Status of Diseases Figure 17. Yellow-Cedar Decline Occurs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annotated Check List and Host Index Arizona Wood
Annotated Check List and Host Index for Arizona Wood-Rotting Fungi Item Type text; Book Authors Gilbertson, R. L.; Martin, K. J.; Lindsey, J. P. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 28/09/2021 02:18:59 Link to Item http://hdl.handle.net/10150/602154 Annotated Check List and Host Index for Arizona Wood - Rotting Fungi Technical Bulletin 209 Agricultural Experiment Station The University of Arizona Tucson AÏfJ\fOTA TED CHECK LI5T aid HOST INDEX ford ARIZONA WOOD- ROTTlNg FUNGI /. L. GILßERTSON K.T IyIARTiN Z J. P, LINDSEY3 PRDFE550I of PLANT PATHOLOgY 2GRADUATE ASSISTANT in I?ESEARCI-4 36FZADAATE A5 S /STANT'" TEACHING Z z l'9 FR5 1974- INTRODUCTION flora similar to that of the Gulf Coast and the southeastern United States is found. Here the major tree species include hardwoods such as Arizona is characterized by a wide variety of Arizona sycamore, Arizona black walnut, oaks, ecological zones from Sonoran Desert to alpine velvet ash, Fremont cottonwood, willows, and tundra. This environmental diversity has resulted mesquite. Some conifers, including Chihuahua pine, in a rich flora of woody plants in the state. De- Apache pine, pinyons, junipers, and Arizona cypress tailed accounts of the vegetation of Arizona have also occur in association with these hardwoods. appeared in a number of publications, including Arizona fungi typical of the southeastern flora those of Benson and Darrow (1954), Nichol (1952), include Fomitopsis ulmaria, Donkia pulcherrima, Kearney and Peebles (1969), Shreve and Wiggins Tyromyces palustris, Lopharia crassa, Inonotus (1964), Lowe (1972), and Hastings et al. -
Comparative and Population Genomics Landscape of Phellinus Noxius
bioRxiv preprint doi: https://doi.org/10.1101/132712; this version posted September 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Comparative and population genomics landscape of Phellinus noxius: 2 a hypervariable fungus causing root rot in trees 3 4 Chia-Lin Chung¶1,2, Tracy J. Lee3,4,5, Mitsuteru Akiba6, Hsin-Han Lee1, Tzu-Hao 5 Kuo3, Dang Liu3,7, Huei-Mien Ke3, Toshiro Yokoi6, Marylette B Roa3,8, Meiyeh J Lu3, 6 Ya-Yun Chang1, Pao-Jen Ann9, Jyh-Nong Tsai9, Chien-Yu Chen10, Shean-Shong 7 Tzean1, Yuko Ota6,11, Tsutomu Hattori6, Norio Sahashi6, Ruey-Fen Liou1,2, Taisei 8 Kikuchi12 and Isheng J Tsai¶3,4,5,7 9 10 1Department of Plant Pathology and Microbiology, National Taiwan University, Taiwan 11 2Master Program for Plant Medicine, National Taiwan University, Taiwan 12 3Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 13 4Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and 14 National Taiwan Normal University 15 5Department of Life Science, National Taiwan Normal University 16 6Department of Forest Microbiology, Forestry and Forest Products Research Institute, 17 Tsukuba, Japan 18 7Genome and Systems Biology Degree Program, National Taiwan University and Academia 19 Sinica, Taipei, Taiwan 20 8Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Philippines 21 1101 -
Spruce Tree Challenge! Take a Walk in the Woods with This Self-Guided Scavenger Hunt to Learn More About White and Black Spruce Trees
Spruce Tree Challenge! Take a walk in the woods with this self-guided scavenger hunt to learn more about white and black spruce trees. Developed for use in Denali National Park and Preserve, but adaptable to interior Alaska. 