A Bird's-Eye View of Charge and Spin Density Waves

Total Page:16

File Type:pdf, Size:1020Kb

A Bird's-Eye View of Charge and Spin Density Waves ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials dʼinvestigació i docència en els termes establerts a lʼart. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix lʼautorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No sʼautoritza la seva reproducció o altres formes dʼexplotació efectuades amb finalitats de lucre ni la seva comunicació pública des dʼun lloc aliè al servei TDX. Tampoc sʼautoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices. WARNING. The access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes. Universitat Autònoma de Barcelona Doctoral Thesis A BIRD’S-EYE VIEW OF CHARGE AND SPIN DENSITY WAVES FROM FIRST PRINCIPLES CALCULATIONS Student: Supervisors: Ionel Bogdan Guster Prof. Dr. Pablo Ordejón Prof. Dr. Enric Canadell Dr. Miguel Pruneda Tutor: Dr. Miguel Pruneda A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Theory and Simulation Group Catalan Institute of Nanoscience and Nanotechnology Autonomous University of Barcelona June 2019 Declaration of Authorship I, Ionel Bogdan Guster, declare that this thesis titled, ’ A BIRD’S-EYE VIEW OF CHARGE AND SPIN DENSITY WAVES FROM FIRST PRINCIPLES CALCULATIONS’ and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: ii To Olga iii Man has gone out to explore other worlds and other civilizations withouth having explored his own labyrinth of dark passages and secret chambers, and without finding what lies behind doorways that he himself has sealed.(Solaris) Acknowledgements The PhD metamorphosis was enriched by the many people that I am grateful to have met during these past four years of my life. Firstly, I would like to thank to my thesis advisors, Pablo, Enric and Miguel, for trusting me with the interesting and intellectually provocative projects, for all the knowledge that they have shared with me about physics principles and how to do rigorous scientific work, inspiring me with all the values that comes with it, for their constant feedback, for their motivating enthusiasm for science, for their patience in general. I would like to thank to the collaborators on the papers that we published, espe- cially to Jean-Paul Pouget, who shared from his immense knowledge about density waves, and to Roberto, who always brought a different perspective. To my friends and colleagues from ICN2 with whom I had a good laugh or an interesting discussion, in particular to the friends from the Theory and Simulation group (Lorenzo, Ruben, Sergio, Ramón, Laura, Vladimir, Desanka, Jose, Nick, Ar- salan, Zeila, Matthieu, Nils and many more); to the friends of ICN2 that taught me to play padel or with whom I had a good run in a football game. To my friends and flatmates, Andreea and Lili, with whom I always had a great time in our activities in or outside the flat. To my friends from Bucharest, that always received me with the warmest wel- comes and shared their time with me whenever I stopped by. I would like to thank my family for their unconditional love, support and un- derstanding, for the little time we spent together that made it so much more special. Last but not least, to my partner, Olga, for always being there no matter what, for her infinite patience, for her carrying love and for her believing in me, for the time we spent together to discover the most amazing places around us in our most beautiful years so far. For all this I believe I couldn’t have been in a better place to pursue my PhD work and my passion for physics. vii CONTENTS Declaration of Authorship ii Acknowledgements vii Contents ix List of Figures xiii List of Tables xxiii Abbreviations xxv I Introduction 1 0 Introduction 3 1 Theoretical Background 7 1.1 Electronic structure approaches .................... 7 1.1.1 Density Functional Theory ................... 9 1.1.2 Approximating the Exchange-Correlation . 11 1.1.3 The SIESTA method ...................... 12 1.2 Charge (and Spin) Density Waves ................... 15 II Instabilities in single-layer materials 23 2 Nature of the 2x2 CDW in single-layer TiSe2 27 2.1 Introduction ............................... 27 2.2 Intrinsic single-layer properties ..................... 31 2.3 Influence of doping ........................... 43 2.4 Conclusions ............................... 48 2.5 Computational details ......................... 49 3 2x2 Charge Density Wave in single-layer TiTe2 53 3.1 Introduction ............................... 