaxy The 21 cm map of the Milky Way is given in Figure 4.1. 9 Total HI mass of the Milky Way is about 5 × 10 M . 4.5 HII regions HII denotes ionized hydrogen: HI denotes neutral hydrogen • O, B stars which produce a lot of UV photons that can ionize the gas through photoionizarion: H+ γ → H+ + e− • Producing an ionized sphere called Stromgren sphere 4.5.1 The radius of a Stromgren sphere (i) Assuming the medium is pure hydrogen gas of constant density (ii) Let N? be the number of ionizing photons with hν > 13.6eV produced by the star per unit time (iii) R: the number of recombinations of protons and electrons into hy- drogen atoms per unit time per unit volume 8 3 R(4πr /3) = N? where r is the radius of the Stromgren sphere. Since R must be proportional to npne, and since np = ne (why?), we write 2 R = αnpne = αne where α is the recombination coefficient which depends on the temperture of the gas. For HII regions, T ∼ 104K, we have α ≈ 3 × 10−19m3sec−1 Thus 1/3 3N? r = 2 4παne 7 −3 49 −1 Example: HI region: ne = 10 m ; N? = 3 × 10 sec for a O5V star, and r ∼ 60 light years 4.5.2 Emissions from HII regions Ionized hydrogen (proton) can capture an electron in a high energy level, and then cascade to the ground level, producing various emission lines; Lyman alpha emission lines; H-alpha emission; H-beta emission etc. Thus, if a cloud contains enough hydrogen, each ionizing photon will eventually be degraded into a Lyman alpha photon, plus a Balmer photon, plus perhaps some lower-energy photons. Since the total number of ionizing photons is determined by the number of young stars that produce them, the observations of H-alpha emissions (6563A˚: in optical) may tell us the star formation rate in a galaxy. Lyman-alpha not as good, because it is in UV, and so you need space- telescope to observe it, and because it is strongly affected by dust (see be- low). 4.5.3 Molecular gas Mainly H2 gas, but direct detection of H2 difficult in radio emission, because the energies of most transitions are not in the radio band. Observations usually made with CO lines and OH lines in the radio Molecular clouds are very dense, ∼ 108 – 1014 per m3 (but still only about 10−15 of the atmosphere), and are the places where stars are forming. 4.5.4 Interstellar Dust • Composition: (1) Grains of silicates, like beach sands Gas content of galaxies 9 Fig. 4.6. The cascading emission lines from hydrogen from n = 4. (2) Soot, exhaust of a diesel engine • Origin: Produced in the outer atmosphere of red giant stars in the late stage of evolution Dust extinction Dust grains can absorb and scatter light, causing a light source to become dimmer. Suppose the average absorption (scattering) cross section of a dust grain is σ, and the number density of dust grain is nd. Then the intensity will decrease according to ∆I = −Iσnd∆x , i.e. dI = −Iσn . dx d This gives: −τ I = I0e , where x x τ = σnddx = σ nddx Z0 Z0 10 Fig. 4.7. The observed reddening curve, Aλ/AJ . x is the optical depth, and 0 nddx is the column density of dust grains. The change in magnitudeR due to dust extinction is ∆m = m − m0 = −2.5 log(I) + 2.5 log(I0) = 2.5τ . Reddening by dust Extinction is ‘selective’, affecting bluer light more (the reason why the sun is redder at sunset).
