Adaptive Main-Memory Indexing for High-Performance Point-Polygon Joins

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive Main-Memory Indexing for High-Performance Point-Polygon Joins Adaptive Main-Memory Indexing for High-Performance Point-Polygon Joins Andreas Kipf Harald Lang Varun Pandey Raul Alexandru Persa Christoph Anneser Eleni Tzirita Zacharatou⇤ Harish Doraiswamy⇧ Peter Boncz? Thomas Neumann Alfons Kemper ? TUM TU Berlin⇤ NYU⇧ CWI {kipf, langh, pandey, raul.persa, anneser, neumann, kemper}@in.tum.de [email protected] [email protected] [email protected] ABSTRACT we argue that it is in many cases admissible to trade oaccuracy Connected mobility applications rely heavily on geospatial joins for performance. Based on these two insights, we transform the that associate point data, such as locations of Uber cars, to static traditionally CPU-intensive problem of point-polygon joins into polygonal regions, such as city neighborhoods. These joins typi- one that is bound by memory access latencies. cally involve expensive geometric computations, which makes it In contrast to the classical lter and rene approach, true hit hard to provide an interactive user experience. ltering [9] identies actual join pairs already in the ltering In this paper, we propose an adaptive polygon index that lever- phase, and thus partially avoids expensive renements. This ages true hit ltering to avoid expensive geometric computations is achieved by using additional approximations (such as inner in most cases. In particular, our approach closely approximates rectangles [20]) to approximate the interior of polygons, so that polygons by combining quadtrees with true hit ltering, and when a point falls into an interior approximation, it can be safely stores these approximations in a query-ecient radix tree. Based deducted that the point is contained in the polygon. on this index, we introduce two geospatial join algorithms: an Building on this seminal idea, we present an improved al- approximate one that guarantees a user-dened precision, and gorithm that combines true hit ltering with quadtrees [23] to an exact one that adapts to the expected point distribution. In holistically index an entire set of polygons. This is in contrast to summary, our technique outperforms existing CPU-based joins existing implementations of true hit ltering that approximate by up to two orders of magnitude and is competitive with state- polygons individually [15, 21] or use non-hierarchical (single- of-the-art GPU implementations. resolution) grids [6, 39, 49]. In our approach, polygons are trans- lated into a single set of multi-resolution grid cells that approx- imates their boundary and interior areas. To support ecient 1 INTRODUCTION queries, we store one-dimensional identiers of the cells in a new Connected mobility companies need to process vast amounts of in-memory radix tree (trie) named Adaptive Cell Trie (ACT). We location data in near real-time to run their businesses. For exam- show that ACT is more query-ecient than previous approaches ple, Uber needs to map locations of cars and passenger requests for indexing cell identiers (e.g., B-trees, like in [21]). (points) to predened zones (polygonal regions) for allocation Another distinguishing feature of our approach is that it can and dynamic pricing purposes [40]. These polygonal regions are entirely avoid the expensive renement phase by rening cells in typically largely disjoint (non-overlapping) and mostly static. the boundary areas until a user-dened precision is guaranteed. Points, on the other hand, are often not known a priori. Thus, Naturally, this comes at the cost of higher memory consumption the problem is how to eciently nd the polygons that contain than traditional lter and rene approaches. However, as stated an incoming point. above, we argue that we can nowadays actually aord this higher Traditionally, such point-polygon joins [19] follow the lter memory consumption in exchange for higher performance. and rene approach. In this two-phase evaluation strategy, the Our approach can also provide accurate results by performing ltering phase typically uses an index (e.g., an R-tree) on the expensive PIP tests for points that are potential hits. To reduce minimum bounding rectangles (MBRs) of polygons and probes their number, we adapt (train) our index based on historical data the index for each point to obtain a list of candidate join pairs. points to provide higher precision where it is actually needed. As Then, in the renement phase, expensive point-in-polygon (PIP) we show in our experiments, our accurate algorithm performs tests are performed to discard false matches. very few PIP tests. Compared to a lter based on the polygons’ We argue that the time has come to rethink this strategy: First, MBRs, our index (trained with 1 M historical points) reduces main memory is not a scarce resource anymore and modern the number of required PIP tests by >97% for a join between machines oer multiple