<<

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 93, 060410(R) (2016)

Incommensurate -density-wave in CeRu2Al2B

A. Bhattacharyya,1,2,* D. D. Khalyavin,1,† F. Kruger,¨ 1,3 D. T. Adroja,1,2,‡ A. M. Strydom,2,4 W. A. Kockelmann,1 and A. D. Hillier1 1ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom 2Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, Auckland Park 2006, South Africa 3London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom 4Max Planck Institute CPfS, Nothnitzer¨ Str. 40, 01187 Dresden, Germany (Received 7 January 2016; published 29 February 2016)

The newly discovered Ising-type ferromagnet CeRu2Al2B exhibits an additional at TN = 14.2 K before entering the ferromagnetic ground state at TC = 12.8 K. We clarify the nature of this transition through high resolution measurements. The data reveal the presence of a longitudinal

incommensurate spin-density wave (SDW) in the temperature range of TC

strong competition between ferromagnetic and antiferromagnetic exchange interactions. This makes CeRu2Al2B a particularly attractive model system to study the global phase diagram of ferromagnetic heavy-fermion metals under the influence of magnetic frustration.

DOI: 10.1103/PhysRevB.93.060410

Heavy-fermion intermetallic compounds display a rich but no determination in the temperature variety of emergent physical properties, including quantum range of TC

2469-9950/2016/93(6)/060410(5) 060410-1 ©2016 American Physical Society RAPID COMMUNICATIONS

A. BHATTACHARYYA et al. PHYSICAL REVIEW B 93, 060410(R) (2016)

FIG. 1. Temperature dependence of dc magnetic susceptibility (χ = M/H)ofCeRuAl B measured in zero-field (ZFC) and field- 2 2 FIG. 2. Schematic representation of the tetragonal crystal cooled (FC) conditions in the presence of an applied magnetic field structure of CeRu Al B with atoms in the Wyckoff positions; of 100 Oe. The inset shows specific heat as a function of temperature 2 2 Ce-1b(0,0,1/2), Ru-2f (0,1/2,0), Al-2h[1/2,1/2,2563(8)] and B- for CeRu Al B ( line) and its nonmagnetic analog LaRu Al B 2 2 2 2 1a(0,0,0) of the P 4/mmm space group (a). Temperature dependence (dotted line) used to subtract the contribution. of the unit cell parameters (b) and (c).

ISOTROPY [30] and ISODISTORT [31] software. Magnetic sus- ceptibility and heat capacity measurements were done using seven symmetry distinct kernel/epikernel order parameter Quantum Design magnetic properties (MPMS) and physical directions in the four-dimensional m5 representation space properties (PPMS) measurement systems, respectively. and only one in m4 [30,31]. Figure 1(a) shows the magnetic susceptibility of All of them were tested in the quantitative refinements using CeRu2Al2B as a function of temperature collected in the the magnetic intensities. Assuming irreducible character of magnetic field H = 100 Oe. The data indicates two successive the magnetic order parameter, constrained by the continuous phase transitions at TN = 14.2 K and TC = 12.8 K in good nature of the transition at TN [20], the best refinement quality agreement with previous measurements [20,26]. Above 50 K, [Fig. 3(b)] was obtained using the m4 representation which the susceptibility exhibits Curie-Weiss behavior with a positive implies a longitudinal SDW with the Ce moments being paramagnetic Curie-Weiss temperature θp = 10 K and an along the c axis as shown in Fig. 3(d). The corresponding  effective magnetic moment 2.35μB close to the value 2.54μB magnetic super space group is P 4/mmm1 (0,0, qc)00sss 3+ for a free Ce ion. The specific heat measurements also which indicates that the phase transition at TN results in a loss support the presence of the two transitions at TN and TC of the translational symmetry but preserves all the rotational (Fig. 1, inset) and the extracted magnetic contribution of the symmetry elements of the paramagnetic tetragonal structure. 4f electrons to the entropy of the system, S4f (T ), is practically The incommensurate component qc of the propagation vector identical to those reported by Baumbach et al. [20]. was found to be nearly temperature independent within the res- To explore the nature of the phase transitions at TN and olution of the present neutron diffraction experiment [Fig. 3(c), TC, neutron powder diffraction measurements were carried inset]. Below TC, the magnetic intensity moves on top of out in the temperature range of 1.5K

060410-2 RAPID COMMUNICATIONS

INCOMMENSURATE SPIN-DENSITY-WAVE . . . PHYSICAL REVIEW B 93, 060410(R) (2016)

