YPG Reptiles and Amphibians

Total Page:16

File Type:pdf, Size:1020Kb

YPG Reptiles and Amphibians Yuma Proving Ground – Herpetology List Family Species Common Name State USFWS Status Status Reptiles and Amphibians Boidae Lichanura trivirgata Rosy boa Anaxyrus punctatus Red‐spotted toad Bufonidae Incilius alvarius Sonoran desert toad Phyllorhynchus decurtatus Spotted leaf‐nosed snake Masticophis flagellum Coachwhip Salvadora hexalepis Western patch‐nosed snake Lampropeltis getula Common kingsnake Rhinocheilus lecontei Long‐nosed snake Colubridae Sonora semiannulata Ground snake Chionactis occipitalis Western shovel‐nosed snake Hypsiglena chlorophaea Night snake Arizona elegans Glossy snake Pituophis catenifer Gopher snake Crotalus atrox Western diamondback rattlesnake Crotalus mitchellii Speckled rattlesnake Crotalidae Crotalus cerastes Sidewinder Crotalus scutulatus Mohave rattlesnake Crotaphytidae Crotaphytus bicintores Great Basin collard lizard Elapidae Micruroides euryxanthus Western coral snake Eublepharidae Coleonyx variegatus Western banded gecko Gekkonidae Hemidactylus turcicus* Mediterranean house gecko Helodermatidae Heloderma suspectum Gila Monster Dipsosaurus dorsalis Desert iguana Iguanidae Sauromalus ater Common chuckwalla Leptotyphlopidae Rena humilis Western blind snake Callisaurus draconoides Zebra‐tailed lizard Uma scoparia Mojave fringe‐toed lizard WSC Gambelia wislizenii Long‐nosed leopard lizard Sceloporus magister Desert spiny lizard Phrynosomatidae Uta stansburiana Side‐blotched lizard Urosaurus gracious Long‐tailed brush lizard Urosaurus ornatus Tree lizard Phrynosoma platyrhinos Desert horned lizard Scaphiopodidae Scaphiopus couchii Couch's spadefoot toad Teiidae Aspidoscelis tigris Western whiptail Testudinidae Gopherus morafkai Sonoran desert tortoise WSC Candidate OTHER POSSIBLE HERP SPECIES Ranidae Rana yavapaiensis Lowland leopard frog WSC Anaxyrus cognatus Great plains toad Bufonidae Anaxyrus woodhousei Woodhouse’s toad Chilomeniscus cinctus Banded sand snake Chilomeniscus stramineus Variable sand snake Diadophis punctatus Ring‐necked snake Colubridae Masticophis taeniatus Striped whipsnake Thamnophis marcianus Checkered gater snake Tantilla hobartsmithi Sothwestern black‐headed snake Trimorphodon biscutatus Western lyre snake Crotalidae Crotalus molossus Black‐tailed rattlesnake Crotaphytidae Crotaphytus nebrius Sonoran collared lizard Kinosternidae Kinosternon sonoriense Sonoran mud turtle Uma notata Colorado desert fringe‐toed lizard Uma rufopunctata Yuman desert fringe‐toed lizard Phrynosomatidae Phrynosoma solare Regal horned lizard Phrynosoma mcallii Flat‐tailed horned lizard WSC Xantusiidae Xantusa vigilis Desert night lizard * Non‐native species. .
Recommended publications
  • Other Contributions
    Other Contributions NATURE NOTES Amphibia: Caudata Ambystoma ordinarium. Predation by a Black-necked Gartersnake (Thamnophis cyrtopsis). The Michoacán Stream Salamander (Ambystoma ordinarium) is a facultatively paedomorphic ambystomatid species. Paedomorphic adults and larvae are found in montane streams, while metamorphic adults are terrestrial, remaining near natal streams (Ruiz-Martínez et al., 2014). Streams inhabited by this species are immersed in pine, pine-oak, and fir for- ests in the central part of the Trans-Mexican Volcanic Belt (Luna-Vega et al., 2007). All known localities where A. ordinarium has been recorded are situated between the vicinity of Lake Patzcuaro in the north-central portion of the state of Michoacan and Tianguistenco in the western part of the state of México (Ruiz-Martínez et al., 2014). This species is considered Endangered by the IUCN (IUCN, 2015), is protected by the government of Mexico, under the category Pr (special protection) (AmphibiaWeb; accessed 1April 2016), and Wilson et al. (2013) scored it at the upper end of the medium vulnerability level. Data available on the life history and biology of A. ordinarium is restricted to the species description (Taylor, 1940), distribution (Shaffer, 1984; Anderson and Worthington, 1971), diet composition (Alvarado-Díaz et al., 2002), phylogeny (Weisrock et al., 2006) and the effect of habitat quality on diet diversity (Ruiz-Martínez et al., 2014). We did not find predation records on this species in the literature, and in this note we present information on a predation attack on an adult neotenic A. ordinarium by a Thamnophis cyrtopsis. On 13 July 2010 at 1300 h, while conducting an ecological study of A.