Nematicity As a Route to a Magnetic-Field–Induced Spin Density Wave Order: Application to the High-Temperature Cuprates

Total Page:16

File Type:pdf, Size:1020Kb

Nematicity As a Route to a Magnetic-Field–Induced Spin Density Wave Order: Application to the High-Temperature Cuprates Home Search Collections Journals About Contact us My IOPscience Nematicity as a route to a magnetic-field–induced spin density wave order: Application to the high-temperature cuprates This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 EPL 86 57005 (http://iopscience.iop.org/0295-5075/86/5/57005) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 132.68.72.203 The article was downloaded on 03/10/2011 at 17:08 Please note that terms and conditions apply. June 2009 EPL, 86 (2009) 57005 www.epljournal.org doi: 10.1209/0295-5075/86/57005 Nematicity as a route to a magnetic-field–induced spin density wave order: Application to the high-temperature cuprates H.-Y. Kee1 and D. Podolsky1,2 1 Department of Physics, University of Toronto - Toronto, Ontario M5S 1A7 Canada 2 Physics Department, Technion - Haifa 32000, Israel received 11 March 2009; accepted in final form 21 May 2009 published online 22 June 2009 PACS 73.22.Gk – Broken symmetry phases Abstract – The electronic nematic order characterized by broken rotational symmetry has been suggested to play an important role in the phase diagram of the high-temperature cuprates. We study the interplay between the electronic nematic order and a spin density wave order in the presence of a magnetic field. We show that a cooperation of the nematicity and the magnetic field induces a finite coupling between the spin density wave and spin-triplet staggered flux orders. As a consequence of such a coupling, the magnon gap decreases as the magnetic field increases, and it eventually condenses beyond a critical magnetic field leading to a field-induced spin density wave order. Both commensurate and incommensurate orders are studied, and the experimental implications of our findings are discussed. Copyright c EPLA, 2009 Introduction. – Typically, conduction electrons in there is no strong influence between the two. We show that strongly correlated materials are either localized due to the situation can be dramatically different when the time interactions between them, or conduct with a uniform reversal symmetry is broken by an external perturbation and isotropic distribution. Can electrons in metals assem- such as a magnetic field. We find that there is a direct ble themselves and exhibit novel patterns seen in liquid coupling between the SDW and spin-triplet staggered flux crystals? If so, what is the mechanism behind such (tSF) orders inside the nematic phase when the magnetic a self-organizing pattern, and what are the effects of field is applied. The tSF phase, like the (spin-singlet) stag- such a metal on nearby phases? The electronic nematic gered flux (or sometimes called d-density wave) breaks the phase characterized by an anisotropic conduction has been translational and rotational symmetries due to circulating proposed as one such state. It was suggested that it plays currents with an alternating pattern. However, unlike the a relevant role in determining the superconducting tran- d-density wave state, it does not break the time reversal sition temperature in the cuprates [1], which motivated symmetry, because up- and down-spin circulations have several studies on the interplay between the nematic and opposite directions, which leads to the name of spin-triplet d-wave superconducting (dSC) states [2,3]. An evidence of staggered flux. A consequence of such a coupling is that its existence in the cuprates was found by neutron scat- the SDW order can be induced by the magnetic field via tering on YBa2Cu3O6.45 (YBCO) [4]. On the other hand, the nematicity. This result applies to both commensurate the interplay between the nematic and the antiferromag- and incommensurate orders —a finite coupling between net, another nearby phase of the cuprates, has not been incommensurate spin density wave (ISDW) and incom- addressed. mensurate triplet staggered flux (ItSF) orders occurs in In this paper, we study the relationship between the the presence of a magnetic field leading to ISDW order nematic and spin density wave (SDW) orders. It is triv- beyond a critical magnetic field. We will discuss the exper- ial to see that a direct coupling term between the two is imental implications of our result in the context of the not allowed in the free energy, since they break distinctly high-temperature cuprates. different symmetries —the nematic order breaks the rota- tional symmetry between x-andy-directions, while the Nematicity and commensurate SDW and tSF AF order breaks the translational, spin-rotational, and orders. – The nematic order, which breaks the 90 time reversal symmetries. Thus, a naive conclusion is that rotational symmetry between x-andy-directions, is 57005-p1 H.