Federal Register/Vol. 85, No. 122/Wednesday, June 24, 2020

Total Page:16

File Type:pdf, Size:1020Kb

Federal Register/Vol. 85, No. 122/Wednesday, June 24, 2020 37848 Federal Register / Vol. 85, No. 122 / Wednesday, June 24, 2020 / Notices as the temporal or spatial scale of the No incidental take of ESA-listed ACTION: Notice; proposed incidental activities. species is authorized or expected to harassment authorization; request for Table 7 includes the number of takes result from this activity. Therefore, comments on proposed authorization for each species authorized to be taken NMFS has determined that formal and possible renewal. as a result of activities in Year 1 and consultation under section 7 of the ESA Year 2 of this project. Our analysis is not required for this action. SUMMARY: NMFS has received a request from Equinor Wind, LLC (Equinor) for shows that less than one-third of the National Environmental Policy Act best available population abundance authorization to take marine mammals estimate of each stock could be taken by To comply with the National incidental to marine site harassment during each project year. In Environmental Policy Act of 1969 characterization surveys in the Atlantic fact, for each stock, the take authorized (NEPA; 42 U.S.C. 4321 et seq.) and Ocean in the area of the Commercial each year comprises less than five NOAA Administrative Order (NAO) Leases of Submerged Lands for percent of the stock abundance. The 216–6A, NMFS must evaluate our Renewable Energy Development on the number of animals authorized to be proposed action (i.e., the promulgation Outer Continental Shelf (OCS–A 0520 taken for each stock discussed above of regulations and subsequent issuance and OCS–A 0512) and along potential would be considered small relative to of incidental take authorization) and submarine cable routes to a landfall the relevant stock’s abundances even if alternatives with respect to potential location in Massachusetts, Rhode each estimated taking occurred to a new impacts on the human environment. Island, Connecticut, New York or New individual, which is an unlikely This action is consistent with categories Jersey. Pursuant to the Marine Mammal scenario. of activities identified in Categorical Protection Act (MMPA), NMFS is requesting comments on its proposal to Year 1 IHA—Based on the analysis Exclusion B4 of the Companion Manual issue an incidental harassment contained herein of the activity for NAO 216–6A, which do not authorization (IHA) to incidentally take (including the mitigation and individually or cumulatively have the marine mammals during the specified monitoring measures) and the potential for significant impacts on the activities. NMFS is also requesting anticipated take of marine mammals, quality of the human environment and comments on a possible one-year NMFS finds that small numbers of for which we have not identified any renewal that could be issued under marine mammals will be taken relative extraordinary circumstances that would certain circumstances and if all to the population size of the affected preclude this categorical exclusion. requirements are met, as described in species or stocks in Year 1 of the Accordingly, NMFS has determined that Request for Public Comments at the end project. the action qualifies to be categorically of this notice. NMFS will consider Year 2 IHA—Based on the analysis excluded from further NEPA review. public comments prior to making any contained herein of the activity Authorization final decision on the issuance of the (including the mitigation and requested MMPA authorizations and monitoring measures) and the NMFS has issued an IHA to Pacific agency responses will be summarized in anticipated take of marine mammals, Shops, Inc. for the potential harassment the final notice of our decision. NMFS finds that small numbers of of small numbers of six marine mammal marine mammals will be taken relative species incidental to the Alameda DATES: Comments and information must to the population size of the affected Marina Shoreline Improvement Project be received no later than July 24, 2020. species or stocks in Year 2 of the in Alameda, CA, provided the ADDRESSES: Comments should be project. previously mentioned mitigation, addressed to Jolie Harrison, Chief, monitoring and reporting requirements Permits and Conservation Division, Unmitigable Adverse Impact Analysis are followed. Office of Protected Resources, National and Determination Dated: June 19, 2020. Marine Fisheries Service. Physical There are no relevant subsistence uses Donna S. Wieting, comments should be sent to 1315 East- of the affected marine mammal stocks or Director, Office of Protected Resources, West Highway, Silver Spring, MD 20910 species implicated by this action. National Marine Fisheries Service. and electronic comments should be sent Therefore, NMFS has determined that [FR Doc. 2020–13652 Filed 6–23–20; 8:45 am] to [email protected]. the total taking of affected species or BILLING CODE 3510–22–P Instructions: NMFS is not responsible stocks will not have an unmitigable for comments sent by any other method, adverse impact on the availability of to any other address or individual, or such species or stocks for taking for DEPARTMENT OF COMMERCE received after the end of the comment subsistence purposes. period. All comments received are a National Oceanic and Atmospheric part of the public record and will Endangered Species Act Administration generally be posted online at Section 7(a)(2) of the Endangered www.fisheries.noaa.gov/national/ Species Act of 1973 (ESA: 16 U.S.C. [RTID 0648–XR101] marine-mammal-protection/incidental- take-authorizations-other-energy- 1531 et seq.) requires that each Federal Takes of Marine Mammals Incidental to activities-renewable without change. All agency insure that any action it Specified Activities; Taking Marine personal identifying information (e.g., authorizes, funds, or carries out is not Mammals Incidental to Marine Site name, address) voluntarily submitted by likely to jeopardize the continued Characterization Surveys off of the commenter may be publicly existence of any endangered or Massachusetts, Rhode Island, accessible. Do not submit confidential threatened species or result in the Connecticut, New York and New business information or otherwise destruction or adverse modification of Jersey designated critical habitat. To ensure sensitive or protected information. ESA compliance for the issuance of AGENCY: National Marine Fisheries FOR FURTHER INFORMATION CONTACT: Rob IHAs, NMFS consults internally Service (NMFS), National Oceanic and Pauline, Office of Protected Resources, whenever we propose to authorize take Atmospheric Administration (NOAA), NMFS, (301) 427–8401. Electronic for endangered or threatened species. Commerce. copies of the applications and VerDate Sep<11>2014 18:20 Jun 23, 2020 Jkt 250001 PO 00000 Frm 00029 Fmt 4703 Sfmt 4703 E:\FR\FM\24JNN1.SGM 24JNN1 jbell on DSKJLSW7X2PROD with NOTICES Federal Register / Vol. 85, No. 122 / Wednesday, June 24, 2020 / Notices 37849 supporting documents, as well as a list Companion Manual for NAO 216–6A, The purpose of the proposed surveys of the references cited in this document, which do not individually or is to support the preliminary site may be obtained by visiting the internet cumulatively have the potential for characterization, siting, and engineering at: www.fisheries.noaa.gov/national/ significant impacts on the quality of the design of offshore wind project facilities marine-mammal-protection/incidental- human environment and for which we including wind turbine generators, take-authorizations-other-energy- have not identified any extraordinary offshore substations, and submarine activities-renewable. In case of problems circumstances that would preclude this cables within the Lease Areas and in accessing these documents, please call categorical exclusion. Accordingly, export cable route areas (ECRAs). As the contact listed above. NMFS has preliminarily determined many as two survey vessels may operate SUPPLEMENTARY INFORMATION: that the proposed action qualifies to be concurrently as part of the proposed categorically excluded from further surveys. Underwater sound resulting Background NEPA review. from Equinor’s proposed surveys has The MMPA prohibits the ‘‘take’’ of Information in Equinor’s application