First Detection of Lyman Continuum Escape from a Local Starburst Galaxy

Total Page:16

File Type:pdf, Size:1020Kb

First Detection of Lyman Continuum Escape from a Local Starburst Galaxy A&A 448, 513–524 (2006) Astronomy DOI: 10.1051/0004-6361:20053788 & c ESO 2006 Astrophysics First detection of Lyman continuum escape from a local starburst galaxy I. Observations of the luminous blue compact galaxy Haro 11 with the Far Ultraviolet Spectroscopic Explorer (FUSE) N. Bergvall1, E. Zackrisson1, B.-G. Andersson2, D. Arnberg1,J.Masegosa3, and G. Östlin4 1 Dept. of Astronomy and Space Physics, Box 515, 75120 Uppsala, Sweden e-mail: [nils.bergvall;erik.zackrisson]@astro.uu.se 2 Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA e-mail: [email protected] 3 Instituto de Astrofisica de Andalucia, Granada, Spain e-mail: [email protected] 4 Stockholm Observatory, SCFAB, 106 91 Stockholm, Sweden e-mail: [email protected] Received 7 July 2005 / Accepted 2 November 2005 ABSTRACT Context. The dominating reionization source in the young universe has not yet been identified. Possible candidates include metal poor dwarf galaxies with starburst properties. Aims. We selected an extreme starburst dwarf, the Blue Compact Galaxy Haro 11, with the aim of determining the Lyman continuum escape fraction from UV spectroscopy. Methods. Spectra of Haro 11 were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). A weak signal shortwards of the Lyman break is identified as Lyman continuum (LyC) emission escaping from the ongoing starburst. From profile fitting to weak metal lines we derive column densities of the low ionization species. Adopting a metallicity typical of the H II regions of Haro 11, these data correspond to a hydrogen column density of ∼1019cm−2. This relatively high value indicates that most of the LyC photons escape through transparent holes in the interstellar medium. We then use spectral evolutionary models to constrain the escape fraction of the produced LyC photons. Results. Assuming a normal Salpeter initial mass function we obtain a Lyman continuum escape fraction of fesc ∼ 4–10%. We argue that in a hierarchical galaxy formation scenario, the upper limit we derive for the escape rate allows for a substantial contribution to cosmic reionization by starburst dwarf galaxies at high redshifts. Key words. galaxies: evolution – galaxies: formation – galaxies: starburst – galaxies: dwarfs – ultraviolet: galaxies – cosmology: diffuse radiation 1. Introduction about what could have been the major ionization sources of the IGM during the reionization epoch – stars, normal galax- According to WMAP data, the epoch of reionization started at ies, AGNs or some exotic mechanism (Yan & Windhorst 2004; ≈ aredshiftofz 20 (Kogut et al. 2003). Observations of the Meiksin & White 2003). The rapid decline of the space den- high opacity in the Lyman continuum (hereafter LyC) emission sity of quasars at redshifts z > 3 (Madau et al. 1999; Fan et al. of galaxies (Becker et al. 2001; Fan et al. 2002) and the re- 2001) makes it likely that their contribution to the LyC produc- sults from the recent studies of the intergalactic medium (IGM) tion rate required for the reionization is insignificant, although around SDSS quasars (e.g. Mesinger & Haiman 2004) indi- it has been proposed that miniquasars fed by intermediate-mass cate that the final stage of the epoch of reionization may have black holes may have been important (Madau et al. 2004). occurred at redshifts z ∼ 6−7. There is still no consensus At lower redshifts, observations of a sample of Lyman- Based on observations made with the NASA-CNES-CSA Far break galaxies at z ∼ 3.4 (Steidel et al. 2001) seem to show that Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by galaxies could account for a significant fraction of the photon the Johns Hopkins University under NASA contract NAS-32985. flux required for reionization. The observations indicate a Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20053788 514 N. Bergvall et al.: First detection of Lyman continuum escape from a local starburst galaxy contribution of LyC photons a factor of ∼5 higher than for would be a possibility. Hirashita et al. seem to find that the es- quasars at the same epoch. These results have however not been cape fraction is higher in galaxies with properties similar to confirmed by other similar studies. On the contrary, it has been Haro 11 (e.g. the BCG ESO 338-IG04). Therefore an alter- argued (Fernández-Soto et al. 2003) that a maximum of 4% of native, or complementary, explanation for the low flux of the the LyC flux could escape from luminous galaxies at redshifts recombination lines, may be that a significant fraction of the 1.9 < z < 3.5. This is also close to the upper limit of the es- LyC photons is in fact escaping from the galaxy. This is cape fraction of low redshift galaxies (Leitherer et al. 