53 3.2 Results and Discussion ......................... 55 3.3 Conclusions ............................... 68 ix Contents x 3.4 Computational details ......................... 69 4 CDW states coexistence in NbSe2 71 4.1 Introduction ............................... 71 4.2 Results and discussion ......................... 73 4.3 Computational details ......................... 81 III Fermi surface nesting of low-dimensional metals 85 5 A paradigmatic case: K0.3MoO3 91 5.1 Introduction ............................... 91 5.2 Electronic structure of K0.3MoO3 ................... 97 5.3 Quantitative analysis of the Lindhard function . 102 5.3.1 The three individual responses . 102 5.3.2 Electronic parameters of the inter-band nesting process and validation of the weak coupling scenario . 103 5.3.3 Relation with the dynamics of the Peierls transition . 107 5.3.4 Inter-chain coupling . 109 5.4 Critical low frequency phonon branches of K0:3MoO3 . 114 5.5 Comparison with other charge density wave systems . 116 5.6 Concluding Remarks . 120 5.7 Computational details . 121 6 Electronic dimensional crossover and Fermi surface nesting in Bechgaard Salts 123 6.1 Introduction ...............................123 6.2 Electronic Structure . 129 6.3 Analysis of the Lindhard function . 133 6.3.1 (TMTSF)2PF6 . 133 6.3.2 (TMTSF)2NO3 in the absence of AO transition . 137 6.3.3 (TMTSF)2ClO4 in the absence of AO transition . 140 6.3.4 (TMTSF)2NO3 in the AO phase . 144 6.3.5 (TMTSF)2ClO4 in the AO phase . 146 6.4 Discussion ................................147 6.4.1 Electronic dimensional crossover and detailed structure of the Fermi surface ........................147 6.4.2 Relationship with the density wave instability . 150 6.4.3 Relationship with the SDW modulated ground state . 152 6.4.4 Relationship with the mechanism of superconductivity . 154 6.4.5 Relationship with the Field Induced and Magneto-transport Phenomena . 155 6.5 Conclusions ...............................155 6.6 Computational details . 158 Contents xi 7 Origin of the CDW in TaTe4 161 7.1 Introduction ...............................161 7.2 Crystal Structure and Electron Counting . 162 7.2.1 Crystal Structure . 162 7.2.2 Electron counting . 164 7.3 Electronic structure of the average structure . 166 7.4 Structural modulation . 170 7.4.1 Modulated structure . 172 7.5 Conclusions ...............................176 7.6 Computational details . 177 IV Conclusions 179 8 Conclusions 181 A Phonon pattern of doped TiSe2 185 B STM image comparison of TiTe2 186 C Fermi surface warping of Bechgaard salts 188 Bibliography 191 LIST OF FIGURES 1.1 CDW in an ideal linear chain ....................
Recommended publications
  • First-Principles Study of Charge Density Waves, Electron-Phonon Coupling, and Superconductivity in Transition-Metal Dichalcogenides
    First-principles study of charge density waves, electron-phonon coupling, and superconductivity in transition-metal dichalcogenides A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics By Yizhi Ge, B.S. Washington, DC July 22, 2013 Copyright c 2013 by Yizhi Ge All Rights Reserved ii First-principles study of charge density waves, electron-phonon coupling, and superconductivity in transition-metal dichalcogenides Yizhi Ge, B.S. Dissertation Advisor: Amy Y. Liu, Ph.D. Abstract In this thesis we investigate the electronic and vibrational properties of sev- eral transition-metal dichalcogenide materials through first-principles calculations. First, the charge-density-wave (CDW) instability in 1T-TaSe2 is studied as a func- tion of pressure. Density-functional calculations accurately capture the instability at ambient pressures and predict the suppression of the CDW distortion under pressure. The instability is shown to be driven by softening of selected phonon modes due to enhanced electron-phonon matrix elements, rather than by nesting of the Fermi sur- face or other electronic mechanisms. We also discuss the possibility of electron-phonon superconductivity in compressed 1T-TaSe2. Another polymorph of TaSe2 is then investigated. We focus on the origin of the CDW instability in bulk and single-layer 2H-TaSe2. The role of interlayer interactions and the effect of spin-orbit coupling are examined. The results show that the CDW instability has weak dependence on interlayer interactions and spin-orbit coupling, which is in contrast to the closely related 2H-NbSe2 material, where the CDW ordering vector is predicted to depend on dimensionality.
