DART: Distributed Adaptive Radix Tree for Eicient Aix-based Keyword Search on HPC Systems Wei Zhang Houjun Tang Texas Tech University Lawrence Berkeley National Laboratory Lubbock, Texas Berkeley, California
[email protected] [email protected] Suren Byna Yong Chen Lawrence Berkeley National Laboratory Texas Tech University Berkeley, California Lubbock, Texas
[email protected] [email protected] ABSTRACT 1 INTRODUCTION Ax-based search is a fundamental functionality for storage systems. Ax-based keyword search is a typical search problem, where It allows users to nd desired datasets, where attributes of a dataset resulting data records match a given prex, sux, or inx. For match an ax. While building inverted index to facilitate ecient ax- contemporary parallel and distributed storage systems in HPC en- based keyword search is a common practice for standalone databases vironments, searching string-based metadata is a frequent use case and for desktop le systems, building local indexes or adopting index- for users and applications to nd desired information. For instance, ing techniques used in a standalone data store is insucient for high- the ax-based keyword search on string-based identiers, such performance computing (HPC) systems due to the massive amount of as “name=chem*” and “date=*/2017”, is a common requirement in data and distributed nature of the storage devices within a system. In searching through the metadata among terabytes to petabytes of this paper, we propose Distributed Adaptive Radix Tree (DART), to data generated by various HPC applications [1, 7, 22, 23, 27, 32]. address the challenge of distributed ax-based keyword search on It is a common practice to build trie-based inverted index to ac- HPC systems.