Recommended publications
  • Group Problems #22 - Solutions
    Group Problems #22 - Solutions Friday, October 21 Problem 1 Ritz Combination Principle Show that the longest wavelength of the Balmer series and the longest two wavelengths of the Lyman series satisfy the Ritz Combination Principle. The wavelengths corresponding to transitions between two energy levels in hydrogen is given by: n2 λ = λlimit 2 2 ; (1) n − n0 where n0 = 1 for the Lyman series, n0 = 2 for the Balmer series, and λlimit = 91:1 nm for the Lyman series and λlimit = 364:5 nm for the Balmer series. Inspection of this equation shows that the longest wavelength corresponds to the transition between n = n0 and n = n0 + 1. Thus, for the Lyman series, the longest two wavelengths are λ12 and λ13. For the Balmer series, the longest wavelength is λ23. The Ritz combination principle states that certain pairs of observed frequencies from the hydrogen spectrum add together to give other observed frequencies. For this particular problem, we then have: ν12 + ν23 = ν13 =) h(ν12 + ν23) = hν13 (2) 1 1 1 =) hc + = hc (3) λ12 λ23 λ13 1 1 1 =) + = : (4) λ12 λ23 λ13 Inverting Eqn. 1 above gives: 2 2 2 1 1 n − n0 1 n0 = 2 = 1 − 2 : (5) λ λlimit n λlimit n To calculate 1/λ12 and 1/λ13, we use the Lyman series numbers and find 1/λ12 = −1 −1 3=(4 ∗ 91:1) = 0:00823 nm and 1/λ13 = 8=(9 ∗ 91:1) = 0:00976 nm . To compute 1/λ23, we use the Balmer series numbers and find 1/λ23 = 5=(9 ∗ 364:5) = 0:00152 −1 nm .
    [Show full text]
  • Observations of the Lyman Series Forest Towards the Redshift 7.1 Quasar ULAS J1120+0641 R
    A&A 601, A16 (2017) Astronomy DOI: 10.1051/0004-6361/201630258 & c ESO 2017 Astrophysics Observations of the Lyman series forest towards the redshift 7.1 quasar ULAS J1120+0641 R. Barnett1, S. J. Warren1, G. D. Becker2, D. J. Mortlock1; 3; 4, P. C. Hewett5, R. G. McMahon5; 6, C. Simpson7, and B. P. Venemans8 1 Astrophysics Group, Blackett Laboratory, Imperial College London, London SW7 2AZ, UK e-mail: [email protected] 2 Department of Physics & Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA 3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK 4 Department of Astronomy, Stockholm University, Albanova, 10691 Stockholm, Sweden 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 7 Gemini Observatory, Northern Operations Center, N. A’ohoku Place, Hilo, HI 96720, USA 8 Max-Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany Received 15 December 2016 / Accepted 9 February 2017 ABSTRACT We present a 30 h integration Very Large Telescope X-shooter spectrum of the Lyman series forest towards the z = 7:084 quasar ULAS J1120+0641. The only detected transmission at S=N > 5 is confined to seven narrow spikes in the Lyα forest, over the redshift range 5:858 < z < 6:122, just longward of the wavelength of the onset of the Lyβ forest. There is also a possible detection of one further unresolved spike in the Lyβ forest at z = 6:854, with S=N = 4:5.
    [Show full text]
  • Unique Astrophysics in the Lyman Ultraviolet
    Unique Astrophysics in the Lyman Ultraviolet Jason Tumlinson1, Alessandra Aloisi1, Gerard Kriss1, Kevin France2, Stephan McCandliss3, Ken Sembach1, Andrew Fox1, Todd Tripp4, Edward Jenkins5, Matthew Beasley2, Charles Danforth2, Michael Shull2, John Stocke2, Nicolas Lehner6, Christopher Howk6, Cynthia Froning2, James Green2, Cristina Oliveira1, Alex Fullerton1, Bill Blair3, Jeff Kruk7, George Sonneborn7, Steven Penton1, Bart Wakker8, Xavier Prochaska9, John Vallerga10, Paul Scowen11 Summary: There is unique and groundbreaking science to be done with a new generation of UV spectrographs that cover wavelengths in the “Lyman Ultraviolet” (LUV; 912 - 1216 Å). There is no astrophysical basis for truncating spectroscopic wavelength coverage anywhere between the atmospheric cutoff (3100 Å) and the Lyman limit (912 Å); the usual reasons this happens are all technical. The unique science available in the LUV includes critical problems in astrophysics ranging from the habitability of exoplanets to the reionization of the IGM. Crucially, the local Universe (z ≲ 0.1) is entirely closed to many key physical diagnostics without access to the LUV. These compelling scientific problems require overcoming these technical barriers so that future UV spectrographs can extend coverage to the Lyman limit at 912 Å. The bifurcated history of the Space UV: Much the course of space astrophysics can be traced to the optical properties of ozone (O3) and magnesium fluoride (MgF2). The first causes the space UV, and the second divides the “HST UV” (1150 - 3100 Å) and the “FUSE UV” (900 - 1200 Å). This short paper argues that some critical problems in astrophysics are best solved by a future generation of high-resolution UV spectrographs that observe all wavelengths between the Lyman limit and the atmospheric cutoff.