the potential to result in the incidental marine mammals, with certain and this notice collectively provide the take of marine mammals in the form of exceptions. Sections 101(a)(5)(A) and environmental information related to behavioral harassment. (D) of the MMPA (16 U.S.C. 1361 et proposed issuance of these regulations Dates and Duration seq.) direct the Secretary of Commerce and subsequent incidental take (as delegated to NMFS) to allow, upon authorization for public review and The estimated duration of the HRG request, the incidental, but not comment. We will review all comments surveys is expected to be up to 218 total intentional, taking of small numbers of submitted in response to this notice days over the course of one year. marine mammals by U.S. citizens who prior to concluding our NEPA process Geotechnical sampling is anticipated to engage in a specified activity (other than or making a final decision on the occur for a total of 135 days over the commercial fishing) within a specified request for incidental take course of one year. This schedule is geographical region if certain findings authorization. based on 24-hour operations and are made and either regulations are includes potential down time due to issued or, if the taking is limited to Summary of Request inclement weather. harassment, a notice of a proposed On January
Recommended publications
  • Survey of Microbial Composition And
    The Proceedings of the International Conference on Creationism Volume 7 Article 11 2013 Survey of Microbial Composition and Mechanisms of Living Stromatolites of the Bahamas and Australia: Developing Criteria to Determine the Biogenicity of Fossil Stromatolites Georgia Purdom Answers in Genesis Andrew A. Snelling Answers in Genesis Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Purdom, Georgia and Snelling, Andrew A. (2013) "Survey of Microbial Composition and Mechanisms of Living Stromatolites of the Bahamas and Australia: Developing Criteria to Determine the Biogenicity of Fossil Stromatolites," The Proceedings of the International Conference on Creationism: Vol. 7 , Article 11. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol7/iss1/11 Proceedings of the Seventh International Conference on Creationism. Pittsburgh, PA: Creation Science Fellowship SURVEY OF MICROBIAL COMPOSITION AND MECHANISMS OF LIVING STROMATOLITES OF THE BAHAMAS AND AUSTRALIA: DEVELOPING CRITERIA TO DETERMINE THE BIOGENICITY OF FOSSIL STROMATOLITES Georgia Purdom, PhD, Answers in Genesis, P.O. Box 510, Hebron, KY, 41048 Andrew A.
    [Show full text]
  • The Milesian Calendar in Short
    The Milesian calendar in short Quick description The Milesian calendar is a solar calendar, with weighted months, in phase with seasons. It enables you to understand and take control of the Earth’s time. The next picture represents the Milesian calendar with the mean solstices and equinoxes. Leap days The leap day is the last day of the year, it is 31 12m or 12m 31 (whether you use British or American English). This day comes just before a leap year. Years The Milesian years are numbered as the Gregorian ones. However, they begin 10 or 11 days earlier. 1 Firstem Y (1 1m Y) corresponds to 21 December Y-1 when Y is a common year, like 2019. But it falls on 22 December Y-1 when Y is a leap year like 2020. The mapping between Milesian and Gregorian dates is shifted by one for 71 days during “leap winters”, i.e. from 31 Twelfthem to 9 Thirdem. 10 Thirdem always falls on 1 March, and each following Milesian date always falls on a same Gregorian date. Miletus S.A.R.L. – 32 avenue Théophile Gautier – 75016 Paris RCS Paris 750 073 041 – Siret 750 073 041 00014 – APE 7022Z Date conversion with the Gregorian calendar The first day of a Milesian month generally falls on 22 of the preceding Gregorian month, e.g.: 1 Fourthem (1 4m) falls on 22 March, 1 Fifthem (1 5m) on 22 April etc. However: • 1 Tenthem (1 10m) falls on 21 September; • 1 12m falls on 21 November; • 1 1m of year Y falls on 21 December Y-1 if Y is a common year, but on 22 December if Y is a leap year; • 1 2m and 1 3m falls on 21 January and 21 February in leap years, 20 January and 20 February in common years.