terabytes of memory. Combined with NYC taxi pick-up locations and neighborhood polygons. This the city-centric model of geospatial applications (e.g., Uber), we algorithm can also be used when ACT cannot guarantee the show that it is possible to maintain highly ne-grained indexes desired precision given a certain memory budget. for entire cities (e.g., Uber’s operating zones) in main memory, In summary, we make the following contributions: dramatically reducing the number of CPU-intensive PIP tests. Second, geospatial positions, nowadays typically obtained by An algorithm that computes quadtree-based grid approxima- • smartphones or wearables, are inherently imprecise [41]. Thus, tions for sets of polygons with precision guarantees A radix tree data structure (ACT) that is optimized for indexing • © 2020 Copyright held by the owner/author(s). Published in Proceedings of the cell identiers: for a join of NYC’s yellow taxi data with NYC’s 23rd International Conference on Extending Database Technology (EDBT), March 30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org. neighborhoods, we achieve a throughput of >50 M points/s Distribution of this paper is permitted under the terms of the Creative Commons per CPU core under a <4 m precision bound license CC-by-nc-nd 4.0. Series ISSN: 2367-2005 347 10.5441/002/edbt.2020.31 contains neither conicting nor duplicate cells. Two cells are con- icting when one cell contains the other. Only when the covering 01 10 level level is normalized can cell containment checks be eciently imple- mented using a binary search on the sorted vector (O logn ). i+1 ( ) i While binary search on a sorted 00 11 vector is a good strategy for 1 querying small collections of 0000 0001 1110 1111 cells (e.g., the covering cells of a single polygon), it is not the Figure 1: Quadtree-based cell decomposition and Hilbert most ecient way to search curve-based enumeration. larger collections (e.g., cover- ings of multiple polygons). In this work, we store large cell An evaluation of ACT in contrast to more traditional data • collections in ACT, a query- structures, such as B-trees ecient radix tree, and evalu- Figure 2: A covering (blue An accurate algorithm that trains the index structure based on ate its performance compared • cells) and an interior cov- historical data points to alternative physical represen- ering (green cells) of an in- An experimental comparison against state-of-the-art GPU- tations (including a sorted vec- • dividual polygon. based point-polygon joins tor and a B-tree). In the remainder of this paper, we rst give some background PIP Test. A point-in-polygon (PIP) test determines whether a about the building blocks of our approach in Section 2. Section 3 point lies within a polygon. Typically such a test is performed describes our approach and Section 4 presents the evaluation using complex geometric operations, such as the ray-tracing algo- with real-world and synthetic data. Finally, we summarize related rithm [17], which involves drawing a line from the query point to work in Section 5 before concluding in Section 6. a point that is known to be outside of the polygon and counting the number of edges that the line crosses. If the line crosses an 2 BACKGROUND odd number of edges, the query point lies within the polygon. The runtime complexity of this algorithm is O n , n being the number Location Discretization. Our approach relies on a quadtree- ( ) based (hierarchical) decomposition of space (the surface of the of edges. While there are many conceptual optimizations to the PIP test, this operation remains computationally expensive since Earth in this case). This decomposition is static and thus data it processes real numbers (e.g., latitude/longitude coordinates) independent. We enumerate the quadtree cells using a space- lling curve (e.g., the Hilbert or the Z curve) to index them in a and thus involves oating point arithmetics. one-dimensional data structure. Our approach does not depend on a concrete space-lling curve. For our indexing strategy to 3 GEOSPATIAL JOIN APPROACH work, the cell enumeration must only fulll the property that In this work, we target the problem of mapping points to static, child cells share a common prex with their parent cell. largely disjoint polygons. We show how to accelerate such joins Figure 1 shows the hierarchical decomposition of two cells at by computing ne-grained cell-based approximations of sets of levels i and i + 1 and the corresponding bitwise representations polygons and maintaining them in a query-ecient in-memory that encode the cells’ positions along the Hilbert curve. Each radix tree, which enables ecient cell lookups and signicantly cell consists of four sub cells, which it completely covers. Child reduces (or even eliminates) expensive geometric tests. cells share a common prex with their parent cell, allowing us to In contrast to techniques that rst reduce the number of can- compute contains relationships using ecient bitwise operations.