    [Show full text]
  • Arxiv:1704.03416V1 [Astro-Ph.GA] 11 Apr 2017 2
    Physics of Lyα Radiative Transfer Mark Dijkstra (Institute of Theoretical Astrophysics, University of Oslo) (Dated: April 7, 2017) Lecture notes for the 46th Saas-Fee winterschool, 13-19 March 2016, Les Diablerets, Switzerland. See http://obswww.unige.ch/Courses/saas-fee-2016/ arXiv:1704.03416v1 [astro-ph.GA] 11 Apr 2017 2 Contents 1. Preface 3 2. Introduction 3 3. The Hydrogen Atom and Introduction to Lyα Emission Mechanisms 4 3.1. Hydrogen in our Universe 4 3.2. The Hydrogen Atom: The Classical & Quantum Picture 6 3.3. Radiative Transitions in the Hydrogen Atom: Lyman, Balmer, ..., Pfund, .... Series 8 3.4. Lyα Emission Mechanisms 9 4. A Closer Look at Lyα Emission Mechanisms & Sources 10 4.1. Collisions 10 4.2. Recombination 13 5. Astrophysical Lyα Sources 14 5.1. Interstellar HII Regions 14 5.2. The Circumgalactic/Intergalactic Medium (CGM/IGM) 16 6. Step 1 Towards Understanding Lyα Radiative Transfer: Lyα Scattering Cross-section 22 6.1. Interaction of a Free Electron with Radiation: Thomson Scattering 22 6.2. Interaction of a Bound Electron with Radiation: Lorentzian Cross-section 25 6.3. Interaction of a Bound Electron with Radiation: Relation to Lyα Cross-Section 26 6.4. Voigt Profile of Lyα Cross-Section 27 7. Step 2 Towards Understanding Lyα Radiative Transfer: The Radiative Transfer Equation 29 7.1. I: Absorption Term: Lyα Cross Section 30 7.2. II: Volume Emission Term 30 7.3. III: Scattering Term 30 7.4. IV: ‘Destruction’ Term 36 7.5. Lyα Propagation through HI: Scattering as Double Diffusion Process 38 8.
    [Show full text]
  • Balmer and Rydberg Equations for Hydrogen Spectra Revisited
    1 Balmer and Rydberg Equations for Hydrogen Spectra Revisited Raji Heyrovska Institute of Biophysics, Academy of Sciences of the Czech Republic, 135 Kralovopolska, 612 65 Brno, Czech Republic. Email: [email protected] Abstract Balmer equation for the atomic spectral lines was generalized by Rydberg. Here it is shown that 1) while Bohr's theory explains the Rydberg constant in terms of the ground state energy of the hydrogen atom, quantizing the angular momentum does not explain the Rydberg equation, 2) on reformulating Rydberg's equation, the principal quantum numbers are found to correspond to integral numbers of de Broglie waves and 3) the ground state energy of hydrogen is electromagnetic like that of photons and the frequency of the emitted or absorbed light is the difference in the frequencies of the electromagnetic energy levels. Subject terms: Chemical physics, Atomic physics, Physical chemistry, Astrophysics 2 An introduction to the development of the theory of atomic spectra can be found in [1, 2]. This article is divided into several sections and starts with section 1 on Balmer's equation for the observed spectral lines of hydrogen. 1. Balmer's equation Balmer's equation [1, 2] for the observed emitted (or absorbed) wavelengths (λ) of the spectral lines of hydrogen is given by, 2 2 2 λ = h B,n1[n2 /(n2 - n 1 )] (1) 2 where n1 and n2 (> n1) are integers with n1 having a constant value, hB,n1 = n1 hB is a constant for each series and hB is a constant. For the Lyman, Balmer, Paschen, Bracket and Pfund series, n1 = 1, 2, 3, 4 and 5 respectively.