-Y. Kee and D. Podolsky T where σ is the Pauli matrix, i = x, y, z,andQ =(π,π). It is straightforward to check that there is no direct coupling Ts To between the nematic and AF orders based on the distinctly different quantum numbers associated with their order Nematic ω(k) (a) parameters. SDW However, when we consider the following tSF order parameter, the situation changes: i † i T = i d(k)c σ ck+Qβ. (4) Q Q kα αβ k xc x ω (k) The tSF order is characterized by circulating currents (c) (b) with an alternating pattern like the d-density wave state, but up- and down-spins circulate in opposite directions. Thus, there is no net charge current, but a finite spin B fSDW current. It breaks the translational, x-y rotational, and Q Q spin-rotational symmetries, but preserves the time reversal symmetry. This state was identified as a component of the Fig. 1: (Colour on-line) Schematic phase diagram of SDW and 6-dimensional superspin which can be rotated under the nematic phases as a function of doping x, temperature, T and 15 generators forming the SO(6) group [7] which includes magnetic field B. The lines in the boxes are the dispersions as a subset the SO(5) group suggested for a unified theory of collective modes. (a) In the nematic state, both the SDW of the high-Tc cuprates [8]. It was also discussed as one of and tSF modes are gapped. (b) As the magnetic field increases, non-zero angular-momentum condensate states in ref. [9]. the magnon gap decreases, while the tSF gap gets pushed up. In a dSC state, both the tSF and AF modes are gapped Further magnetic field makes the magnon condense leading to a field-induced SDW (fSDW) in the yellow region. See the main while the AF gap, i.e. the magnon gap, is smaller than text for further discussions on the detection of the collective the tSF gap as shown in the box (a) in fig. 1, due to the modes for incommensurate and commensurate SDW orders via proximity of the AF phase in the phase diagram. k neutron scattering and on the anisotropic intensity between x Effects of a magnetic field in the nematic phase. and ky due to the nematicity. – Since both TQ and SQ carry charge 0, spin 1, and momentum Q, one may expect that there is a direct defined as [5,6]1 coupling between the two order parameters such as i j 1 † F = γij (N0, B)SQTQ, (5) N0 = d(k)ckσckσ, (1) 2 kσ where the coupling γij is a function of N0 and the where d(k) = cos kx − cos ky (setting the lattice constant magnetic field B to respect the discrete symmetries of a = 1). Inside the nematic state, marked by (a) in the the system. First, the tSF order breaks the x-y symme- phase diagram of fig. 1, the quasi-particle Green’s function try, while the AF does not, thus the coupling between is written as them vanishes, except inside the nematic phase. Therefore, γ(N0 =0, B) = 0. Second, the AF order breaks the time −1 G (k,iωn)=−iωn + k − µ, (2) reversal symmetry, while the tSF order does not, which implies γ(N0, B = 0) = 0. Therefore, the coupling between where the tSF and AF orders is finite only in the presence of both a magnetic field and the nematic order, γ(N0 =0 , B =0) = k = −2t(cos kx +cosky)+2td(k)N0 − 4t cos kx cos ky, 0. To linear order in N0 and B, the form of coupling is and µ is the chemical potential. t and t represent the found to be F∝N0B · (SQ × TQ), i.e. the index depen- k nearest-neighbor and second-nearest-neighbor hoppings, dence of γij is given by γij ∝ ijkB . It is straightforward respectively. to check that such a term is allowed in the free energy As shown in fig. 1, the commensurate antiferromagnetic based on the symmetry consideration discussed above. (AF) phase exists below a certain doping of xc, and its To compute γij in eq. (5), it is useful to introduce † † † order parameter with a moment alongx ˆ is given by ψk =(ck↑,ck+Q↓). In the basis of ψ, the Hamiltonian is i † i written as SQ = ckασαβck+Qβ, (3) 0 † k Hnem = ψk [(˜k + B)τ3 − µkI] ψk, (6) k 1While the electronic nematic order refers to a spontaneous broken symmetry, our current results can be also applied for a − k+k+Q k−k+Q − nematicity arising from an external perturbation such as orthorhom- where µk = µ 2 = µk+Q,˜k = 2 = ˜k+Q, bicity. and B = Bzˆ. Note that the AF and tSF fluctuations couple 57005-p2 Nematicity as a route to a magnetic-field–induced spin density wave order which determines the phase boundary between the pure nematic phase and the field-induced AF phase as shown in the dashed line in fig.