    [Show full text]
  • Arxiv:1209.2671V2 [Cond-Mat.Quant-Gas] 13 Sep 2012
    Unconventional Spin Density Waves in Dipolar Fermi Gases S. G. Bhongale1,4, L. Mathey2, Shan-Wen Tsai3, Charles W. Clark4, Erhai Zhao1,4 1School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 2Zentrum f¨ur Optische Quantentechnologien and Institut f¨ur Laserphysik, Universit¨at Hamburg, 22761 Hamburg, Germany 3Department of Physics and Astronomy, University of California, Riverside, CA 92521 4Joint Quantum Institute, National Institute of Standards and Technology & University of Maryland, Gaithersburg, MD 20899 (Dated: January 17, 2018) The conventional spin density wave (SDW) phase [1], as found in antiferromagnetic metal for example [2], can be described as a condensate of particle-hole pairs with zero angular momentum, ℓ = 0, analogous to a condensate of particle-particle pairs in conventional superconductors. While many unconventional superconductors with Cooper pairs of finite ℓ have been discovered, their counterparts, density waves with non-zero angular momenta, have only been hypothesized in two- dimensional electron systems [3]. Using an unbiased functional renormalization group analysis, we here show that spin-triplet particle-hole condensates with ℓ = 1 emerge generically in dipolar Fermi gases of atoms [4] or molecules [5, 6] on optical lattice. The order parameter of these exotic SDWs is a vector quantity in spin space, and, moreover, is defined on lattice bonds rather than on lattice sites. We determine the rich quantum phase diagram of dipolar fermions at half-filling as a function of the dipolar orientation, and discuss how these SDWs arise amidst competition with superfluid and charge density wave phases. PACS numbers: The advent of ultra-cold atomic and molecular gases lattice constant throughout this paper, and repeated in- has opened new avenues to study many-body physics.
    [Show full text]
  • Breaking the Spin Waves: Spinons in Cs2cucl4 and Elsewhere
    Breaking the spin waves: spinons in !!!Cs2CuCl4 and elsewhere Oleg Starykh, University of Utah In collaboration with: K. Povarov, A. Smirnov, S. Petrov, Kapitza Institute for Physical Problems, Moscow, Russia, A. Shapiro, Shubnikov Institute for Crystallography, Moscow, Russia Leon Balents (KITP), H. Katsura (Gakushuin U, Tokyo), M. Kohno (NIMS, Tsukuba) Jianmin Sun (U Indiana), Suhas Gangadharaiah (U Basel) arxiv:1101.5275 Phys. Rev. B 82, 014421 (2010) Phys. Rev. B 78, 054436 (2008) Spin Waves 2011, St. Petersburg Nature Physics 3, 790 (2007) Phys. Rev. Lett. 98, 077205 (2007) Wednesday, April 18, 12 Outline • Spin waves and spinons • Experimental observations of spinons ➡ neutron scattering, thermal conductivity, 2kF oscillations, ESR • Cs2CuCl4: spinon continuum and ESR • ESR in the presence of uniform DM interaction - ESR in 2d electron gas with Rashba SOI - ESR in spin liquids with spinon Fermi surface • Conclusions Wednesday, April 18, 12 Spin wave or magnon = propagating disturbance in magnetically ordered state (ferromagnet, antiferromagnet, ferrimagnet...) + i k.r Σr S r e |0> sharp ω(k) La2CuO4 Carries Sz = 1. Observed via inelastic neutron scattering as a sharp single-particle excitation. magnon is a boson (neglecting finite dimension of the Hilbert space for finite S) Coldea et al PRL 2001 Wednesday, April 18, 12 But the history is more complicated Regarding statistics of spin excitations: “The experimental facts available suggest that the magnons are submitted to the Fermi statistics; namely, when T << TCW the susceptibility tends to a constant limit, which is of 5 the order of const/TCW ( ) [for T > TCW, χ=const/(T + TCW)]. Evidently we have here to deal with the Pauli paramagnetism which can be directly obtained from the Fermi distribution.
    [Show full text]
  • Structural Dynamics in the Charge Density Wave Compound 1T-Tas2
    Structural Dynamics in the Charge Density Wave Compound 1T-TaS2 Maximilian Michael Eichberger Universität University of Konstanz Konstanz Department of Physics / NFG Demsar Universitätsstr. 10 78457 Konstanz Germany Diploma Thesis Structural Dynamics in the Charge Density Wave Compound 1T -TaS2 Maximilian Michael Eichberger May 12, 2010 principal advisor: Prof. Dr. Jure Demˇsar co-principal advisor: Prof. Dr. Viktor V. Kabanov Für Michi Opa Abstract This Diploma thesis is centered around the study of the structural dynamics in charge den- sity wave (CDW) compounds. Owing to their quasi low dimensionality, CDWs present an ideal model system to investigate the delicate interplay between various degrees of freedom like spins, electrons, lattice, etc., common to macroscopic quantum phenomena such as high-temperature-superconductivity and colossal magnetoresistance. In this respect, fem- tosecond (fs) time resolved techniques are ideal tools to trigger ultrafast processes in these materials and to subsequently keep track of various relaxation pathways and interaction strengths of different subsystems [Ave01, Oga05, Kus08]. Particularly 1T -TaS2 hosts a wealth of correlated phenomena ranging from Mott-insulating behavior [Tos76, Faz79] and superconductivity under pressure [Sip08, Liu09] to the formation of charge density waves with different degrees of commensurability [Wil75, Spi97]. Here, photoinduced transient changes in reflectivity and transmission of 1T -TaS2 at dif- ferent CDW phases are presented. The experimental observations include, inter alia, a coherently driven CDW amplitude mode and two distinct relaxation timescales on the or- der of τfast ∼ 200 fs and τslow ∼ 4 ps, which are common to all CDW compounds [Dem99]. Moreover, the frequency shift of the amplitude mode and the change in relaxation timescales when overcoming the phase transition from the commensurate to the nearly commensurate CDW state are discussed.