    [Show full text]
  • Spectra of Photoionized Regions 1. Introduction
    Spectra of Photoionized Regions Friday, January 21, 2011 CONTENTS: 1. Introduction 2. Recombination Processes A. Overview B. Level networks C. Free-bound continuum D. Two-photon continuum E. Collisions 3. Additional Processes A. Lyman-α emission B. Helium processes C. Resonance fluorescence 4. Diagnostics A. Temperature B. Density C. Composition D. Star formation rates 1. Introduction Our next task is to consider the emitted spectrum from an H II region. This is one of the most important subjects observationally since spectroscopy provides our principal set of diagnostics on the physics occurring in the region. This material is (mostly) covered in Chapters 4 and 5 of Osterbrock & Ferland (on which most of these notes are based). The sources of emission we will consider fall into two categories: Cooling: Infrared fine structure lines Optical forbidden lines Free-free continuum Recombination: Free-bound continuum Recombination lines Two-photon continuua 1 Generally, the forbidden lines (optical or IR) come from metals, whereas the recombination features are proportional to abundance and arise mainly from H and He. Since the cooling radiation has already been discussed, we will focus on recombination and then proceed to diagnostics. 2. Recombination Processes A. OVERVIEW We first consider the case of recombination of hydrogen at very low densities where the collision rates are small, i.e. any hydrogen atom that forms can decay radiatively before any collision. Later on we will introduce collisions between particles (electrons, protons) with excited atoms. The recombination process at low density begins with a radiative recombination, H+ + e− → H0(nl) + γ , which populates an excited state of the hydrogen atom.
    [Show full text]
  • The Hydrogen Atom and the Lyman Series Block: ______Answer Each Question in the Space Required
    Chemistry Worksheet NAME: _____________________________ The Hydrogen Atom and the Lyman series Block: _________ Answer each question in the space required. Show all work. Pay attention to significant figures and units. 1. Hydrogen is the simplest atom in the universe, thus it is the most commonly used example for delving into the quantum world. The energy levels of hydrogen can be calculated using the 2 principle quantum number, n, in the equation En = −13.6 eV (1/n ), for n = 1, 2, 3, 4 … ∞. Recall that eV stands for the energy unit called the electron volt, which relates to joules (J) by the following conversion: 1 eV = 1.602 × 10−19 J. a. What is the value of principal quantum number, n, for the ground state of hydrogen? b. Calculate the energy (in eV and in joules) for the ground state of hydrogen. c. Calculate the energy, En, for the first four excited states of the hydrogen atom. d. Is the third excited state higher or lower in energy than the ground state? Justify your answer in one or two sentences. e. The ionization energy of hydrogen is defined as the minimum energy required to excite an electron from the ground state to a state where the electron is separated from the nucleus (the proton). From your answers above, what is the ionization energy for hydrogen? Justify your answer in one or two sentences. f. How much energy would be required to ionize an entire mole of hydrogen atoms? Copyright© 2007, Alan D. Crosby, Newton South High School, Newton, MA 02459 Chemistry Worksheet NAME: _____________________________ The Hydrogen Atom and the Lyman series Block: _________ 2.