Recommended publications
  • Arxiv:1209.2671V2 [Cond-Mat.Quant-Gas] 13 Sep 2012
    Unconventional Spin Density Waves in Dipolar Fermi Gases S. G. Bhongale1,4, L. Mathey2, Shan-Wen Tsai3, Charles W. Clark4, Erhai Zhao1,4 1School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 2Zentrum f¨ur Optische Quantentechnologien and Institut f¨ur Laserphysik, Universit¨at Hamburg, 22761 Hamburg, Germany 3Department of Physics and Astronomy, University of California, Riverside, CA 92521 4Joint Quantum Institute, National Institute of Standards and Technology & University of Maryland, Gaithersburg, MD 20899 (Dated: January 17, 2018) The conventional spin density wave (SDW) phase [1], as found in antiferromagnetic metal for example [2], can be described as a condensate of particle-hole pairs with zero angular momentum, ℓ = 0, analogous to a condensate of particle-particle pairs in conventional superconductors. While many unconventional superconductors with Cooper pairs of finite ℓ have been discovered, their counterparts, density waves with non-zero angular momenta, have only been hypothesized in two- dimensional electron systems [3]. Using an unbiased functional renormalization group analysis, we here show that spin-triplet particle-hole condensates with ℓ = 1 emerge generically in dipolar Fermi gases of atoms [4] or molecules [5, 6] on optical lattice. The order parameter of these exotic SDWs is a vector quantity in spin space, and, moreover, is defined on lattice bonds rather than on lattice sites. We determine the rich quantum phase diagram of dipolar fermions at half-filling as a function of the dipolar orientation, and discuss how these SDWs arise amidst competition with superfluid and charge density wave phases. PACS numbers: The advent of ultra-cold atomic and molecular gases lattice constant throughout this paper, and repeated in- has opened new avenues to study many-body physics.
    [Show full text]
  • Breaking the Spin Waves: Spinons in Cs2cucl4 and Elsewhere
    Breaking the spin waves: spinons in !!!Cs2CuCl4 and elsewhere Oleg Starykh, University of Utah In collaboration with: K. Povarov, A. Smirnov, S. Petrov, Kapitza Institute for Physical Problems, Moscow, Russia, A. Shapiro, Shubnikov Institute for Crystallography, Moscow, Russia Leon Balents (KITP), H. Katsura (Gakushuin U, Tokyo), M. Kohno (NIMS, Tsukuba) Jianmin Sun (U Indiana), Suhas Gangadharaiah (U Basel) arxiv:1101.5275 Phys. Rev. B 82, 014421 (2010) Phys. Rev. B 78, 054436 (2008) Spin Waves 2011, St. Petersburg Nature Physics 3, 790 (2007) Phys. Rev. Lett. 98, 077205 (2007) Wednesday, April 18, 12 Outline • Spin waves and spinons • Experimental observations of spinons ➡ neutron scattering, thermal conductivity, 2kF oscillations, ESR • Cs2CuCl4: spinon continuum and ESR • ESR in the presence of uniform DM interaction - ESR in 2d electron gas with Rashba SOI - ESR in spin liquids with spinon Fermi surface • Conclusions Wednesday, April 18, 12 Spin wave or magnon = propagating disturbance in magnetically ordered state (ferromagnet, antiferromagnet, ferrimagnet...) + i k.r Σr S r e |0> sharp ω(k) La2CuO4 Carries Sz = 1. Observed via inelastic neutron scattering as a sharp single-particle excitation. magnon is a boson (neglecting finite dimension of the Hilbert space for finite S) Coldea et al PRL 2001 Wednesday, April 18, 12 But the history is more complicated Regarding statistics of spin excitations: “The experimental facts available suggest that the magnons are submitted to the Fermi statistics; namely, when T << TCW the susceptibility tends to a constant limit, which is of 5 the order of const/TCW ( ) [for T > TCW, χ=const/(T + TCW)]. Evidently we have here to deal with the Pauli paramagnetism which can be directly obtained from the Fermi distribution.