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Life History Account for Western Threadsnake
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group WESTERN THREADSNAKE Rena humilis Family: LEPTOTYPHLOPIDAE Order: SQUAMATA Class: REPTILIA R045 Written by: R. Marlow Reviewed by: T. Papenfuss Edited by: R. Duke, J. Harris DISTRIBUTION, ABUNDANCE, AND SEASONALITY The western threadsnake (once known as the western blind snake) is widely distributed in southern California from the coast to the eastern border at elevations up to 1515 m (5000 ft). It seldom occurs in strictly sandy areas, alluvial flats or dry lakes. Little is known about abundance. A wide variety of habitats at lower elevations is occupied where conditions are suitable for burrowing, or hiding under surface objects and in crevices (Klauber 1940, Brattstrom 1953, Brattstrom and Schwenkmeyer 1951, Stebbins 1954, 1972). SPECIFIC HABITAT REQUIREMENTS Feeding: This snake eats ants, termites, their eggs, larvae and other soft-bodied insects (Stebbins 1954). Cover: This snake burrows, spending most of its time underground. It has also been taken under objects such as logs, rocks and among the roots of shrubs. They have also been taken under granite flakes (Stebbins 1954). Reproduction: No data. Water: The species seems to prefer moister habitats but is found in very arid environments, so permanent water is probably not required (Stebbins 1954). Pattern: This species prefers moist areas. In canyons, stony and sandy deserts, rocky slopes and boulder piles, and scrub. SPECIES LIFE HISTORY Activity Patterns: This snake appears on the surface at night but may be active underground at other times. Greatest seasonal activity occurs from April to August (Stebbins 1954).
    [Show full text]
  • Fluorescence Emission in a Marine Snake
    Galaxea, Journal of Coral Reef Studies 21: 7-8(2019) Photogallery Fluorescence emission in a marine snake Takashi SEIKO and Yohey TERAI SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa 240-0193, Japan. Corresponding authors: Y. Terai, T. Seiko E­mails: [email protected]; [email protected] Communicated by Frederic Sinniger (Associate Editors­in­Chief) Keywords fluorescence, Laticauda, marine reptile, sea krait Coral reefs are one of the most colorful environments on Earth. Light in coral reefs includes fluorescence as well as reflectance of sunlight. In fluorescence, mole­ cules are excited by illuminating light and emit longer wavelength fluorescence than the excitation light wave­ length. In coral reefs, fluorescent light emission is observed in a range of taxa including cnidarians (e.g. corals), arthropods and fishes (e.g., Johnsen 2012). In marine reptiles, fluorescent emission has reported thus far only from sea turtles (Gruber and Sparks 2015). Here we report fluorescent light emission in a marine snake. Laticauda laticaudata Linnaeus, 1758 is a semi­ aquatic sea krait (Elapidae: Laticaudinae) often ob­ served in coral reefs. We examined a specimen that was freshly frozen after death and subsequently thawed. This speci men was caught at Ogan­zaki, Ishigaki­ island, Oki nawa, Japan (24°27′12.4″N; 124°04′37.4″E) Fig. 1 Photographs of a sea krait (Laticauda laticaudata) illuminated with white light (A) without a filter, and ultraviolet LED light (B) through a blue light cutting filter (<490 nm). (C) A reflectance and fluorescence light spectrum measured from a pale band.