    [Show full text]
  • Atomic Structure
    1 Atomic Structure 1 2 Atomic structure 1-1 Source 1-1 The experimental arrangement for Ruther- ford's measurement of the scattering of α particles by very thin gold foils. The source of the α particles was radioactive radium, a rays encased in a lead block that protects the surroundings from radiation and confines the α particles to a beam. The gold foil used was about 6 × 10-5 cm thick. Most of the α particles passed through the gold leaf with little or no deflection, a. A few were deflected at wide angles, b, and occasionally a particle rebounded from the foil, c, and was Gold detected by a screen or counter placed on leaf Screen the same side of the foil as the source. The concept that molecules consist of atoms bonded together in definite patterns was well established by 1860. shortly thereafter, the recognition that the bonding properties of the elements are periodic led to widespread speculation concerning the internal structure of atoms themselves. The first real break- through in the formulation of atomic structural models followed the discovery, about 1900, that atoms contain electrically charged particles—negative electrons and positive protons. From charge-to-mass ratio measurements J. J. Thomson realized that most of the mass of the atom could be accounted for by the positive (proton) portion. He proposed a jellylike atom with the small, negative electrons imbedded in the relatively large proton mass. But in 1906-1909, a series of experiments directed by Ernest Rutherford, a New Zealand physicist working in Manchester, England, provided an entirely different picture of the atom.
    [Show full text]
  • Hydrogen Atom – Lyman Series Rydberg’S Formula Hydrogen 91.19Nm Energy Λ = Levels 1 1 0Ev − M2 N2
    Hydrogen atom – Lyman Series Rydberg’s formula Hydrogen 91.19nm energy λ = levels 1 1 0eV − m2 n2 Predicts λ of nàm transition: Can Rydberg’s formula tell us what ground n (n>m) state energy is? m (m=1,2,3..) -?? eV m=1 Balmer-Rydberg formula Hydrogen energy levels 91.19nm 0eV λ = 1 1 − m2 n2 Look at energy for a transition between n=infinity and m=1 1 0 ≡ 0eV hc hc ⎛ 1 1 ⎞ Einitial − E final = = ⎜ 2 − 2 ⎟ λ 91.19nm ⎝ m n ⎠ -?? eV hc − E final = E 13.6eV 91.19nm 1 = − Hydrogen energy levels A more general case: What is 0eV the energy of each level (‘m’) in hydrogen? … 0 ≡ 0eV hc hc ⎛ 1 1 ⎞ Einitial − E final = = ⎜ 2 − 2 ⎟ λ 91.19nm ⎝ m n ⎠ -?? eV hc 1 1 − E = E = −13.6eV final 91.19nm m2 m m2 Balmer/Rydberg had a mathematical formula to describe hydrogen spectrum, but no mechanism for why it worked! Why does it work? Hydrogen energy levels 410.3 486.1Balmer’s formula656.3 nm 434.0 91.19nm λ = 1 1 − m2 n2 where m=1,2,3 and where n = m+1, m+2 The Balmer/Rydberg formula correctly describes the hydrogen spectrum! Is it a good model? The Balmer/Rydberg formula is a mathematical representation of an empirical observation. It doesn’t really explain anything. How can we explain (not only calculate) the energy levels in the hydrogen atom? Next step: A semi-classical explanation of the atomic spectra (Bohr model) Rutherford shot alpha particles at atoms and he figured out that a tiny, positive, hard core is surrounded by negative charge very far away from the core.
    [Show full text]
  • The Structure of Hydrogen
    Chapter 9 The structure of hydrogen One of the many goals of the astronomical spectroscopist is to interpret the details of spectral features in order to deduce the properties of the radiating or absorbing matter. In Chapters 4 and 5, we introduced much of the for- malism connecting the atomic absorption features observed in spectra with the all–important atomic absorption coefficient, α(λ). The mathematical form of absorption coefficients are derived directly from the theoretical model of the atom. As such, it is essential to understand the internal working nature of the atom in order to deduce the physical conditions of the matter giving rise to observed spectral features. The model of the atom is simple in principle, yet highly complex in de- tail. Employing only first–order physics, we have been extremely successful at formulating the basic atomic model, including the internal energy structure, transition probabilities, and the spectra of the various atoms and ions. How- ever, first–order physics is not complete enough to precisely describe the internal energy structure of the atom nor the observed spectral features. Enter the com- plexity of higher–order physics, which are most easily discussed in terms of small corrections to the first–order model. The simplest atom is hydrogen, which comprises a single proton for the nucleus and a single orbiting electron. The complexity of the physics increases as the number of nuclear protons and orbiting electrons increases. The hydrogen atom serves to clearly illustrate the effects of higher–order corrections while avoiding the complication of multiple interacting electrons. In this chapter, we focus on the first–order physics, internal energy structure, and resulting spectrum of neutral hydrogen and hydrogen–like ions (those with a single orbiting electron).