1995; the possibility that we study in this paper. Hurwitz et al. 1997; Deharveng et al. 2001; Heckman et al. H II regions in nearby galaxies appear to leak 40–50% of 2001). The lack of a strong trend with redshift indicates that the LyC photons produced by the hot stars into the diffuse galaxies at higher redshifts also have low escape fractions, in- interstellar medium (Ferguson et al. 1996; Oey et al. 1997). sufficient to keep the intergalactic gas ionized. Alternative ion- Although it cannot be completely excluded that the gas may ization sources that have been discussed are massive pregalac- be ionized by single O stars located in situ, a comparison tic Pop III stars and young globular clusters. Most probably the of the observed emission line strengths with theoretical mod- reionization is ruled by different sources at different redshifts. It els (Iglesias-Páramo & Muñoz-Tuñón 2002; Wood & Mathis is therefore important to establish observational constraints on 2004) give support to the leakage interpretation. An even more the LyC fluxes from the various candidates at different epochs. extreme case of a density bounded H II region around a mas- Our information about the galaxy luminosity/mass function sive star cluster was reported by Leitherer et al. (1996). They at the epoch of reionization is very meager, and it is not at all estimate that about 75% of the LyC radiation is leaking into clear what mass scale would dominate the LyC photon produc- the diffuse ambient medium. Depending on the distribution of tion rate. In a galaxy formation scenario where mergers are of the gas, the location where these photons are absorbed may be major importance one would expect starburst dwarf galaxies to very different from case to case. In some situations the diffuse be frequent among the first generation of galaxies. Indeed the ionized gas may be much more extended than the H II region number density of so called Luminous Compact Blue Galaxies producing the photons and will be ignored by the observer who (LCBGs) appears to increase with redshift (Lilly et al. 1998; consequently will underestimate the star formation rate. Mallén-Ornelas et al. 1999). It is therefore important to inves- The other alternative for the discrepancy between theory tigate if this type of galaxy could have been an important ion- and observations of the Balmer emission line strengths is that ization source at high redshift. Dwarf galaxies are however too the dust is unevenly distributed across the starburst region so fainttobeobservedathighredshifts. We are therefore depen- that the younger regions are more reddened than the older ones dent on theoretical models and observations of nearby galaxies (Calzetti et al. 1994). This could reduce the equivalent width that can be used as templates of the first generation of dwarf of Hα with up to a factor of ≈2. The only way to really dis- galaxies. Recent models do not give much hope for Lyman tinguish between a global leakage into to intergalactic medium 7 escape from galaxies of masses larger than 10 solar masses and the other two alternatives is to search for leaking photons (Kitayama et al. 2004) but these predictions have to be tested shortward of the Lyman limit. observationally. In previous studies of starburst dwarfs (Bergvall 1985; We have searched for local dwarfs with properties similar Bergvall & Östlin 2002; Östlin et al. 1999, 2001) we have to young dwarf galaxies, that could be used as test objects. A focused on a few luminous (−19 > M > −21) metal poor few such studies have already been carried out but only pro- B blue compact galaxies (BCGs). They have properties similar to vided upper limits to the escape fraction (e.g., Giallongo et al. the LBGs at intermediate redshifts (e.g. Guzman et al. 2003). 1997; Devriendt et al. 1998; Shull et al. 1999). However, pre- Here we report on such a study using FUSE, the Far Ultraviolet dicted equivalent widths of the Balmer emission lines in star- Spectroscopic Explorer. bursts are in some cases larger than observed (e.g. Bergvall 1985; Bresolin et al. 1999; Mas-Hesse & Kunth 1999; Moy et al. 2001; Stasinska et al. 2001). Several possible explana- 1.1. The target galaxy tions to this were discussed by Mas-Hesse & Kunth (1999). One possibility is that the most massive stars remain hidden in The target galaxy of our choice is Haro 11 (=ESO 350-IG38) at h m s ◦ their parental clouds until most of the fuel has been consumed. α2000 = 00 36 52.5 , δ2000 = −33 49 49 . From the emission- This would mimic a truncation of the IMF at high masses. line spectrum we derive a heliocentric radial velocity of v = −1 Mas-Hesse and Kunth also discussed the possibility that a large 0 6180 km s , corresponding to a distance of 86 Mpc, as- − − fraction of the ionizing photons are absorbed by dust in the suming a Hubble constant of 72 km s 1 Mpc 1.Wehavepre- H II regions.