    [Show full text]
  • Spin Density Wave and Ferromagnetism in a Quasi-One-Dimensional Organic Polymer
    Z. Phys. B 104, 27–32 (1997) ZEITSCHRIFT FUR¨ PHYSIK B c Springer-Verlag 1997 Spin density wave and ferromagnetism in a quasi-one-dimensional organic polymer Shi-Dong Liang1, Qianghua Wang1;2, and Z. D. Wang1 1 Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong 2 Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China Received: 5 February 1997 Abstract. The spin density wave(SDW) – charge density impurities, in which unpaired localized d or f electrons inter- wave(CDW) phase transition and the magnetic properties in act with the itinerant π electrons. Fang et al. [3] investigated a half-filled quasi-one-dimensional organic polymer are in- the stability of the ferromagnetic state and the spin configu- vestigated by the world line Monte Carlo simulations. The ration of the π- electron in a quasi-one-dimensional organic itinerant π electrons moving along the polymer chain are polymer by a mean field approach(the Hatree-Fock approx- coupled radically to localized unpaired d electrons, which imation). They found that not only the interaction between are situated at every other site of the polymer chain. The the π electrons but also the interaction between the π elec- results show that both ferromagnetic and anti-ferromagnetic trons and unpaired d electrons play an important role for radical couplings enhance the SDW phase and the ferromag- the ferromagnetic order, and the spin density wave(SDW) net order of the radical spins, but suppress the CDW phase. states is closely related to the ferromagnetism of this sys- By finite size scaling, we are able to obtain the phase tran- tem.
    [Show full text]
  • Bad Metals from Fluctuating Density Waves Abstract
    SciPost Phys. 3, 025 (2017) Bad metals from fluctuating density waves Luca V. Delacrétaz1, Blaise Goutéraux1,2,3, Sean A. Hartnoll1? and Anna Karlsson1 1 Department of Physics, Stanford University, Stanford, CA 94305-4060, USA 2 APC, Université Paris 7, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France 3 Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden ? [email protected] Abstract Bad metals have a large resistivity without being strongly disordered. In many bad met- als the Drude peak moves away from zero frequency as the resistivity becomes large at increasing temperatures. We catalogue the position and width of the ‘displaced Drude peak’ in the observed optical conductivity of several families of bad metals, showing that !peak ∆! kB T=~h. This is the same quantum critical timescale that underpins the T-linear∼ dc resistivity∼ of many of these materials. We provide a unified theoreti- cal description of the optical and dc transport properties of bad metals in terms of the hydrodynamics of short range quantum critical fluctuations of incommensurate density wave order. Within hydrodynamics, pinned translational order is essential to obtain the nonzero frequency peak. Copyright L. V.Delacrétaz et al. Received 06-07-2017 This work is licensed under the Creative Commons Accepted 07-09-2017 Check for Attribution 4.0 International License. Published 29-09-2017 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.3.3.025 Bad metals are defined by the fact that if their electrical resistivity is interpreted within a con- ventional Drude formalism, the corresponding mean free path of the quasiparticles is so short that the Boltzmann equation underlying Drude theory is not consistent [1–3].