    [Show full text]
  • Lyman Alpha Forest Michael Rauch
    eaa.iop.org DOI: 10.1888/0333750888/2140 Lyman Alpha Forest Michael Rauch From Encyclopedia of Astronomy & Astrophysics P. Murdin © IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics Publishing Bristol and Philadelphia Downloaded on Thu Mar 02 23:49:43 GMT 2006 [131.215.103.76] Terms and Conditions Lyman Alpha Forest E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Lyman Alpha Forest Lyα forest systems in this restricted definition, but we have theoretical reasons to believe that there is a genuine The Lyman alpha forest is an absorption phenomenon seen dichotomy between intergalactic gas (represented by the in the spectra of high redshift QSOs and galaxies (figure Lyα forest), even if partly polluted by metals, and the 1). It is the only direct observational evidence we have of invariably metal-enriched higher column density systems, the existence and properties of the general INTERGALACTIC thought to be related to galaxies. MEDIUM, and, as we have reason to believe, of most of the Lyα forest absorption systems have now been baryonic matter contents of the universe. observed from REDSHIFT zero (with UV satellites) up to the On its way to us the light of a bright, distant highest redshifts at which background light sources (QSOs QSO passes through intervening intergalactic gas and and galaxies) can still be found (currently z ∼ 5–6). through gas clouds associated with foreground galaxies. Absorption by the gas modifies the spectra of the The Gunn–Peterson effect: where does the background objects and imprints a record of the gas absorption come from? α clouds’ physical and chemical states on the observed Ly forest absorption in a QSO spectrum was predicted background QSO and galaxy spectra.
    [Show full text]
  • First Detection of Lyman Continuum Escape from a Local Starburst Galaxy
    A&A 448, 513–524 (2006) Astronomy DOI: 10.1051/0004-6361:20053788 & c ESO 2006 Astrophysics First detection of Lyman continuum escape from a local starburst galaxy I. Observations of the luminous blue compact galaxy Haro 11 with the Far Ultraviolet Spectroscopic Explorer (FUSE) N. Bergvall1, E. Zackrisson1, B.-G. Andersson2, D. Arnberg1,J.Masegosa3, and G. Östlin4 1 Dept. of Astronomy and Space Physics, Box 515, 75120 Uppsala, Sweden e-mail: [nils.bergvall;erik.zackrisson]@astro.uu.se 2 Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA e-mail: [email protected] 3 Instituto de Astrofisica de Andalucia, Granada, Spain e-mail: [email protected] 4 Stockholm Observatory, SCFAB, 106 91 Stockholm, Sweden e-mail: [email protected] Received 7 July 2005 / Accepted 2 November 2005 ABSTRACT Context. The dominating reionization source in the young universe has not yet been identified. Possible candidates include metal poor dwarf galaxies with starburst properties. Aims. We selected an extreme starburst dwarf, the Blue Compact Galaxy Haro 11, with the aim of determining the Lyman continuum escape fraction from UV spectroscopy. Methods. Spectra of Haro 11 were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). A weak signal shortwards of the Lyman break is identified as Lyman continuum (LyC) emission escaping from the ongoing starburst. From profile fitting to weak metal lines we derive column densities of the low ionization species. Adopting a metallicity typical of the H II regions of Haro 11, these data correspond to a hydrogen column density of ∼1019cm−2.
    [Show full text]