Recommended publications
  • KP-Trie Algorithm for Update and Search Operations
    The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016 KP-Trie Algorithm for Update and Search Operations Feras Hanandeh1, Mohammed Akour2, Essam Al Daoud3, Rafat Alshorman4, Izzat Alsmadi5 1Dept. of Computer Information Systems, Faculty of Prince Al-Hussein Bin Abdallah II For Information Technology, Hashemite University, Zarqa, Jordan, [email protected] 2,5Dept. of Computer Information Systems, Faculty of Information Technology, Yarmouk University, Irbid, Jordan, [email protected], [email protected] 3,4Computer Science Department, Zarqa University [email protected]; [email protected] Abstract: Radix-Tree is a space optimized data structure that performs data compression by means of cluster nodes that share the same branch. Each node with only one child is merged with its child and is considered as space optimized. Nevertheless, it can't be considered as speed optimized because the root is associated with the empty string . Moreover, values are not normally associated with every node; they are associated only with leaves and some inner nodes that correspond to keys of interest. Therefore, it takes time in moving bit by bit to reach the desired word. In this paper we propose the KP-Trie which is consider as speed and space optimized data structure that is resulted from both horizontal and vertical compression. Keywords: Trie, radix tree, data structure, branch factor, indexing, tree structure, information retrieval. 1- Introduction The concept of Data structures such as trees has developed since the 19th century. Tries evolved from trees. They have different names Data structures are a specialized format for such as: Radix tree, prefix tree compact trie, efficient organizing, retrieving, saving and bucket trie, crit bit tree, and PATRICIA storing data.
    [Show full text]
  • The Adaptive Radix Tree
    Department of Informatics, University of Z¨urich MSc Basismodul The Adaptive Radix Tree Rafael Kallis Matrikelnummer: 14-708-887 Email: [email protected] September 18, 2018 supervised by Prof. Dr. Michael B¨ohlenand Kevin Wellenzohn 1 1 Introduction The goal of this project is to study and implement the Adaptive Radix Tree (ART), as proposed by Leis et al. [2]. ART, which is a trie based data structure, achieves its performance, and space efficiency, by compressing the tree both vertically, i.e., if a node has no siblings it is merged with its parent, and horizontally, i.e., uses an array which grows as the number of children increases. Vertical compression reduces the tree height and horizontal compression decreases a node's size. In Section 3 we describe how ART is constructed by applying vertical and horizontal compression to a trie. Next, we describe the point query procedure, as well as key deletion in Section 4. Finally, a benchmark of ART, a red-black tree and a hashtable is presented in Section 5. 2 Background - Tries A trie [1] is a hierarchical data structure which stores key-value pairs. Tries can answer both point and range queries efficiently since keys are stored in lexicographic order. Unlike a comparison-based search tree, a trie does not store keys in nodes. Rather, the digital representation of a search key is split into partial keys used to index the nodes. When constructing a trie from a set of keys, all insertion orders result in the same tree. Tries have no notion of balance and therefore do not require rebalancing operations.