    [Show full text]
  • External Electric Field Mediated Quantum Phase Transitions in One
    External Electric Field Mediated Quantum Phase Transitions in One-Dimensional Charge Ordered Insulators: A DMRG Study Sudipta Dutta and Swapan K. Pati Theoretical Sciences Unit and DST Unit on Nanoscience Jawaharlal Nehru Centre For Advanced Scientific Research Jakkur Campus, Bangalore 560064, India. (Dated: October 26, 2018) We perform density matrix renormalization group (DMRG) calculations extensively on one- dimensional chains with on site (U) as well as nearest neighbour (V ) Coulomb repulsions. The calculations are carried out in full parameter space with explicit inclusion of the static bias and we compare the nature of spin density wave (SDW) and charge density wave (CDW) insulators under the influence of external electric field. We find that, although the SDW (U > 2V ) and CDW (U < 2V ) insulators enter into a conducting state after a certain threshold bias, CDW insulators require much higher bias than the SDW insulators for insulator-metal transition at zero tempera- ture. We also find the CDW-SDW phase transition on application of external electric field. The bias required for the transitions in both cases decreases with increase in system size. Strongly correlated electronic systems in low-dimension are always very interesting because of their unique charac- teristics like quantum fluctuations, lack of long range ordering etc [1, 2, 3, 4, 5, 6, 7]. The correlation effects in such low-dimensional systems lead to Mott or charge-ordered insulating states. The one-dimensional extended Hubbard model[8, 9] with on-site Hubbard repulsion term, U, along with the nearest-neighbour Coulomb repulsion term, V , is a standard model which exhibits these different phases.
    [Show full text]
  • Spin Dynamics of Density Wave and Frustrated Spin Systems Probed by Nuclear Magnetic Resonance Lloyd L
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2008 Spin Dynamics of Density Wave and Frustrated Spin Systems Probed by Nuclear Magnetic Resonance Lloyd L. (Lloyd Laporca) Lumata Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES SPIN DYNAMICS OF DENSITY WAVE AND FRUSTRATED SPIN SYSTEMS PROBED BY NUCLEAR MAGNETIC RESONANCE By LLOYD L. LUMATA A Dissertation submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2008 The members of the Committee approve the Dissertation of Lloyd L. Lumata defended on October 31, 2008. James S. Brooks Professor Directing Dissertation Naresh Dalal Outside Committee Member Arneil P. Reyes Committee Member Pedro Schlottmann Committee Member Christopher Wiebe Committee Member Mark Riley Committee Member Approved: Mark Riley, Chair Department of Physics Joseph Travis, Dean, College of Arts and Sciences The Office of Graduate Studies has verified and approved the above named committee members. ii To my family... iii ACKNOWLEDGEMENTS This is it, like an Oscar called Ph.D. after four and a half years... I would like to express my gratitude, first and foremost, to my advisor Prof. James S. Brooks for being a great mentor in person and in research. He is the type of advisor who can turn a novice, clumsy graduate student into an astute observer and skilled researcher. He is smart, open-minded, responsible, and very helpful to his students and I am honored to be his 23rd Ph.D.
    [Show full text]
  • Dirac Nodal Lines and Flat-Band Surface State in The
    Dirac nodal lines and flat-band surface state in the functional oxide RuO2 Vedran Jovic,1,2 Roland J. Koch,1 Swarup K. Panda,3 Helmuth Berger,4 Philippe Bugnon,4 Arnaud Magrez,4 Kevin E. Smith,2,5 Silke Biermann,3,6 Chris Jozwiak,1 Aaron Bostwick,1 Eli Rotenberg,1 and Simon Moser1,7,* 1Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 2School of Chemical Sciences and Centre for Green Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand 3Centre de Physique Théorique, Ecole Polytechnique, CNRS-UMR7644, Université Paris-Saclay, 91128 Palaiseau, France 4Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland 5Department of Physics, Boston University, Boston, Massachusetts 02215, USA 6Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France 7Physikalisches Institut, Universität Würzburg, D-97074 Würzburg, Germany The efficiency and stability of RuO2 in electrocatalysis has made this material a subject of intense fundamental and industrial interest. The surface functionality is rooted in its electronic and magnetic properties, determined by a complex interplay of lattice-, spin-rotational, and time-reversal symmetries, as well as the competition between Coulomb and kinetic energies. This interplay was predicted to produce a network of Dirac nodal lines (DNLs), where the valence and conduction bands touch along continuous lines in momentum space. Here we uncover direct evidence for three DNLs in RuO2 by angle-resolved photoemission spectroscopy. These DNLs give rise to a flat-band surface state that is readily tuned by the electrostatic environment, and that presents an intriguing platform for exotic correlation phenomena.