Recommended publications
  • Group Problems #22 - Solutions
    Group Problems #22 - Solutions Friday, October 21 Problem 1 Ritz Combination Principle Show that the longest wavelength of the Balmer series and the longest two wavelengths of the Lyman series satisfy the Ritz Combination Principle. The wavelengths corresponding to transitions between two energy levels in hydrogen is given by: n2 λ = λlimit 2 2 ; (1) n − n0 where n0 = 1 for the Lyman series, n0 = 2 for the Balmer series, and λlimit = 91:1 nm for the Lyman series and λlimit = 364:5 nm for the Balmer series. Inspection of this equation shows that the longest wavelength corresponds to the transition between n = n0 and n = n0 + 1. Thus, for the Lyman series, the longest two wavelengths are λ12 and λ13. For the Balmer series, the longest wavelength is λ23. The Ritz combination principle states that certain pairs of observed frequencies from the hydrogen spectrum add together to give other observed frequencies. For this particular problem, we then have: ν12 + ν23 = ν13 =) h(ν12 + ν23) = hν13 (2) 1 1 1 =) hc + = hc (3) λ12 λ23 λ13 1 1 1 =) + = : (4) λ12 λ23 λ13 Inverting Eqn. 1 above gives: 2 2 2 1 1 n − n0 1 n0 = 2 = 1 − 2 : (5) λ λlimit n λlimit n To calculate 1/λ12 and 1/λ13, we use the Lyman series numbers and find 1/λ12 = −1 −1 3=(4 ∗ 91:1) = 0:00823 nm and 1/λ13 = 8=(9 ∗ 91:1) = 0:00976 nm . To compute 1/λ23, we use the Balmer series numbers and find 1/λ23 = 5=(9 ∗ 364:5) = 0:00152 −1 nm .
    [Show full text]
  • Arxiv:1805.06071V2 [Astro-Ph.GA] 19 Nov 2018
    DRAFT: NOVEMBER 20, 2018 Preprint typeset using LATEX style emulateapj v. 01/23/15 THE KECK LYMAN CONTINUUM SPECTROSCOPIC SURVEY (KLCS): THE EMERGENT IONIZING SPECTRUM OF GALAXIES AT Z ∼ 31 CHARLES C. STEIDEL2 ,MILAN BOGOSAVLJEVIC´ 2,9 ,ALICE E. SHAPLEY3 ,NAVEEN A. REDDY4,5 ,GWEN C. RUDIE6 , MAX PETTINI8 ,RYAN F. TRAINOR7 ,ALLISON L. STROM2,6 DRAFT: November 20, 2018 ABSTRACT We present results of a deep spectroscopic survey quantifying the statistics of the escape of hydrogen-ionizing photons from star-forming galaxies at z ∼ 3. The Keck Lyman Continuum Spectroscopic Survey (KLCS) includes spectra of 124 galaxies with hzi = 3:05 ± 0:18 and -22:1 ≤ Muv ≤ -19:5, observed in 9 independent < fields, covering a common rest-wavelength range 880 ≤ λ0=Å ∼ 1750. We measure the ratio of ionizing to non-ionizing UV flux density h f900= f1500iobs, where f900 is the mean flux density evaluated over the range λ0 = [880;910] Å. To quantify h f900= f1500iout– the emergent ratio of ionizing to non-ionizing UV flux density – we use detailed Monte Carlo modeling of the opacity of H I in the intergalactic (IGM) and circumgalactic (CGM) medium as a function of source redshift. By analyzing high-S/N composite spectra formed from sub-samples exhibiting common observed properties and numbers sufficient to reduce the uncertainty in the IGM+CGM correction, we obtain precise values of h f900= f1500iout, including a full-sample average h f900= f1500iout = 0:057± 0:006. We further show that h f900= f1500iout increases monotonically with Lyα rest equivalent width Wλ(Lyα), inducing an inverse correlation with UV luminosity as a by-product.