    [Show full text]
  • Spin Density Wave and Ferromagnetism in a Quasi-One-Dimensional Organic Polymer
    Z. Phys. B 104, 27–32 (1997) ZEITSCHRIFT FUR¨ PHYSIK B c Springer-Verlag 1997 Spin density wave and ferromagnetism in a quasi-one-dimensional organic polymer Shi-Dong Liang1, Qianghua Wang1;2, and Z. D. Wang1 1 Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong 2 Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China Received: 5 February 1997 Abstract. The spin density wave(SDW) – charge density impurities, in which unpaired localized d or f electrons inter- wave(CDW) phase transition and the magnetic properties in act with the itinerant π electrons. Fang et al. [3] investigated a half-filled quasi-one-dimensional organic polymer are in- the stability of the ferromagnetic state and the spin configu- vestigated by the world line Monte Carlo simulations. The ration of the π- electron in a quasi-one-dimensional organic itinerant π electrons moving along the polymer chain are polymer by a mean field approach(the Hatree-Fock approx- coupled radically to localized unpaired d electrons, which imation). They found that not only the interaction between are situated at every other site of the polymer chain. The the π electrons but also the interaction between the π elec- results show that both ferromagnetic and anti-ferromagnetic trons and unpaired d electrons play an important role for radical couplings enhance the SDW phase and the ferromag- the ferromagnetic order, and the spin density wave(SDW) net order of the radical spins, but suppress the CDW phase. states is closely related to the ferromagnetism of this sys- By finite size scaling, we are able to obtain the phase tran- tem.
    [Show full text]
  • Direct Observation of Competition Between Superconductivity and Charge Density Wave Order in Yba2cu3oy
    Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3Oy J. Chang1,2, E. Blackburn3, A. T. Holmes3, N. B. Christensen4, J. Larsen4,5, J. Mesot1,2, Ruixing Liang6,7, D. A. Bonn6,7, W. N. Hardy6,7, A. Watenphul8, M. v. Zimmermann8, E. M. Forgan3, S. M. Hayden9 1Institut de la matière complexe, Ecole Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. 2Paul Scherrer Institut, Swiss Light Source, CH-5232 Villigen PSI, Switzerland. 3School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom. 4Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark. 5Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland. 6Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada.7Canadian Institute for Advanced Research, Toronto, Canada. 8Hamburger Synchrotronstrahlungslabor (HASYLAB) at Deutsches Elektron-synchrotron (DESY), 22603 Hamburg, Germany. 9H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom. Superconductivity often emerges in the proximity of, or in competition with, symmetry breaking ground states such as antiferromagnetism or charge density waves (CDW)1-5. A number of materials in the cuprate family, which includes the high-transition-temperature 5-7 (high-Tc) superconductors, show spin and charge density wave order . Thus a fundamental question is to what extent these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy x-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW.