(b) (a) J2 (AFM) J =3.179 K J (FM) 1 J1 =1.035 K J (FM) J TN =14.2K T ∗ C SDW

(c) TC =12.8K (K) T q =0.148 Ferromagnet (r.l.u) q 418 . =0 418 . α =0

α = −J2/J1 α

α = −J2/J1

FIG. 4. (a) Mean-field phase diagram of a three-dimensional Ising model [exchange couplings defined in inset (b)] as a function FIG. 3. Rietveld refinements of the magnetic intensity of the of temperature T and frustration α =−J2/J1. (c) Ordering vector  CeRu2Al2B composition obtained as a difference between the q = (0,0,qc) as a function of α.ForJ = 3.179 K, J1 = 1.035 K, diffraction patterns collected in the ordered (T = 1.5 and 13 K) and J2 =−0.432 K (α = 0.418) the theory reproduces the measured and paramagnetic (T = 17 K) phases. The circle symbols (red) modulation vector qc and transition temperatures TN and TC. and solid line represent the experimental and calculated intensities, respectively, and the line below (blue) is the difference between them. Tick marks indicate the positions of Bragg peaks for the magnetic spins coupled predominantly by RKKY interactions. The scattering with the q = 0 (a) and q = (0,0,0.148) (b) propagation RKKY exchange J (r) provides a source of frustration. It is vectors. (c) Magnetic order parameter as a function of temperature. FM on short length scales but oscillates in sign as a function The inset shows the temperature dependence of the incommensurate of distance with a period set by the inverse Fermi momentum component qc of the magnetic propagation vector, q = (0,0,qc). 1/kF. The tendency towards SDW formation can be greatly (d) Incommensurate longitudinal spin-density wave representing enhanced by Fermi-surface nesting or the proximity of a the magnetic structure of CeRu Al B in the temperature range of 2 2 magnetic superzone boundary to the , leading T

060410-3 RAPID COMMUNICATIONS

A. BHATTACHARYYA et al. PHYSICAL REVIEW B 93, 060410(R) (2016)

For α>1/4, we obtain a finite propagation vector Eqs. (2), (3), and (5) we obtain the effective exchange    interactions J = 3.179 K, J1 = 1.035 K, and J2 =−0.432 K. J1 qcc = arccos − , (2) In Fig. 4, a phase diagram as a function of temperature T and 4J2 frustration α =−J2/J1 is shown. The experimentally relevant and a transition into a modulated SDW state at value α = 0.418 indicates that the frustration is significant. It is 2 also interesting that the FM exchange in the a-b plane is about  J1 TN = J (qc) = 4J − 2J2 − . (3) three times stronger than along the c axis. While this could 4J2 partly be explained by the difference in lattice constants, a

[1] L. Degiorgi, Rev. Mod. Phys. 71, 687 (1999). [10] Q. Si, Physica B 378, 23 (2006). [2] P. Wachter, in Handbook on the Physics and Chemistry of Rare [11] Q. Si and A. H. Nevidomskyy, J. Low Temp. Phys. 161, 182 Earths, edited by K. A. Gschneidner and L. Eyring (Elsevier (2010). Science, New York, 1994), Vol. 19. [12] Q. Si, Phys. Status Solidi B 247, 476 (2010). [3] A. Amato, Rev. Mod. Phys. 69, 1119 (1997). [13] M. S. Kim and M. C. Aronson, Phys. Rev. Lett. 110, 017201 [4] S. Doniach, Physica B+C (Amsterdam) 91, 231 (1977). (2013). [5] A. J. Millis and P. A. Lee, Phys.Rev.B35, 3394 (1987). [14] V. Fritsch, N. Bagrets, G. Goll, W. Kittler, M. J. Wolf, K. Grube, [6] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. C.-L. Huang, and H. v. Lohneysen,¨ Phys.Rev.B89, 054416 Mod. Phys. 68, 13 (1996). (2014). [7] P. Fulde, Electron Correlations in Molecules and , 2nd ed. [15]E.D.Mun,S.L.Bud’ko,C.Martin,H.Kim,M.A.Tanatar,J.-H. (Springer-Verlag, Berlin, 1993). Park, T. Murphy, G. M. Schmiedeshoff, N. Dilley, R. Prozorov, [8]A.C.Hewson,The Kondo Problem to Heavy Fermions andP.C.Canfield,Phys. Rev. B 87, 075120 (2013). (Cambridge University Press, Cambridge, 1997). [16] S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. [9] P. Coleman, Phys.Rev.Lett.59, 1026 (1987). W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R.