    [Show full text]
  • Observations of the Lyman Series Forest Towards the Redshift 7.1 Quasar ULAS J1120+0641 R
    A&A 601, A16 (2017) Astronomy DOI: 10.1051/0004-6361/201630258 & c ESO 2017 Astrophysics Observations of the Lyman series forest towards the redshift 7.1 quasar ULAS J1120+0641 R. Barnett1, S. J. Warren1, G. D. Becker2, D. J. Mortlock1; 3; 4, P. C. Hewett5, R. G. McMahon5; 6, C. Simpson7, and B. P. Venemans8 1 Astrophysics Group, Blackett Laboratory, Imperial College London, London SW7 2AZ, UK e-mail: [email protected] 2 Department of Physics & Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA 3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK 4 Department of Astronomy, Stockholm University, Albanova, 10691 Stockholm, Sweden 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 7 Gemini Observatory, Northern Operations Center, N. A’ohoku Place, Hilo, HI 96720, USA 8 Max-Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany Received 15 December 2016 / Accepted 9 February 2017 ABSTRACT We present a 30 h integration Very Large Telescope X-shooter spectrum of the Lyman series forest towards the z = 7:084 quasar ULAS J1120+0641. The only detected transmission at S=N > 5 is confined to seven narrow spikes in the Lyα forest, over the redshift range 5:858 < z < 6:122, just longward of the wavelength of the onset of the Lyβ forest. There is also a possible detection of one further unresolved spike in the Lyβ forest at z = 6:854, with S=N = 4:5.
    [Show full text]
  • Astro2020 Science White Paper Lyman Continuum Observations Across Cosmic Time: Recent Developments, Future Requirements
    Astro2020 Science White Paper Lyman continuum observations across cosmic time: recent developments, future requirements Thematic Areas: Galaxy Evolution Cosmology and Fundamental Physics Principal Author: Stephan R. McCandliss Johns Hopkins University, Department of Physics and Astronomy, Center for Astrophysical Sciences, 3400 North Charles Street, Baltimore, MD 21218 [email protected], 410-516-5272 Co-authors: Daniela Calzetti (astro.umass.edu), Henry C. Ferguson (stsci.edu), Steven Finkelstein (astro.as.utexas.edu), Brian T. Fleming (colorado.edu), Kevin France (colorado.edu), Matthew Hayes (astro.su.se), Tim- othy Heckman (jhu.edu), Alaina Henry (stsci.edu), Akio K. Inoue (aoni.waseda.jp), Anne Jaskot (astro.umass.edu), Claus Leitherer, (stsci.edu), Sally Oey (umich.edu), John O’Meara (keck.hawaii.edu), Marc Postman (stsci.edu), Laura Prichard (stsci.edu) Swara Ravindranath (stsci.edu), Jane Rigby (nasa.gov), Claudia Scarlata (astro.umn.edu), Daniel Schaerer (unige.ch), Alice Shapley (astro.ucla.edu), Eros Vanzella (inaf.it) Abstract: Quantifying the physical conditions that allow radiation emitted shortward of the hy- drogen ionization edge at 911.7 A˚ to escape the first collapsed objects and ultimately reionize the universe is a compelling problem for astrophysics. The escape of LyC emission from star-forming galaxies and active galactic nuclei is intimately tied to the emergence and sustenance of the meta- galactic ionizing background (MIB) that pervades the universe to the present day and in turn is tied to the emergence of structure at all epochs. The James Webb Space Telescope (JWST) was built in part to search for the source(s) responsible for reionization, but it cannot observe LyC escape directly, because of the progressive increase in the mean transmission of the intergalactic medium towards the epoch of reionization.