    [Show full text]
  • Bad Metals from Fluctuating Density Waves Abstract
    SciPost Phys. 3, 025 (2017) Bad metals from fluctuating density waves Luca V. Delacrétaz1, Blaise Goutéraux1,2,3, Sean A. Hartnoll1? and Anna Karlsson1 1 Department of Physics, Stanford University, Stanford, CA 94305-4060, USA 2 APC, Université Paris 7, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France 3 Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden ? [email protected] Abstract Bad metals have a large resistivity without being strongly disordered. In many bad met- als the Drude peak moves away from zero frequency as the resistivity becomes large at increasing temperatures. We catalogue the position and width of the ‘displaced Drude peak’ in the observed optical conductivity of several families of bad metals, showing that !peak ∆! kB T=~h. This is the same quantum critical timescale that underpins the T-linear∼ dc resistivity∼ of many of these materials. We provide a unified theoreti- cal description of the optical and dc transport properties of bad metals in terms of the hydrodynamics of short range quantum critical fluctuations of incommensurate density wave order. Within hydrodynamics, pinned translational order is essential to obtain the nonzero frequency peak. Copyright L. V.Delacrétaz et al. Received 06-07-2017 This work is licensed under the Creative Commons Accepted 07-09-2017 Check for Attribution 4.0 International License. Published 29-09-2017 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.3.3.025 Bad metals are defined by the fact that if their electrical resistivity is interpreted within a con- ventional Drude formalism, the corresponding mean free path of the quasiparticles is so short that the Boltzmann equation underlying Drude theory is not consistent [1–3].
    [Show full text]
  • The Microscopic Structure of Charge Density Waves in Under-Doped Yba2cu3o6.54 Revealed by X-Ray Diffraction
    The microscopic structure of charge density waves in under-doped YBa2Cu3O6.54 revealed by X-ray diffraction. E. M. Forgan1, E. Blackburn1, A.T. Holmes1, A. Briffa1, J. Chang2, L. Bouchenoire3,4, S.D. Brown3,4, Ruixing Liang5, D. Bonn5, W. N. Hardy5, N. B. Christensen6, M. v. Zimmermann7, M. Hücker8 and S.M. Hayden9 1School of Physics & Astronomy, University of Birmingham, Birmingham B15 2TT, UK 2 Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland 3XMaS, European Synchrotron Radiation Facility, B. P. 220, F-38043 Grenoble Cedex, France 4Department of Physics, University of Liverpool, Liverpool, L69 3BX, UK 5Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada 6Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark 7Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany 8Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA 9H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK All underdoped high-temperature cuprate superconductors appear to exhibit charge density wave (CDW) order, but both the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDW in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature Tc ~ 60 K. We find that the CDWs present in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in a CDW have two components: one perpendicular to the CuO2 planes, and another parallel to these planes, which is out of phase with the first. The largest displacements are those of the planar oxygen atoms and are perpendicular to the CuO2 planes.
    [Show full text]
  • External Electric Field Mediated Quantum Phase Transitions in One
    External Electric Field Mediated Quantum Phase Transitions in One-Dimensional Charge Ordered Insulators: A DMRG Study Sudipta Dutta and Swapan K. Pati Theoretical Sciences Unit and DST Unit on Nanoscience Jawaharlal Nehru Centre For Advanced Scientific Research Jakkur Campus, Bangalore 560064, India. (Dated: October 26, 2018) We perform density matrix renormalization group (DMRG) calculations extensively on one- dimensional chains with on site (U) as well as nearest neighbour (V ) Coulomb repulsions. The calculations are carried out in full parameter space with explicit inclusion of the static bias and we compare the nature of spin density wave (SDW) and charge density wave (CDW) insulators under the influence of external electric field. We find that, although the SDW (U > 2V ) and CDW (U < 2V ) insulators enter into a conducting state after a certain threshold bias, CDW insulators require much higher bias than the SDW insulators for insulator-metal transition at zero tempera- ture. We also find the CDW-SDW phase transition on application of external electric field. The bias required for the transitions in both cases decreases with increase in system size. Strongly correlated electronic systems in low-dimension are always very interesting because of their unique charac- teristics like quantum fluctuations, lack of long range ordering etc [1, 2, 3, 4, 5, 6, 7]. The correlation effects in such low-dimensional systems lead to Mott or charge-ordered insulating states. The one-dimensional extended Hubbard model[8, 9] with on-site Hubbard repulsion term, U, along with the nearest-neighbour Coulomb repulsion term, V , is a standard model which exhibits these different phases.