    [Show full text]
  • The Common Year
    THE COMMON YEAR #beautyinthecommon I am typing this in a hospital lobby just outside Detroit at and designed by veritable gobs and gobs of wonderful 3am as I sleepily but eagerly await the birth of my dear friends from all sorts of backgrounds and perspectives. brother’s first child. The smell of the pizza, Starbucks, and lo mein reminds me fondly of the last 13 hours Each written piece will be broken into what may seem we’ve spent gathered together in this “very hospitally” like peculiar categories: waiting room. Word | Meal | Music | Prayer | Time And while everyone is currently dozing on plastic chairs as the infomercials on the lobby television rage on – the Our hope is that these narratives will be more than room is still electric somehow. There is wonder and inspiring thoughts and truisms and instead will beauty in the air. Even here – even in the stillness of challenge each of us to more fully engage all of life as sweet anticipation not yet realized. deeply sacred. There will be invitations to listen to new songs, share in new meals, and see in new ways. I I want to live my life like this. challenge you to carve out time to really soak in each of these pieces and see just what it is that God might To both await with eagerness the mountaintop awaken in your own heart as you do. moments and to also see more fully and experience more deeply the beauty in the mundane, the “in- So print this framework out. Put it in a binder.
    [Show full text]
  • The Calendars of India
    The Calendars of India By Vinod K. Mishra, Ph.D. 1 Preface. 4 1. Introduction 5 2. Basic Astronomy behind the Calendars 8 2.1 Different Kinds of Days 8 2.2 Different Kinds of Months 9 2.2.1 Synodic Month 9 2.2.2 Sidereal Month 11 2.2.3 Anomalistic Month 12 2.2.4 Draconic Month 13 2.2.5 Tropical Month 15 2.2.6 Other Lunar Periodicities 15 2.3 Different Kinds of Years 16 2.3.1 Lunar Year 17 2.3.2 Tropical Year 18 2.3.3 Siderial Year 19 2.3.4 Anomalistic Year 19 2.4 Precession of Equinoxes 19 2.5 Nutation 21 2.6 Planetary Motions 22 3. Types of Calendars 22 3.1 Lunar Calendar: Structure 23 3.2 Lunar Calendar: Example 24 3.3 Solar Calendar: Structure 26 3.4 Solar Calendar: Examples 27 3.4.1 Julian Calendar 27 3.4.2 Gregorian Calendar 28 3.4.3 Pre-Islamic Egyptian Calendar 30 3.4.4 Iranian Calendar 31 3.5 Lunisolar calendars: Structure 32 3.5.1 Method of Cycles 32 3.5.2 Improvements over Metonic Cycle 34 3.5.3 A Mathematical Model for Intercalation 34 3.5.3 Intercalation in India 35 3.6 Lunisolar Calendars: Examples 36 3.6.1 Chinese Lunisolar Year 36 3.6.2 Pre-Christian Greek Lunisolar Year 37 3.6.3 Jewish Lunisolar Year 38 3.7 Non-Astronomical Calendars 38 4. Indian Calendars 42 4.1 Traditional (Siderial Solar) 42 4.2 National Reformed (Tropical Solar) 49 4.3 The Nānakshāhī Calendar (Tropical Solar) 51 4.5 Traditional Lunisolar Year 52 4.5 Traditional Lunisolar Year (vaisnava) 58 5.