    [Show full text]
  • Artful Indexing for Main-Memory Databases
    Indexing for Main-Memory data systems: The Adaptive Radix Tree (ART) Ivan Sinyagin Memory Wall Why indexes ? Best data structure O(1) ? Binary Search ! Binary Search • Cache utilization is low • Only first 3-5 cache lines have good temporal locality • Only the last cache line has spacial locality • Updates in a sorted array are expensive Trees T-tree • Sorted array split into balanced BST with fat nodes (~ cache lines) • Better than RB/AVL • Updates faster, but still expensive • Similar to BS: useless data movement to CPU (useful only min and max) • Developed in mid 80s and still(!) used in many DBMS B+ tree • B+ tree • Fanout => minimize random access by shallowing the tree • Keys fit into a cache line • Increased cache utilization (all keys are useful) • 1 useful pointer • Pipeline stalls - conditional logic • Still expensive updates: splitting & rebalancing CSB+ tree CSB+ tree • ~ 1999-2000 • Improved space complexity • Great cache line utilization: keys + 1 pointer • Node size ~ cache line • Update overhead - more logic to balance Can we do better ? • Less conditional logic • Cheap updates: no rebalancing, no splitting • Preserve order => tree • Preserve few random accesses (low height) • Preserve cache line utilization • Preserve space complexity Tries Radix Tree Implicit keys Space complexity Radix Tree span • k bits keys => k/s inner levels and 2^s pointers • 32 bit keys & span=1 => 32 levels & 2 pointers • 32 bit keys & span=2 => 16 levels & 4 pointers • 32 bit keys & span=3 => 11 levels & 8 pointers • 32 bit keys & span=4 => 8
    [Show full text]
  • STAT 534 Lecture 4 April, 2019 Radix Trees C 2002 Marina Meil˘A [email protected]
    STAT 534 Lecture 4 April, 2019 Radix trees c 2002 Marina Meil˘a [email protected] Reading CLRS Exercise 12–2 page 269. 1 Representing sets of strings with radix trees Radix trees are used to store sets of strings. Here we will discuss mostly binary strings, but they can be extended easily to store sets of strings over any alphabet. Below is an example of a radix tree that stores strings over the alphabet {0, 1} (binary strings). Each left-going edge is labeled with a 0 and each right-going edge with a 1. Thus, the path to any node in the tree is uniquely described as a string of 0’s and 1’s. The path to the root is the empty string “–”. For example, the path to the leftmost node in the tree is the string “0”; the path to the lowest node in the tree is the string “1011”. Note that there can be at most 2 strings of length 1, at most 4 strings of length 2, and at most 2h strings of length h. All the strings of a given length are at the same depth in the tree. A prefix of the string a =(a1a2 ...an) is any “beginning part” of a, i.e any ′ ′ ′ ′ ′ string a = (a1a2 ...ak) with k < n such that ai = ai for i = 1,...k. Ina radix tree, if node b is an ancestor of node a, then the string represented by b is a prefix of the string (represented by) a. For example, “10” is a prefix and an ancestor of “100”.
    [Show full text]
  • Wormhole: a Fast Ordered Index for In-Memory Data Management
    Wormhole: A Fast Ordered Index for In-memory Data Management Xingbo Wu†, Fan Ni‡, and Song Jiang‡ †University of Illinois at Chicago ‡University of Texas at Arlington Abstract 94% of query execution time in today’s in-memory databases [17]. Recent studies have proposed many op- In-memory data management systems, such as key-value timizations to improve them with a major focus on hash- stores, have become an essential infrastructure in today’s table-based key-value (KV) systems, including efforts big-data processing and cloud computing. They rely on on avoiding chaining in hash tables, improving memory efficient index structures to access data. While unordered access through cache prefetching, and exploiting paral- indexes, such as hash tables, can perform point search lelism with fine-grained locking [10, 21, 35]. With these with O(1) time, they cannot be used in many scenarios efforts the performance of index lookup can be pushed where range queries must be supported. Many ordered close to the hardware’s limit, where each lookup needs indexes, such as B+ tree and skip list, have a O(logN) only one or two memory accesses to reach the requested lookup cost, where N is number of keys in an index. For data [21]. an ordered index hosting billions of keys, it may take Unfortunately, the O(1) lookup performance and ben- more than 30 key-comparisons in a lookup, which is an efits of the optimizations are not available to ordered order of magnitude more expensive than that on a hash indexes used in important applications, such as B+ tree table.