    [Show full text]
  • Appendix B References
    Final Tier 1 Environmental Impact Statement and Preliminary Section 4(f) Evaluation Appendix B, References July 2021 Federal Aid No. 999-M(161)S ADOT Project No. 999 SW 0 M5180 01P I-11 Corridor Final Tier 1 EIS Appendix B, References 1 This page intentionally left blank. July 2021 Project No. M5180 01P / Federal Aid No. 999-M(161)S I-11 Corridor Final Tier 1 EIS Appendix B, References 1 ADEQ. 2002. Groundwater Protection in Arizona: An Assessment of Groundwater Quality and 2 the Effectiveness of Groundwater Programs A.R.S. §49-249. Arizona Department of 3 Environmental Quality. 4 ADEQ. 2008. Ambient Groundwater Quality of the Pinal Active Management Area: A 2005-2006 5 Baseline Study. Open File Report 08-01. Arizona Department of Environmental Quality Water 6 Quality Division, Phoenix, Arizona. June 2008. 7 https://legacy.azdeq.gov/environ/water/assessment/download/pinal_ofr.pdf. 8 ADEQ. 2011. Arizona State Implementation Plan: Regional Haze Under Section 308 of the 9 Federal Regional Haze Rule. Air Quality Division, Arizona Department of Environmental Quality, 10 Phoenix, Arizona. January 2011. https://www.resolutionmineeis.us/documents/adeq-sip- 11 regional-haze-2011. 12 ADEQ. 2013a. Ambient Groundwater Quality of the Upper Hassayampa Basin: A 2003-2009 13 Baseline Study. Open File Report 13-03, Phoenix: Water Quality Division. 14 https://legacy.azdeq.gov/environ/water/assessment/download/upper_hassayampa.pdf. 15 ADEQ. 2013b. Arizona Pollutant Discharge Elimination System Fact Sheet: Construction 16 General Permit for Stormwater Discharges Associated with Construction Activity. Arizona 17 Department of Environmental Quality. June 3, 2013. 18 https://static.azdeq.gov/permits/azpdes/cgp_fact_sheet_2013.pdf.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Red Gap Ranch Biological Resource Evaluation
    RED GAP RANCH BIOLOGICAL RESOURCE EVALUATION Prepared for: Southwest Ground-water Consultants, Inc. Prepared by: WestLand Resources, Inc. Date: February 14, 2014 Project No.: 1822.01 TABLE OF CONTENTS 1. BACKGROUND AND OBJECTIVES ................................................................................................ 1 2. EXISTING ENVIRONMENT AND BIOLOGICAL RESOURCES ................................................... 2 2.1. Approach ...................................................................................................................................... 2 2.2. Physical Environment ................................................................................................................... 2 2.3. Biological Environment and Resources ....................................................................................... 3 3. SCREENING ANALYSIS FOR SPECIES OF CONCERN ................................................................ 5 3.1. Approach ...................................................................................................................................... 5 3.2. Screening Analysis Results .......................................................................................................... 7 3.2.1. USFWS-listed Species ...................................................................................................... 7 3.2.2. USFS Coconino National Forest Sensitive Species ........................................................ 15 3.2.3. USFS Management Indicator Species ............................................................................
    [Show full text]
  • Taxonomy of the Threadsnakes of the Tribe Epictini (Squamata: Serpentes: Leptotyphlopidae) in Colombia
    Zootaxa 2724: 1–28 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Taxonomy of the Threadsnakes of the tribe Epictini (Squamata: Serpentes: Leptotyphlopidae) in Colombia ROBERTA RICHARD PINTO1,5, PAULO PASSOS2, JOSÉ RANCES CAICEDO PORTILLA3, JUAN CAMILO ARREDONDO4 & RONALDO FERNANDES1 1Universidade Federal do Rio de Janeiro, Departamento de Vertebrados, Museu Nacional, Quinta da Boa Vista, São Cristóvão, Rio de Janeiro, Rio de Janeiro, 20940-040, Brazil 2Laboratóri de Herpetologia, Instituto Butantan, Av. Vital Brazil 1500, São Paulo, São Paulo, 05503-900, Brazil 3Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Laboratorio de Anfibios, Apartado 1495, Bogotá D.C., Colômbia 4Universidade de São Paulo, Museu de Zoologia, Caixa Postal 42494, São Paulo, São Paulo, 04218-170, Brazil 5Corresponding author. E-mail: [email protected] Abstract Threadsnakes of the tribe Epictini are endemic to the New World, occurring from the United States to Argentina, mostly in the Neotropical region. Currently, the taxonomic status of most species is unclear and there has been no previous attempt of a comprehensive taxonomic revision of Neotropical taxa. Taxonomy of the group is a difficult task due to the paucity of geographic samples, general homogeneous morphology and brevity of species descriptions. Therefore, the only way to address the taxonomic status of existing names is through detailed characterization of the types and the search for additional material of the poorly known species. In this study, we evaluated the taxonomic status of the Colombian threadsnakes and report on geographical variation of meristic, morphometric, colour pattern, and hemipenis characters.