    [Show full text]
  • Charles Ballinger Executive Director Emeritus
    NAYRE Charles Ballinger Executive Director Emeritus National Association for Year-Round Education Eight Reasons Given to Avoid Calendar Modification 1. Children might be on differing schedules. 2. Child care might not be available. 3. Students might not find and hold jobs after calendar modification. 4. Students might not be able to be involved in out-of-school activities, extracurricular activities, and sports. 5. There is no air-conditioning during warm weather. 6. Facility cleaning and maintenance will be disrupted. 7. Teachers will have difficulty with in-service and graduate work. 8. Family vacations will be difficult to schedule. Six Generalized Reasons for Calendar Modification 1. Modified, balanced calendars can effectively maintain student interest in learning. 2. Students, learning differently, require different time configurations. 3. Intersession classes provide faster remediation and advanced enrichment. 4. Students learning a second language can benefit from the balanced calendar. 5. Co-curricular and extracurricular activities can take place throughout the year and can reinforce previous learning. 6. Teachers can take advantage of year-long opportunities for staff development. School Year Flexibility 365 Days per calendar year -180 Days of legislatively-mandated instruction annually -104 Weekend days (Saturday and Sunday) - 10 Winter Holidays (Christmas and New Year’s) - 11 Other Legal Holidays 60 Remaining optional/flexible days 45-15 Single Track Model 15 15 15 15 45 Classroom School 45 Classroom School 45 Classroom School
    [Show full text]
  • Waterml 1.1 Part 1
    CUAHSI WATERML 1.1 Specification Part 1: Introduction to WaterML Schema June 11, 2009 by: David Valentine Ilya Zaslavsky San Diego Supercomputer Center University of California at San Diego San Diego, California, USA Distribution Copyright © 2009, Consortium of Universities for the Advancement of Hydrologic Science, Inc. All rights reserved. Funding and acknowledgements Funding for this document was provided by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) under NSF Grant No. EAR-0413265. In addition, much input and feedback has been received from the CUAHSI Hydrologic Information System development team. Their contribution is acknowledged here. We would also like to thank partner agency personnel from USGS (Water Resource Division), EPA (the STORET team), and NCDC, as well as data managers and personnel of hydrologic observatory testbeds for cooperation, discussions and insightful feedback. We are especially grateful to the USGS and NCDC teams, and other partners who implemented WaterML-compliant web services over their repositories. Scope Water Markup Language (WaterML) specification defines an information exchange schema, which has been used in water data services within the Hydrologic Information System (HIS) project supported by the U.S. National Science Foundation, and has been adopted by several federal agencies as a format for serving hydrologic data. The goal of the first version of WaterML was to encode the semantics of hydrologic observation discovery and retrieval and implement water data services in a way that is both generic and unambiguous across different data providers, thus creating the least barriers for adoption by the hydrologic research community. This documents WaterML version 1.0 as implemented and utilized in the CUAHSI HIS system.
    [Show full text]
  • Cuahsi Waterml 1.0
    CUAHSI WATERML 1.0 Specification Part 1: Introduction to WaterML Schema June 11, 2009 by: David Valentine Ilya Zaslavsky San Diego Supercomputer Center University of California at San Diego San Diego, California, USA Distribution Copyright © 2009, Consortium of Universities for the Advancement of Hydrologic Science, Inc. All rights reserved. Funding and acknowledgements Funding for this document was provided by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) under NSF Grant No. EAR-0413265. In addition, much input and feedback has been received from the CUAHSI Hydrologic Information System development team. Their contribution is acknowledged here. We would also like to thank partner agency personnel from USGS (Water Resource Division), EPA (the STORET team), and NCDC, as well as data managers and personnel of hydrologic observatory testbeds for cooperation, discussions and insightful feedback. We are especially grateful to the USGS and NCDC teams, and other partners who implemented WaterML-compliant web services over their repositories. Scope Water Markup Language (WaterML) specification defines an information exchange schema, which has been used in water data services within the Hydrologic Information System (HIS) project supported by the U.S. National Science Foundation, and has been adopted by several federal agencies as a format for serving hydrologic data. The goal of the first version of WaterML was to encode the semantics of hydrologic observation discovery and retrieval and implement water data services in a way that is both generic and unambiguous across different data providers, thus creating the least barriers for adoption by the hydrologic research community. This documents WaterML version 1.0 as implemented and utilized in the CUAHSI HIS system.