    [Show full text]
  • (Fall 2019) :: Tree Indexes II
    Tree Indexes 08 Part II Intro to Database Systems Andy Pavlo 15-445/15-645 Computer Science Fall 2019 AP Carnegie Mellon University 2 UPCOMING DATABASE EVENTS Vertica Talk → Monday Sep 23rd @ 4:30pm → GHC 8102 CMU 15-445/645 (Fall 2019) 3 TODAY'S AGENDA More B+Trees Additional Index Magic Tries / Radix Trees Inverted Indexes CMU 15-445/645 (Fall 2019) 4 B+TREE: DUPLICATE KEYS Approach #1: Append Record Id → Add the tuple's unique record id as part of the key to ensure that all keys are unique. → The DBMS can still use partial keys to find tuples. Approach #2: Overflow Leaf Nodes → Allow leaf nodes to spill into overflow nodes that contain the duplicate keys. → This is more complex to maintain and modify. CMU 15-445/645 (Fall 2019) 5 B+TREE: APPEND RECORD ID 5 9 <5 <9 ≥9 1 3 6 7 8 9 13 <Key,RecordId> CMU 15-445/645 (Fall 2019) 5 B+TREE: APPEND RECORD ID Insert 6 5 9 <5 <9 ≥9 1 3 6 7 8 9 13 <Key,RecordId> CMU 15-445/645 (Fall 2019) 5 B+TREE: APPEND RECORD ID Insert <6,(Page,Slot)> 5 9 <5 <9 ≥9 1 3 6 7 8 9 13 <Key,RecordId> CMU 15-445/645 (Fall 2019) 5 B+TREE: APPEND RECORD ID Insert <6,(Page,Slot)> 5 9 <5 <9 ≥9 1 3 6 7 8 9 13 <Key,RecordId> CMU 15-445/645 (Fall 2019) 5 B+TREE: APPEND RECORD ID Insert <6,(Page,Slot)> 5 9 <5 <9 1 3 6 7 8 7 8 9 13 <Key,RecordId> CMU 15-445/645 (Fall 2019) 5 B+TREE: APPEND RECORD ID Insert <6,(Page,Slot)> 5 97 9 <5 <9 1 3 6 7 8 7 8 9 13 <Key,RecordId> CMU 15-445/645 (Fall 2019) 5 B+TREE: APPEND RECORD ID Insert <6,(Page,Slot)> 5 97 9 <5 <9 <9 ≥9 1 3 6 76 8 7 8 9 13 <Key,RecordId> CMU 15-445/645 (Fall 2019) 6 B+TREE: OVERFLOW LEAF NODES Insert 6 5 9 <5 <9 ≥9 1 3 6 7 8 9 13 6 CMU 15-445/645 (Fall 2019) 6 B+TREE: OVERFLOW LEAF NODES Insert 6 5 9 Insert 7 <5 <9 ≥9 1 3 6 7 8 9 13 6 7 CMU 15-445/645 (Fall 2019) 6 B+TREE: OVERFLOW LEAF NODES Insert 6 5 9 Insert 7 <5 <9 ≥9 Insert 6 1 3 6 7 8 9 13 6 7 6 CMU 15-445/645 (Fall 2019) 7 DEMO B+Tree vs.
    [Show full text]
  • Hyperion: Building the Largest In-Memory Search Tree
    Hyperion: Building the largest in-memory search tree MARKUS MÄSKER, Johannes Gutenberg University Mainz TIM SÜSS, Johannes Gutenberg University Mainz LARS NAGEL, Loughborough University LINGFANG ZENG, Huazhong University of Science and Technology ANDRÉ BRINKMANN, Johannes Gutenberg University Mainz Indexes are essential in data management systems to increase the Search trees have been used to index large data sets since speed of data retrievals. Widespread data structures to provide fast the 1950s [19]; examples are binary search trees [29], AVL and memory-efficient indexes are prefix tries. Implementations like trees [1], red-black trees [8], B-trees [9] and B+-trees. These Judy, ART, or HOT optimize their internal alignments for cache trees have the disadvantage of always storing complete keys and vector unit efficiency. While these measures usually improve inside their nodes and hence large parts of the keys many the performance substantially, they can have a negative impact on times. Binary trees also show bad caching behavior and do memory efficiency. not adapt well to new hardware architectures [44]. The result- In this paper we present Hyperion, a trie-based main-memory key-value store achieving extreme space efficiency. In contrast to ing performance issues become worse due to the increasing other data structures, Hyperion does not depend on CPU vector divergence between CPU and memory speed [42][46]. units, but scans the data structure linearly. Combined with a custom More memory-efficient data structures are tries [19][21] memory allocator, Hyperion accomplishes a remarkable data density which distribute the individual parts of a key over multiple while achieving a competitive point query and an exceptional range nodes to reduce redundancies.