    [Show full text]
  • Unique Astrophysics in the Lyman Ultraviolet
    Unique Astrophysics in the Lyman Ultraviolet Jason Tumlinson1, Alessandra Aloisi1, Gerard Kriss1, Kevin France2, Stephan McCandliss3, Ken Sembach1, Andrew Fox1, Todd Tripp4, Edward Jenkins5, Matthew Beasley2, Charles Danforth2, Michael Shull2, John Stocke2, Nicolas Lehner6, Christopher Howk6, Cynthia Froning2, James Green2, Cristina Oliveira1, Alex Fullerton1, Bill Blair3, Jeff Kruk7, George Sonneborn7, Steven Penton1, Bart Wakker8, Xavier Prochaska9, John Vallerga10, Paul Scowen11 Summary: There is unique and groundbreaking science to be done with a new generation of UV spectrographs that cover wavelengths in the “Lyman Ultraviolet” (LUV; 912 - 1216 Å). There is no astrophysical basis for truncating spectroscopic wavelength coverage anywhere between the atmospheric cutoff (3100 Å) and the Lyman limit (912 Å); the usual reasons this happens are all technical. The unique science available in the LUV includes critical problems in astrophysics ranging from the habitability of exoplanets to the reionization of the IGM. Crucially, the local Universe (z ≲ 0.1) is entirely closed to many key physical diagnostics without access to the LUV. These compelling scientific problems require overcoming these technical barriers so that future UV spectrographs can extend coverage to the Lyman limit at 912 Å. The bifurcated history of the Space UV: Much the course of space astrophysics can be traced to the optical properties of ozone (O3) and magnesium fluoride (MgF2). The first causes the space UV, and the second divides the “HST UV” (1150 - 3100 Å) and the “FUSE UV” (900 - 1200 Å). This short paper argues that some critical problems in astrophysics are best solved by a future generation of high-resolution UV spectrographs that observe all wavelengths between the Lyman limit and the atmospheric cutoff.
    [Show full text]
  • Arxiv:1704.03416V1 [Astro-Ph.GA] 11 Apr 2017 2
    Physics of Lyα Radiative Transfer Mark Dijkstra (Institute of Theoretical Astrophysics, University of Oslo) (Dated: April 7, 2017) Lecture notes for the 46th Saas-Fee winterschool, 13-19 March 2016, Les Diablerets, Switzerland. See http://obswww.unige.ch/Courses/saas-fee-2016/ arXiv:1704.03416v1 [astro-ph.GA] 11 Apr 2017 2 Contents 1. Preface 3 2. Introduction 3 3. The Hydrogen Atom and Introduction to Lyα Emission Mechanisms 4 3.1. Hydrogen in our Universe 4 3.2. The Hydrogen Atom: The Classical & Quantum Picture 6 3.3. Radiative Transitions in the Hydrogen Atom: Lyman, Balmer, ..., Pfund, .... Series 8 3.4. Lyα Emission Mechanisms 9 4. A Closer Look at Lyα Emission Mechanisms & Sources 10 4.1. Collisions 10 4.2. Recombination 13 5. Astrophysical Lyα Sources 14 5.1. Interstellar HII Regions 14 5.2. The Circumgalactic/Intergalactic Medium (CGM/IGM) 16 6. Step 1 Towards Understanding Lyα Radiative Transfer: Lyα Scattering Cross-section 22 6.1. Interaction of a Free Electron with Radiation: Thomson Scattering 22 6.2. Interaction of a Bound Electron with Radiation: Lorentzian Cross-section 25 6.3. Interaction of a Bound Electron with Radiation: Relation to Lyα Cross-Section 26 6.4. Voigt Profile of Lyα Cross-Section 27 7. Step 2 Towards Understanding Lyα Radiative Transfer: The Radiative Transfer Equation 29 7.1. I: Absorption Term: Lyα Cross Section 30 7.2. II: Volume Emission Term 30 7.3. III: Scattering Term 30 7.4. IV: ‘Destruction’ Term 36 7.5. Lyα Propagation through HI: Scattering as Double Diffusion Process 38 8.
    [Show full text]
  • Balmer and Rydberg Equations for Hydrogen Spectra Revisited
    1 Balmer and Rydberg Equations for Hydrogen Spectra Revisited Raji Heyrovska Institute of Biophysics, Academy of Sciences of the Czech Republic, 135 Kralovopolska, 612 65 Brno, Czech Republic. Email: [email protected] Abstract Balmer equation for the atomic spectral lines was generalized by Rydberg. Here it is shown that 1) while Bohr's theory explains the Rydberg constant in terms of the ground state energy of the hydrogen atom, quantizing the angular momentum does not explain the Rydberg equation, 2) on reformulating Rydberg's equation, the principal quantum numbers are found to correspond to integral numbers of de Broglie waves and 3) the ground state energy of hydrogen is electromagnetic like that of photons and the frequency of the emitted or absorbed light is the difference in the frequencies of the electromagnetic energy levels. Subject terms: Chemical physics, Atomic physics, Physical chemistry, Astrophysics 2 An introduction to the development of the theory of atomic spectra can be found in [1, 2]. This article is divided into several sections and starts with section 1 on Balmer's equation for the observed spectral lines of hydrogen. 1. Balmer's equation Balmer's equation [1, 2] for the observed emitted (or absorbed) wavelengths (λ) of the spectral lines of hydrogen is given by, 2 2 2 λ = h B,n1[n2 /(n2 - n 1 )] (1) 2 where n1 and n2 (> n1) are integers with n1 having a constant value, hB,n1 = n1 hB is a constant for each series and hB is a constant. For the Lyman, Balmer, Paschen, Bracket and Pfund series, n1 = 1, 2, 3, 4 and 5 respectively.