    [Show full text]
  • The Calendars of Ancient Egypt Telo Ferreira Canhão
    Alexandrea ad aegyptvm the legacy of multiculturalism in antiquity editors rogério sousa maria do céu fialho mona haggag nuno simões rodrigues Título: Alexandrea ad Aegyptum – The Legacy of Multiculturalism in Antiquity Coord.: Rogério Sousa, Maria do Céu Fialho, Mona Haggag e Nuno Simões Rodrigues Design gráfico: Helena Lobo Design | www.hldesign.pt Revisão: Paula Montes Leal Inês Nemésio Obra sujeita a revisão científica Comissão científica: Alberto Bernabé, Universidade Complutense de Madrid; André Chevitarese, Universidade Federal, Rio de Janeiro; Aurélio Pérez Jiménez, Universidade de Málaga; Carmen Leal Soares, Universidade de Coimbra; Fábio Souza Lessa, Universidade Federal, Rio de Janeiro; José Augusto Ramos, Universidade de Lisboa; José Luís Brandão, Universidade de Coimbra; Natália Bebiano Providência e Costa, Universidade de Coimbra; Richard McKirahan, Pomona College, Claremont Co-edição: CITCEM – Centro de Investigação Transdisciplinar «Cultura, Espaço e Memória» Via Panorâmica, s/n | 4150-564 Porto | www.citcem.org | [email protected] CECH – Centro de Estudos Clássicos e Humanísticos | Largo da Porta Férrea, Universidade de Coimbra Alexandria University | Cornice Avenue, Shabty, Alexandria Edições Afrontamento , Lda. | Rua Costa Cabral, 859 | 4200-225 Porto www.edicoesafrontamento.pt | [email protected] N.º edição: 1152 ISBN: 978-972-36-1336-0 (Edições Afrontamento) ISBN: 978-989-8351-25-8 (CITCEM) ISBN: 978-989-721-53-2 (CECH) Depósito legal: 366115/13 Impressão e acabamento: Rainho & Neves Lda. | Santa Maria da Feira [email protected] Distribuição: Companhia das Artes – Livros e Distribuição, Lda. [email protected] Este trabalho é financiado por Fundos Nacionais através da FCT – Fundação para a Ciência e Tecnologia no âmbito do projecto PEst-OE/HIS/UI4059/2011 a timeless legacy: the calendars of ancient egypt telo ferreira canhão Centro de História (University of Lisbon).
    [Show full text]
  • Starship Gaia #13 Class, Worldwide System of Measure- Ment Units
    Feature he International System of Units, also known as the TMetric System, is Gaia’s world- Starship Gaia #13 class, worldwide system of measure- ment units. Scientists call it SI, an Bob Albrecht ([email protected]) abbreviation derived from its French name, Système Internationale d’Unités. and Paul Davis ([email protected]) Defi nitions of SI units are online at the National Institute of Standards and Technology site. (Editor’s Note: Links to this and other sites men- The Times They Are A-Changin’. tioned in this article may be found – Bob Dylan at the end of the article.) The SI unit of time is the second (s), defi ned at The times, they are a-changin’. Gaia’s day, month, and Base unit defi nitions: Second. It is measured with awesome accuracy by year, they are a-changin’. Fortunately and thankfully, atomic clocks like those described at the second seems to be constant, and is wonderfully the United States Naval Observatory’s well–measured to an abundance of signifi cant Cesium Atomic Clocks site. The digits—it is the foundation of time measurement. second is a constant foundation of measurement in a sea of time mea- – Laran Stardrake surements that change oh-so-slowly, such as Gaia’s day and year, and Luna’s orbit around Gaia. More about that later. A solar day is the time for Earth to make one rotation with respect to Sol (the Sun). It is the time that elapses between Sol passing through its high- est point in the sky two consecutive times—the time that elapses between two consecutive solar noons.
    [Show full text]
  • Calendars from Around the World
    Calendars from around the world Written by Alan Longstaff © National Maritime Museum 2005 - Contents - Introduction The astronomical basis of calendars Day Months Years Types of calendar Solar Lunar Luni-solar Sidereal Calendars in history Egypt Megalith culture Mesopotamia Ancient China Republican Rome Julian calendar Medieval Christian calendar Gregorian calendar Calendars today Gregorian Hebrew Islamic Indian Chinese Appendices Appendix 1 - Mean solar day Appendix 2 - Why the sidereal year is not the same length as the tropical year Appendix 3 - Factors affecting the visibility of the new crescent Moon Appendix 4 - Standstills Appendix 5 - Mean solar year - Introduction - All human societies have developed ways to determine the length of the year, when the year should begin, and how to divide the year into manageable units of time, such as months, weeks and days. Many systems for doing this – calendars – have been adopted throughout history. About 40 remain in use today. We cannot know when our ancestors first noted the cyclical events in the heavens that govern our sense of passing time. We have proof that Palaeolithic people thought about and recorded the astronomical cycles that give us our modern calendars. For example, a 30,000 year-old animal bone with gouged symbols resembling the phases of the Moon was discovered in France. It is difficult for many of us to imagine how much more important the cycles of the days, months and seasons must have been for people in the past than today. Most of us never experience the true darkness of night, notice the phases of the Moon or feel the full impact of the seasons.