    [Show full text]
  • Spin-Density-Wave Antiferromagnetism in the Chromium System I: Magnetic Phase Diagrams, Impurity States, Magnetic Excitations and Structure in the SDW Phase
    MfM 45 325 Spin-Density-Wave Antiferromagnetism in the Chromium System I: Magnetic Phase Diagrams, Impurity States, Magnetic Excitations and Structure in the SDW Phase Eric Fawcett Physics Department, University of Toronto, Toronto M5S 1A7, Canada Abstract The chromium system, comprising pure Cr and alloys with most transition metals and some non- transition metals, is the archetypical spin-density-wave (SDW) system. This paper supplements, with a brief summary and extension to include recent work, two previous comprehensive reviews on Cr (Fawcett, 1988) and Cr alloys (Fawcett et al., 1994). The magnetic phase diagrams are reviewed. Impurity states in CrFe and CrSi, when suitably doped with V or Mn, produce dra- matic effects in the electrical resistivity, including a low-temperature resistance minimum due to impurity-resonance scattering. Curie–Weiss paramagnetism appears just above the N´eel temper- ature in dilute CrV alloys. Recent work on inelastic neutron scattering in pure Cr is reviewed: the apparent absence of dispersion of the spin-wave modes at the wave vectors of the incommensurate SDW where the Bragg satellite peaks occur; the energy-dependent anisotropy of the excitations in the longitudinal-SDW phase; the commensurate magnetic scattering at the centre of the magnetic zone, which at higher energy and temperature dominates the inelastic scattering at the satellites; the Fincher–Burke excitations seen at low-energy in the transverse-SDW phase; and the silent satellites seen in single-Q Cr at off-axis incommensurate points as temperature increases towards the N´eel transition. X-ray scattering with synchrotron radiation has illuminated the relation between the SDW in Cr and the incommensurate charge-density wave that accompanies it.
    [Show full text]
  • Spin Density Wave Order, Topological Order, and Fermi Surface Reconstruction
    arXiv:1606.07813 Spin density wave order, topological order, and Fermi surface reconstruction Subir Sachdev,1, 2 Erez Berg,3 Shubhayu Chatterjee,1 and Yoni Schattner3 1Department of Physics, Harvard University, Cambridge MA 02138, USA 2Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5 3Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel (Dated: September 22, 2016) Abstract In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small `pockets'. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping. arXiv:1606.07813v3 [cond-mat.str-el] 21 Sep 2016 1 I. INTRODUCTION A number of recent experiments [1{4] have highlighted a remarkable transformation in the electronic state of the hole-doped cuprates at a hole density around p = pc 0:19: many electronic ≈ properties change from those characteristic of a Fermi gas of charge +e carriers of density p for p < pc, to those of a Fermi gas of charge +e carriers of density 1 + p for p > pc.
    [Show full text]
  • Charge Dynamics of the Spin-Density-Wave State in Bafe2as2
    Eur. Phys. J. B 67, 513–517 (2009) DOI: 10.1140/epjb/e2009-00062-2 THE EUROPEAN PHYSICAL JOURNAL B Regular Article Charge dynamics of the spin-density-wave state in BaFe2As2 F. Pfuner1, J.G. Analytis2,J.-H.Chu2,I.R.Fisher2, and L. Degiorgi1,a 1 Laboratorium f¨ur Festk¨orperphysik, ETH - Z¨urich, 8093 Z¨urich, Switzerland 2 Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University, Stanford, 94305-4045 California, USA Received 28 November 2008 / Received in final form 19 January 2009 Published online 21 February 2009 – c EDP Sciences, Societ`a Italiana di Fisica, Springer-Verlag 2009 Abstract. We report on a thorough optical investigation of BaFe2As2 over a broad spectral range and as a function of temperature, focusing our attention on its spin-density-wave (SDW) phase transition at TSDW = 135 K. While BaFe2As2 remains metallic at all temperatures, we observe a depletion in the far infrared energy interval of the optical conductivity below TSDW , ascribed to the formation of a pseudogap- like feature in the excitation spectrum. This is accompanied by the narrowing of the Drude term consistent with the dc transport results and suggestive of suppression of scattering channels in the SDW state. About 20% of the spectral weight in the far infrared energy interval is affected by the SDW phase transition. PACS. 75.30.Fv Spin-density waves – 78.20.-e Optical properties of bulk materials and thin films A new field in condensed matter research was recently ini- is also currently believed that the superconductivity in tiated by the discovery of superconductivity in doped iron these systems is intimately connected with magnetic fluc- oxyarsenides [1].