    [Show full text]
  • Spectra of Photoionized Regions 1. Introduction
    Spectra of Photoionized Regions Friday, January 21, 2011 CONTENTS: 1. Introduction 2. Recombination Processes A. Overview B. Level networks C. Free-bound continuum D. Two-photon continuum E. Collisions 3. Additional Processes A. Lyman-α emission B. Helium processes C. Resonance fluorescence 4. Diagnostics A. Temperature B. Density C. Composition D. Star formation rates 1. Introduction Our next task is to consider the emitted spectrum from an H II region. This is one of the most important subjects observationally since spectroscopy provides our principal set of diagnostics on the physics occurring in the region. This material is (mostly) covered in Chapters 4 and 5 of Osterbrock & Ferland (on which most of these notes are based). The sources of emission we will consider fall into two categories: Cooling: Infrared fine structure lines Optical forbidden lines Free-free continuum Recombination: Free-bound continuum Recombination lines Two-photon continuua 1 Generally, the forbidden lines (optical or IR) come from metals, whereas the recombination features are proportional to abundance and arise mainly from H and He. Since the cooling radiation has already been discussed, we will focus on recombination and then proceed to diagnostics. 2. Recombination Processes A. OVERVIEW We first consider the case of recombination of hydrogen at very low densities where the collision rates are small, i.e. any hydrogen atom that forms can decay radiatively before any collision. Later on we will introduce collisions between particles (electrons, protons) with excited atoms. The recombination process at low density begins with a radiative recombination, H+ + e− → H0(nl) + γ , which populates an excited state of the hydrogen atom.
    [Show full text]
  • The Hydrogen Atom and the Lyman Series Block: ______Answer Each Question in the Space Required
    Chemistry Worksheet NAME: _____________________________ The Hydrogen Atom and the Lyman series Block: _________ Answer each question in the space required. Show all work. Pay attention to significant figures and units. 1. Hydrogen is the simplest atom in the universe, thus it is the most commonly used example for delving into the quantum world. The energy levels of hydrogen can be calculated using the 2 principle quantum number, n, in the equation En = −13.6 eV (1/n ), for n = 1, 2, 3, 4 … ∞. Recall that eV stands for the energy unit called the electron volt, which relates to joules (J) by the following conversion: 1 eV = 1.602 × 10−19 J. a. What is the value of principal quantum number, n, for the ground state of hydrogen? b. Calculate the energy (in eV and in joules) for the ground state of hydrogen. c. Calculate the energy, En, for the first four excited states of the hydrogen atom. d. Is the third excited state higher or lower in energy than the ground state? Justify your answer in one or two sentences. e. The ionization energy of hydrogen is defined as the minimum energy required to excite an electron from the ground state to a state where the electron is separated from the nucleus (the proton). From your answers above, what is the ionization energy for hydrogen? Justify your answer in one or two sentences. f. How much energy would be required to ionize an entire mole of hydrogen atoms? Copyright© 2007, Alan D. Crosby, Newton South High School, Newton, MA 02459 Chemistry Worksheet NAME: _____________________________ The Hydrogen Atom and the Lyman series Block: _________ 2.