    [Show full text]
  • ALPINE ZONE the Alpine Zone Occurs in High Mountain Areas Where the Mean Annual Precipitation Is Above 41 Inches and the RET Is the Lowest in the State (Figure 7.6)
    ALPINE ZONE The alpine zone occurs in high mountain areas where the mean annual precipitation is above 41 inches and the RET is the lowest in the state (Figure 7.6). These areas occur above the upper timber line. The vegeta- tion consists mainly of small cushion plants on rocky slopes. Elevation Figure 7.6. Monthly distribution of precipitation within the alpine zone contrasted with modeled reference evapotranspiration ranges from 10,800 feet (RET). Extracted from Daymet climate models (Thornton et al., to 13,528 feet above sea level (ASL). Snow tends to persist 1997). in these areas most of the year, and in some areas, snow pack does not disappear, depending on topography and the year. The climate is characterized by long, cold winters and short, cool growing seasons of less than 60 days (Figure 7.7). Even then, frost can occur at any time. Although total annual precipitation is usually over 40 inches, soil water is often in frozen form because the mean annual temperature is well below 32 degrees Fahrenheit. Much of the alpine zone is comprised of steep, barren and exposed bedrock or loose scree and fell fields (72 percent). Some of this is permanent snow and ice (7 percent). Soils usually develop between rocks and in pockets of gentler terrain where fine particles accumulate (Photographs 1 and 2). Figure 7.7. Average monthly temperatures within the alpine zone showing number of months with average temperatures over 50 degrees Fahrenheit. Extracted from Daymet climate models The alpine zone in Utah occupies about 50,650 acres, of (Thornton et al., 1997).
    [Show full text]
  • A Data Cube Metamodel for Geographic Analysis Involving Heterogeneous Dimensions
    International Journal of Geo-Information Article A Data Cube Metamodel for Geographic Analysis Involving Heterogeneous Dimensions Jean-Paul Kasprzyk 1,* and Guénaël Devillet 2 1 SPHERES, Geomatics Unit, University of Liege, 4000 Liège, Belgium 2 SPHERES, SEGEFA, University of Liege, 4000 Liège, Belgium; [email protected] * Correspondence: [email protected] Abstract: Due to their multiple sources and structures, big spatial data require adapted tools to be efficiently collected, summarized and analyzed. For this purpose, data are archived in data warehouses and explored by spatial online analytical processing (SOLAP) through dynamic maps, charts and tables. Data are thus converted in data cubes characterized by a multidimensional structure on which exploration is based. However, multiple sources often lead to several data cubes defined by heterogeneous dimensions. In particular, dimensions definition can change depending on analyzed scale, territory and time. In order to consider these three issues specific to geographic analysis, this research proposes an original data cube metamodel defined in unified modeling language (UML). Based on concepts like common dimension levels and metadimensions, the metamodel can instantiate constellations of heterogeneous data cubes allowing SOLAP to perform multiscale, multi-territory and time analysis. Afterwards, the metamodel is implemented in a relational data warehouse and validated by an operational tool designed for a social economy case study. This tool, called “Racines”, gathers and compares multidimensional data about social economy business in Belgium and France through interactive cross-border maps, charts and reports. Thanks to the metamodel, users remain Citation: Kasprzyk, J.-P.; Devillet, G. independent from IT specialists regarding data exploration and integration.
    [Show full text]