    [Show full text]
  • START – Self-Tuning Adaptive Radix Tree
    START – Self-Tuning Adaptive Radix Tree Philipp Fent∗, Michael Jungmair∗, Andreas Kipf, Thomas Neumann Technische Universitat¨ Munchen¨ ffent,jungmair,kipf,[email protected] Abstract—Index structures like the Adaptive Radix Tree (ART) are a central part of in-memory database systems. However, we found that radix nodes that index a single byte are not optimal for read-heavy workloads. In this work, we introduce START, a cost self-tuning variant of ART that uses nodes spanning multiple key- model bytes. To determine where to introduce these new node types, we propose a cost model and an optimizer. These components optimizer allow us to fine-tune an existing ART, reducing its overall height, introduce and improving performance. As a result, START performs on multilevel nodes average 85 % faster than a regular ART on a wide variety of read-only workloads and 45 % faster for read-mostly workloads. ART START Fig. 1. Self-tuning ART results in a shallow and more efficient tree I. INTRODUCTION One of the go-to index structures for main-memory database offline mode, but the concept can also be applied online. To systems is the Adaptive Radix Tree (ART) [13]. Several aspects introduce multilevel nodes, we take an existing ART, determine make ART very favorable: It is almost as efficient to query as a the most suitable subtrees, and transform those. Figure 1 shows hash table [1], while still storing entries in-order, which allows this analysis and transformation process. supporting range queries. Furthermore, it supports efficient inserts [13], which makes it overall one of the best index Our self-tuning approach deduces its configuration from first structures.
    [Show full text]
  • Virtual Memory Algorithm Improvement
    VIRTUAL MEMORY ALGORITHM IMPROVEMENT Kamleshkumar Patel B.E., Sankalchand Patel College of Engineering, 2005 PROJECT Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in COMPUTER SCIENCE at CALIFORNIA STATE UNIVERSITY SACRAMENTO FALL 2009 VIRTUAL MEMORY ALGORITHM IMPROVEMENT A Project by Kamleshkumar Patel Approved by: _______________________________, Committee Chair Dr. Chung-E Wang _______________________________, Second Reader Dick Smith, Emeritus Faculty, CSUS ____________________ Date: ii Student: Kamleshkumar Patel I certify that this student has met the requirements for format contained in the University format manual, and that this project is suitable for shelving in the Library and credit is to be awarded for the thesis. __________________________, Graduate Coordinator _____________________ Dr. Cui Zhang, Ph.D. Date Department of Computer Science iii Abstract of VIRTUAL MEMORY ALGORITHM IMPROVEMENT by Kamleshkumar Patel The central component of any operating system is the Memory Management Unit (MMU). As the name implies, memory-management facilities are responsible for the management of memory resources available on a machine. Virtual memory (VM) in MMU allows a program to execute as if the primary memory is larger than its actual size. The whole purpose of virtual memory is to enlarge the address space, the set of addresses a program can utilize. A program would not be able to fit in main memory all at once when it is using all of virtual memory. Nevertheless, operating system could execute such a program by copying required portions into main memory at any given point during execution. To facilitate copying virtual memory into real memory, operating system divides virtual memory into pages.