    [Show full text]
  • Nematicity As a Route to a Magnetic-Field–Induced Spin Density Wave Order: Application to the High-Temperature Cuprates
    Home Search Collections Journals About Contact us My IOPscience Nematicity as a route to a magnetic-field–induced spin density wave order: Application to the high-temperature cuprates This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 EPL 86 57005 (http://iopscience.iop.org/0295-5075/86/5/57005) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 132.68.72.203 The article was downloaded on 03/10/2011 at 17:08 Please note that terms and conditions apply. June 2009 EPL, 86 (2009) 57005 www.epljournal.org doi: 10.1209/0295-5075/86/57005 Nematicity as a route to a magnetic-field–induced spin density wave order: Application to the high-temperature cuprates H.-Y. Kee1 and D. Podolsky1,2 1 Department of Physics, University of Toronto - Toronto, Ontario M5S 1A7 Canada 2 Physics Department, Technion - Haifa 32000, Israel received 11 March 2009; accepted in final form 21 May 2009 published online 22 June 2009 PACS 73.22.Gk – Broken symmetry phases Abstract – The electronic nematic order characterized by broken rotational symmetry has been suggested to play an important role in the phase diagram of the high-temperature cuprates. We study the interplay between the electronic nematic order and a spin density wave order in the presence of a magnetic field. We show that a cooperation of the nematicity and the magnetic field induces a finite coupling between the spin density wave and spin-triplet staggered flux orders. As a consequence of such a coupling, the magnon gap decreases as the magnetic field increases, and it eventually condenses beyond a critical magnetic field leading to a field-induced spin density wave order.
    [Show full text]
  • Spin Dynamics of Density Wave and Frustrated Spin Systems Probed by Nuclear Magnetic Resonance Lloyd L
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2008 Spin Dynamics of Density Wave and Frustrated Spin Systems Probed by Nuclear Magnetic Resonance Lloyd L. (Lloyd Laporca) Lumata Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES SPIN DYNAMICS OF DENSITY WAVE AND FRUSTRATED SPIN SYSTEMS PROBED BY NUCLEAR MAGNETIC RESONANCE By LLOYD L. LUMATA A Dissertation submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2008 The members of the Committee approve the Dissertation of Lloyd L. Lumata defended on October 31, 2008. James S. Brooks Professor Directing Dissertation Naresh Dalal Outside Committee Member Arneil P. Reyes Committee Member Pedro Schlottmann Committee Member Christopher Wiebe Committee Member Mark Riley Committee Member Approved: Mark Riley, Chair Department of Physics Joseph Travis, Dean, College of Arts and Sciences The Office of Graduate Studies has verified and approved the above named committee members. ii To my family... iii ACKNOWLEDGEMENTS This is it, like an Oscar called Ph.D. after four and a half years... I would like to express my gratitude, first and foremost, to my advisor Prof. James S. Brooks for being a great mentor in person and in research. He is the type of advisor who can turn a novice, clumsy graduate student into an astute observer and skilled researcher. He is smart, open-minded, responsible, and very helpful to his students and I am honored to be his 23rd Ph.D.
    [Show full text]
  • Emergence of Coherence in the Charge-Density Wave State of 2H-Nbse2
    Emergence of coherence in the charge-density wave state of 2H-NbSe2 U. Chatterjee1,2*, J. Zhao2,3, M. Iavarone4, R. Di Capua4, J. P. Castellan1,5, G. Karapetrov6, C. D. Malliakas1,7, M. G. Kanatzidis1,7, H. Claus1, J. P. C. Ruff 8,9, F. 1, Weber 5, J. van Wezel1,10, J. C. Campuzano1,3, R. Osborn1, M. Randeria11, N. Trivedi11, M. R. Norman1 and S. Rosenkranz1* 1Materials Science Division, Argonne National Laboratory, , Argonne, IL 60439 USA. 2Department of Physics, University of Virginia, Charlottesville, VA 22904, USA. 3Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA. 4Department of Physics, Temple University, Philadelphia, PA 19122, USA. 5Institute of Solid State Physics, Karlsruhe Institute of Technology, P.O. Box 3640, D-­‐76021 Karlsruhe, Germany. 6Department of Physics, Drexel University, Philadelphia, PA 19104, USA. 7Department of Chemistry, Northwestern University, Evanston, IL 60208, USA. 8Advanced Photon Source, Argonne National Laboratory, Argonne, , IL 60439 USA. 9CHESS, Cornell University, Ithaca, NY 14853, USA. 10Institute for Theoretical Physics, University of Amsterdam, Tyndall Avenue, 1090 . GL Amsterdam, the Netherlands 11Department of Physics, Ohio State University, Columbus, OH 43210, USA. A charge-density wave (CDW) state has a broken symmetry described by a complex order parameter with an amplitude and a phase. The conventional view, based on clean, weak-coupling systems, is that a finite amplitude and long-range phase coherence set in simultaneously at the CDW transition temperature Tcdw. Here we investigate, using photoemission, X-ray scattering and scanning tunneling microscopy, the canonical CDW compound 2H-NbSe2 intercalated with Mn and Co, and show that the conventional view is untenable.
    [Show full text]