    [Show full text]
  • Environmental Effects on the Ionisation of Brown Dwarf Atmospheres M
    A&A 618, A107 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832685 & c ESO 2018 Astrophysics Environmental effects on the ionisation of brown dwarf atmospheres M. I. Rodríguez-Barrera1,2, Ch. Helling1,2,3 , and K. Wood2 1 Centre for Exoplanet Science, University of St Andrews, UK e-mail: [email protected] 2 School of Physics & Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK 3 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands Received 22 January 2018 / Accepted 24 April 2018 ABSTRACT Context. Brown dwarfs emit bursts of Hα, white-light flares, and show radio flares and quiescent radio emission. They are suggested to form aurorae, similar to planets in the solar system, but much more energetic. All these processes require a source gas with an appropriate degree of ionisation, which, so far, is mostly postulated to be sufficient. Aims. We aim to demonstrate that the Galactic environment influences atmospheric ionisation, and that it hence amplifies or enables the magnetic coupling of the atmospheres of ultra-cool objects, like brown dwarfs and free-floating planets. Methods. We build on our previous work on thermal ionisation of ultra-cool atmospheres and explore the effect of environmental high-energy radiation on the degree of ionisation in the atmosphere. We consider the effect of photoionisation by Lyman-continuum radiation in three different environments: in the interstellar radiation field (ISRF), O and B stars in star-forming regions, and in white dwarf companions in binary systems. We apply our Monte Carlo radiation transfer code to investigate the effect of Lyman-continuum photoionisation for prescribed atmosphere structures for very low-mass objects.
    [Show full text]
  • Lyman-$Alpha $ Radiative Transfer in Star-Forming Galaxies
    Lyman-a radiative transfer in Star-forming galaxies Florent Duval Lyman-a radiative transfer in Star- forming galaxies Florent Duval Cover image: Composite image of Mrk1486, a nearby star-forming galaxy located at z ∼ 0.0338 and observed with the Hubble Space Telescope in 2012. Mrk1486 has a disk shape which is seen edge-on on this image. The green channel shows the UV con- tinuum emission from the young and massive stars of the galaxy. The red color shows the continuum-subtracted Ha emission, which traces the ionized hydrogen nebulae (as the result of star formation) in which both Ha and Lya photons are produced. Finally, the blue color shows the continuum-subtracted Lya emission of the galaxy. As most of the Lya-emitting galaxies identified in the Universe, the Lya emission of Mrk1486 is very extended and emerges into a large Lya-halo that surrounds the galaxy. This is the result of the resonant scattering process experienced by Lya photons on neutral hydrogen. Abstract This thesis focuses on the intrinsically strongest spectral signature of star- forming galaxies: the Lyman alpha recombination line of the hydrogen atom (hereafter Lya). Located at the wavelength of lLya = 1215.67 Å in the rest- frame far-ultraviolet spectra of star-forming galaxies, the Lya line proves to be a vital tracer and a powerful emission-line window to discover and to study the remote young star-forming galaxies of the early the Universe. Although intrinsically very strong, the Lya line is also a resonant line. As a consequence, the transport of Lya photons inside the interstellar medium (ISM) of star-forming galaxies is very complex and depends on many ISM quantities (HI mass, dust content, HI gas kinematics and ISM clumpiness).
    [Show full text]
  • The Physics of the Hii Regions: the Photoionization Equilibrium in the Hii Regions of M51
    THE PHYSICS OF THE HII REGIONS: THE PHOTOIONIZATION EQUILIBRIUM IN THE HII REGIONS OF M51 LEONEL GUTIERREZ´ 1,2, JOHN E. BECKMAN1,3 1 Instituto de Astrof´ısica de Canarias. C/V´ıa L´actea s/n, La Laguna, 38200, Tenerife (SPAIN) 2 Universidad Nacional Aut´onoma de M´exico, Apartado Postal 877, Ensenada 22800, Baja California (M´exico) 3 Consejo Superior de Investigaciones Cient´ıficas (Spain) Abstract: A general overview of the physical properties of the HII regions is pre- sented here, emphasizing the various general models made to explain their structure and behaviour. The Lyman continuum effective extinction, representing a measure of the extinguished or lost fraction of the ionizing flux, is explained briefly, and the results of a study performed on this matter are presented. This study, based on a sample of about 200 HII regions of the galaxy M51 using high resolution images acquired with the HST, suggests a highly inhomogeneous structure. Keywords: HII regions – Star formation rate – Extinction. 1 Introduction A simple measure of the star formation rate (SFR) in a galaxy is the Hα luminosity emitted by the ionizad gas in the galaxy. However, according to the evidence, the Hα luminosity is not completely satisfactory as a star formation indicator. Several factors, notably the extinction produced by the dust both of the Hα luminosity and of the Lyman continuum before it can ionize the gas, do not permit an exact measurement of the SFR using only the Hα luminosity. For highly obscured star-forming regions, a better tracer of SFR could be the total infrared emission (IR) [1], mainly the mid-IR.
    [Show full text]