    [Show full text]
  • File Processing & Organization Course No: 5901227-3
    File Processing & Organization Course No: 5901227-3 Lecture 8 Tries and Splay Trees Tries • A trie, also called digital tree/radix tree/prefix tree. • It is an ordered tree that is used to store a set of strings. • The term trie comes from retrieval. • Properties of a trie: – It is a multi-way tree. – The root of the tree is associated with the empty string . – Each edge of the tree is labeled with a character. – Each leaf node corresponds to the stored string, which is a concatenation of characters on a path from the root to this node. Trie Example 1 • Set of strings: {bear, bid, bulk, bull, sun, sunday}. s • all strings end with “$” b e u u i a n d r l d $ $ l a $ k y $ $ $ • In some trees the nodes can store the keys, that is, the characters on the path from root to the node. Trie Example 2 [nodes store the keys] A trie for keys "A", "tea", "to", "ted", "ten", "i", "in", and "inn". Trie Example 3 • For strings – { bear, bell, bid, bull, buy, sell, stock, stop } b s e i u e t a l d l y l o r l l l c p k • Tries are most commonly used for character strings. But they can be used for other data as well. • A bitwise trie is keyed on the individual bits making up an integer number or memory address. Compact/ Compressed Tries – Replace a chain of one-child nodes with an edge labeled with a string – Each non-leaf node (except root) has at least two children b s b sun e u u i ear$ a n day$ id$ ul $ r d l d $ $ l l$ $ a k k$ y $ $ $ Compact Tries • Compact representation of a compressed trie • Approach – For an array of strings S = S[0], … S[S-1] – Store ranges of indices at each node • Instead of substring – Represent as a triplet of integers (i, j, k) • Such that X = s[i][j..k] – Example: S[0] = “abcd”, (0,1,2) = “bc” • Properties – Uses O(s) space, where s = number of strings in the array – Serves as an auxiliary index structure Compact Representation Example • .
    [Show full text]
  • Advanced Data Structures – SCSA1304
    UNIT - II Advanced Data Structures – SCSA1304 1 ADVANCED TREE CONCEPTS THREADED BINARY TREE A binary tree is represented using array representation or linked list representation. When a binary tree is represented using linked list representation, if any node is not having a child, we use NULL pointer in that position. In any binary tree linked list representation, there are a greater number of NULL pointers than actual pointers. Generally, in any binary tree linked list representation, if there are 2N number of reference fields, then N+1 number of reference fields are filled with NULL (N+1 is NULL out of 2N). This NULL pointer does not play any role except indicating there is no link (no child). A. J. Perlis and C. Thornton have proposed new binary tree called "Threaded Binary Tree", which make use of NULL pointer to improve its traversal processes. In threaded binary tree, NULL pointers are replaced by references to other nodes in the tree, called threads. A threaded binary tree is defined as follows: "A binary tree is threaded by making all right child pointers that would normally be null point to the inorder successor of the node (if it exists), and all left child pointers that would normally be null point to the inorder predecessor of the node." Why do we need Threaded Binary Tree? Binary trees have a lot of wasted space: the leaf nodes each have 2 null pointers. We can use these pointers to help us in inorder traversals. Threaded binary tree makes the tree traversal faster since we do not need stack or recursion for traversal.
    [Show full text]
  • DART: Distributed Adaptive Radix Tree for Efficient Affix-Based
    DART: Distributed Adaptive Radix Tree for Eicient Aix-based Keyword Search on HPC Systems Wei Zhang Houjun Tang Texas Tech University Lawrence Berkeley National Laboratory Lubbock, Texas Berkeley, California [email protected] [email protected] Suren Byna Yong Chen Lawrence Berkeley National Laboratory Texas Tech University Berkeley, California Lubbock, Texas [email protected] [email protected] ABSTRACT 1 INTRODUCTION Ax-based search is a fundamental functionality for storage systems. Ax-based keyword search is a typical search problem, where It allows users to nd desired datasets, where attributes of a dataset resulting data records match a given prex, sux, or inx. For match an ax. While building inverted index to facilitate ecient ax- contemporary parallel and distributed storage systems in HPC en- based keyword search is a common practice for standalone databases vironments, searching string-based metadata is a frequent use case and for desktop le systems, building local indexes or adopting index- for users and applications to nd desired information. For instance, ing techniques used in a standalone data store is insucient for high- the ax-based keyword search on string-based identiers, such performance computing (HPC) systems due to the massive amount of as “name=chem*” and “date=*/2017”, is a common requirement in data and distributed nature of the storage devices within a system. In searching through the metadata among terabytes to petabytes of this paper, we propose Distributed Adaptive Radix Tree (DART), to data generated by various HPC applications [1, 7, 22, 23, 27, 32]. address the challenge of distributed ax-based keyword search on It is a common practice to build trie-based inverted index to ac- HPC systems.
    [Show full text]