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • Reptiles Squamata/Charinidae [ ] Lichanura Trivirgata Rosy Boa
    National Park Service U.S. Department of the Interior Species Checklist for Mojave National Preserve (MOJA) This species list is a work in progress. It represents information currently in the NPSpecies data system and records are continually being added or updated by National Park Service staff. To report an error or make a suggestion, go to https://irma.nps.gov/npspecies/suggest. Scientific Name Common Name Reptiles Squamata/Charinidae [ ] Lichanura trivirgata rosy boa Squamata/Colubridae [ ] Arizona elegans glossy snake [ ] Chionactis occipitalis western shovel-nosed snake [ ] Coluber flagellum coachwhip [ ] Coluber taeniatus striped whipsnake [ ] Diadophis punctatus ring-necked snake [ ] Hypsiglena chlorophaea desert nightsnake [ ] Lampropeltis californiae California kingsnake [ ] Phyllorhynchus decurtatus spotted leaf-nosed snake [ ] Pituophis catenifer gopher snake [ ] Rhinocheilus lecontei long-nosed snake [ ] Salvadora hexalepis western patch-nosed snake [ ] Sonora semiannulata western groundsnake [ ] Tantilla hobartsmithi Smith's black-headed snake [ ] Trimorphodon biscutatus California lyresnake Squamata/Crotaphytidae [ ] Crotaphytus bicinctores Great Basin collared lizard [ ] Gambelia wislizenii long-nosed leopard lizard Squamata/Eublepharidae [ ] Coleonyx variegatus western banded gecko Squamata/Helodermatidae [ ] Heloderma suspectum gila monster Squamata/Iguanidae [ ] Dipsosaurus dorsalis desert iguana [ ] Sauromalus ater common chuckwalla [ ] Sceloporus occidentalis western fence lizard [ ] Sceloporus uniformis yellow-backed
    [Show full text]
  • A New Defensive Behaviour for Threadsnakes and the Defensive Repertoire of Trilepida Jani (Pinto & Fernandes, 2012) (Epictinae: Leptotyphlopidae)
    Herpetology Notes, volume 11: 839-841 (2018) (published online on 28 September 2018) A new defensive behaviour for threadsnakes and the defensive repertoire of Trilepida jani (Pinto & Fernandes, 2012) (Epictinae: Leptotyphlopidae) Angele Martins1, Gabriel M. Baptista1,2, Daniel B. Maciel1, and Rodrigo C. Gonzalez1,* Snakes exhibit a series of defensive behaviours Trilepida jani (Pinto and Fernandes, 2012) is apparently dependant on exposure to different kinds of predators strictly fossorial (as for most leptotyphlopids), and may in the various habitats they occupy (Greene, 1988). be found in cavities under stones (Pinto and Fernandes, Antipredator mechanisms among snakes are diverse 2012). It constructs tunnels and eventually leaves these and complex, and several studies addressing defensive habitats when tunnels are flooded by intense rain (Pinto behaviour are available for neotropical snakes (e.g., and Fernandes, 2012). On 23 August 2014, during Greene, 1988; Martins, 1996; Martins et al., 2008). fieldwork in the Brazilian Cerrado in the municipality However, most studies address alethinophidian of Grão Mogol (16°33’37.9”S 42°51’03.6”W), Minas snakes, with relatively few contributions pertaining to Gerais, Brazil, an individual of T. jani (MNRJ 25148; scolecophidians (e.g., Visser, 1966; Gehlbach et al., Fig. 1) exhibited an interesting defensive repertoire 1968; Watkins II et al., 1969; Gehlbach, 1970; Webb and while being photographed. Shine, 1993; Martins, 1996; Ernst and Ernst, 2003). First, the individual showed locomotor escape Scolecophidians (sensu Vidal et al., 2010) are (Figure 1A) and balling behaviour. When manipulated, specialised burrowers that actively prey on larvae or the animal exhibited a previously undescribed adults of social insects (Greene 1997; Cundall and defensive behaviour.
    [Show full text]
  • Systematics of Collared Snakes and Burrowing Asps (Aparallactinae
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2017-01-01 Systematics Of Collared Snakes And Burrowing Asps (aparallactinae And Atractaspidinae) (squamata: Lamprophiidae) Francisco Portillo University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Zoology Commons Recommended Citation Portillo, Francisco, "Systematics Of Collared Snakes And Burrowing Asps (aparallactinae And Atractaspidinae) (squamata: Lamprophiidae)" (2017). Open Access Theses & Dissertations. 731. https://digitalcommons.utep.edu/open_etd/731 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. SYSTEMATICS OF COLLARED SNAKES AND BURROWING ASPS (APARALLACTINAE AND ATRACTASPIDINAE) (SQUAMATA: LAMPROPHIIDAE) FRANCISCO PORTILLO, BS, MS Doctoral Program in Ecology and Evolutionary Biology APPROVED: Eli Greenbaum, Ph.D., Chair Carl Lieb, Ph.D. Michael Moody, Ph.D. Richard Langford, Ph.D. Charles H. Ambler, Ph.D. Dean of the Graduate School Copyright © by Francisco Portillo 2017 SYSTEMATICS OF COLLARED SNAKES AND BURROWING ASPS (APARALLACTINAE AND ATRACTASPIDINAE) (SQUAMATA: LAMPROPHIIDAE) by FRANCISCO PORTILLO, BS, MS DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department of Biological Sciences THE UNIVERSITY OF TEXAS AT EL PASO May 2017 ACKNOWLEDGMENTS First, I would like to thank my family for their love and support throughout my life. I am very grateful to my lovely wife, who has been extremely supportive, motivational, and patient, as I have progressed through graduate school.
    [Show full text]