    [Show full text]
  • Field-Induced Spin Density Wave and Spiral Phases in a Layered Antiferromagnet
    RAPID COMMUNICATIONS PHYSICAL REVIEW B 92, 020415(R) (2015) Field-induced spin density wave and spiral phases in a layered antiferromagnet M. B. Stone,1 M. D. Lumsden,1 V. O. Garlea,1 B. Grenier,2 E. Ressouche,2 E. C. Samulon,3 and I. R. Fisher3 1Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 2INAC-SPSMS, CEA & Universite´ Grenoble Alpes, 38000 Grenoble, France 3Department of Applied Physics and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA (Received 13 May 2015; revised manuscript received 26 June 2015; published 28 July 2015) We determine the low-field ordered magnetic phases of the S = 1 dimerized antiferromagnet Ba3Mn2O8 using single-crystal neutron diffraction. We find that for magnetic fields between μ0H = 8.80 T and 10.56 T applied along the [110]¯ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,). For μ0H>10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field-induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. The nature of these two transitions is fundamentally different: the low-field transition is a second-order transition to a spin density wave ground state, while the one at higher field, toward the spiral phase, is of first order. DOI: 10.1103/PhysRevB.92.020415 PACS number(s): 75.10.Jm, 75.30.Et, 75.40.Gb The mapping of Bose-Einstein condensates and quantum diagram in the vicinity of μ0Hc1.
    [Show full text]
  • Bulk Quantum Hall Effect in Q-M0401 1
    ELSEVIER SyntheticMetals 103 (1999)2667-2670 Bulk Quantum Hall Effect in q-M0401 1 S. Hill”, J.S. Brooksb, S. LJji’, M. Takashita’, C. TerakuraC,T. TerashimaC,H. AokiC, Z. Fiskb and J. Sarraod a Department of Physics, Montana State University, Bozeman, MT5971 7, USA bNational High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL32310, USA ‘National Research Institute for Metals, Tsukuba, Ibaraki 305, Japan ‘Los Alamos National Labs, MST-IO, Mail Stop K764, Los Alamos, NM87.545, USA Abstract We have observed a quantum Hall effect in the bulk quasi-two-dimensional conductor q-Mod0 11.The Hall resistanceexhibits well defined plateaux, coincident with pronounced minima in the diagonal resistance. We present data for several different samples and contact geometries, and discuss a possible mechanism for the quantum Hall effect in this system. We also discuss the implications of these findings in the light of recent predictions concerning chiral metallic surface states in bulk quantum Hall systems. Keywords: Magnetotransport, Hall effect, Superlattices 1. Introduction In the realm of high magnetic fields, there is immense interest in the physics of low-dimensional conducting systems when the magnetic energy (orbital and Zeeman) becomes comparable to the electronic (Fermi) energy - i.e. the quantum limit. In a strictly two-dimensional (2D) electron system, it is well known that the quantum Hall effect (QHE) and the fractional QHE are observed under such conditions, so-called because the Hall conductance is quantized over extended intervals in magnetic field [I]. In a 2D quantized Hall phase, electronic states at the Fermi energy are Anderson localized within the bulk of the sample, while there exist extended states at the edges of the sample which are robust I * I.
    [Show full text]