060410-4 RAPID COMMUNICATIONS

INCOMMENSURATE SPIN-DENSITY-WAVE . . . PHYSICAL REVIEW B 93, 060410(R) (2016)

Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, [31] B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, J. D. Braithwaite, and J. Flouquet, Nature (London) 406, 587 Appl. Crystallogr. 39, 607 (2006). (2000). [32] J. V.Zaikina, Y.J. Jo, and S. E. Latturner, Inorg. Chem. 49, 2773 [17] D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, (2010). J. P. Brison, E. Lhotel, and C. Paulsen, Nature (London) 413, [33] H. Matsuno, H. Nohara, H. Kotegawa, E. Matsuoka, Y. 613 (2001). Tomiyama, H. Sugawara, H. Harima, and H. Tou, J. Phys. Soc. [18] N. T. Huy, A. Gasparini, D. E. de Nijs, Y.Huang, J. C. P.Klaasse, Jpn. 81, 073705 (2012). T. Gortenmulder, A. de Visser, A. Hamann, T. Gorlach,¨ and H. [34] M. J. Besnus, A. Essaihi, N. Hamdaoui, G. Fischer, J. P.Kappler, v. Lohneysen,¨ Phys.Rev.Lett.99, 067006 (2007). A. Meyer, J. Pierre, P. Haen, and P. Lejay, Physica B 171, 350 [19] T. Akazawa, H. Hidaka, T. Fujiwara, T. C. Kobayashi, E. (1991). Yamamoto, Y. Haga, R. Settai, and Y. Onuki,¯ J. Phys.: Condens. [35] A. Loidl, K. Knorr, G. Knopp, A. Krimmel, R. Caspary, A. Matter 16, L29 (2004). Bohm,¨ G. Sparn, C. Geibel, F. Steglich, and A. P. Murani, Phys. [20] R. E. Baumbach, H. Chudo, H. Yasuoka, F. Ronning, E. D. Rev. B 46, 9341 (1992). Bauer, and J. D. Thompson, Phys.Rev.B85, 094422 (2012). [36] H. Matsuno, H. Kotegawa, E. Matsuoka, Y. Tomiyama, H. [21] E. Matsuoka, Y. Tomiyama, H. Sugawara, T. Sakurai, and H. Sugawara, and H. Tou, J. Phys. Soc. Jpn. 83, 103709 (2014). Ohta, J. Phys. Soc. Jpn. 81, 043704 (2012). [37] R. J. Elliot and F. A. Wedgwood, Proc. Phys. Soc. 84, 63 (1964). [22] R. E. Baumbach, T. Shang, M. Torrez, F. Ronning, J. D. [38] H. Miwa, Proc. Phys. Soc. 85, 1197 (1965). Thompson, and E. D. Bauer, J. Phys.: Condens. Matter 24, [39] W. Selke and P. M. Duxbury, Z. Phys. B 57, 49 (1984). 185702 (2012). [40] A. Bruckel, K. Neumaier, Ch. Probst, K. Andres, S. J. Flaschin, [23] R. E. Baumbach, X. Lu, F. Ronning, J. D. Thompson, and E. D. A. Kratzer, G. M. Kalvius, and T. Takabatake, Physica B 240, Bauer, J. Phys.: Condens. Matter 24, 325601 (2012). 199 (1997). [24] H. Sakai, Y. Tokunaga, S. Kambe, R. E. Baumbach, F. Ronning, [41] A. Kondo, K. Kindo, K. Kunimori, H. Nohara, H. Tanida, M. E. D. Bauer, and J. D. Thompson, Phys.Rev.B86, 094402 Sera, R. Kobayashi, T. Nishioka, and M. Matsumura, J. Phys. (2012). Soc. Jpn. 82, 054709 (2013). [25] D. E. Bugaris, F. Han, J. Im, D. Y. Chung, A. J. Freeman, and [42] D. D. Khalyavin, D. T. Adroja, A. Bhattacharyya, A. D. Hillier, M. G. Kanatzidis, Inorg. Chem. 54, 8049 (2015). P. Manuel, A. M. Strydom, J. Kawabata, and T. Takabatake, [26] E. Matsuoka, Y. Tomiyama, H. Sugawara, T. Sakurai, and H. Phys. Rev. B 89, 064422 (2014). Ohta, J. Phys. Soc. Jpn. 82, 063711 (2013). [43] D. D. Khalyavin, D. T. Adroja, P. Manuel, J. Kawabata, K. [27] S. Nakamura, Y. Tomiyama, E. Matsuoka, H. Sugawara, T. Umeo, T. Takabatake, and A. M. Strydom, Phys. Rev. B 88, Sakurai, and H. Ohta, JPS Conf. Proc. 3, 011041 (2014). 060403 (2013). [28] L. C. Chapon et al., Neutron News 22, 22 (2011). [44] J. Kawabata, T. Takabatake, K. Umeo, and Y. Muro, Phys. Rev. [29] J. Rodr´ıguez-Carvajal, Physica B 192, 55 (1993). B 89, 094404 (2014). [30] H. T. Stokes, D. M. Hatch, and B. J. Campbell, ISOTROPY [45] H. Tanida, M. Nakamura, M. Sera, T. Nishioka, and M. Software Suite, iso.byu.edu. Matsumura, Phys. Rev. B 92, 235154 (2015).

060410-5