1. Meet a spruce tree—make a new friend! Spruce trees are evergreen trees with needles and cones. Take a walk and choose a spruce tree to “meet”; find one with cones on it. Then make and record observa- tions to find out what kind of spruce tree you just met. Please be kind to your new friend; touch it gently and leave all cones and branches on the tree. But, feel free to shake hands with or give your tree a hug when introducing yourself! Find the large cones near the top of your tree. Draw or describe their shape. What kind of spruce is your new friend? Circle one. Picea glauca (white spruce)- long cylindrical cones on branch ends and clustered near the top of the tree; has no hairs on the back of its twigs (hint: look between the needles near the end of a branch). White spruce prefers well drained, upland sites. Picea mariana (black spruce) - small oval cones often located along trunk and at the top of the tree; tiny red-brown hairs on the backs of twigs between needles (try a camera zoom or hand lens to see). Black spruce prefer low lying areas with more moisture like bogs or near wetlands. Clipart courtesy FCIT If you gave your friend a name, what would it be? __________________________ Want to share a picture of you and your new friend? Or meet other spruce friends? Post on social media with #sprucetreechallenge 2. -
Relationships Between Wood-Inhabiting Fungal Species
Silva Fennica 45(5) research articles SILVA FENNICA www.metla.fi/silvafennica · ISSN 0037-5330 The Finnish Society of Forest Science · The Finnish Forest Research Institute Relationships between Wood-Inhabiting Fungal Species Richness and Habitat Variables in Old-Growth Forest Stands in the Pallas-Yllästunturi National Park, Northern Boreal Finland Inari Ylläsjärvi, Håkan Berglund and Timo Kuuluvainen Ylläsjärvi, I., Berglund, H. & Kuuluvainen, T. 2011. Relationships between wood-inhabiting fungal species richness and habitat variables in old-growth forest stands in the Pallas-Yllästunturi National Park, northern boreal Finland. Silva Fennica 45(5): 995–1013. Indicators for biodiversity are needed for efficient prioritization of forests selected for conservation. We analyzed the relationships between 86 wood-inhabiting fungal (polypore) species richness and 35 habitat variables in 81 northern boreal old-growth forest stands in Finland. Species richness and the number of red-listed species were analyzed separately using generalized linear models. Most species were infrequent in the studied landscape and no species was encountered in all stands. The species richness increased with 1) the volume of coarse woody debris (CWD), 2) the mean DBH of CWD and 3) the basal area of living trees. The number of red-listed species increased along the same gradients, but the effect of basal area was not significant. Polypore species richness was significantly lower on western slopes than on flat topography. On average, species richness was higher on northern and eastern slopes than on western and southern slopes. The results suggest that a combination of habitat variables used as indicators may be useful in selecting forest stands to be set aside for polypore species conservation. -
Field Guide for Danger Tree Identification and Response
United States Department of Agriculture Field Guide for Forest Service Pacific Northwest Danger Tree Region Identification and United States Response Department of Interior Bureau of Land Management Oregon Associated Oregon OSHA Loggers, Inc. Inside Front Cover Field Guide for Danger Tree Identification and Response Richard Toupin Regional Logging Engineer, Gregory Filip Regional Forest Pathologist, Thomas Erkert Transportation Group Leader Pacific Northwest Region USDA Forest Service • Michael Barger Logging Specialist Salem District USDI Bureau of Land Management • 2008 Acknowledgements We thank the following people who contributed to revising this guide: Diane Hildebrand, Donald Goheen, Craig Schmitt, Kristen Chadwick, Angel Saavedra, and Katrina Mallams. Graphic Design: Michael Hamel (FS) The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contract USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call 800-795-3272 (voice) or 202-720-6382 (TDD). USDA is an equal opportunity provider and employer. R6-NR-FP-PR-01-08 1 2 Table of Contents Introduction ...............................................................5 Regulatory Basis ........................................................6 Responsibilities. -
Hymenochaetaceae, Basidiomycota) – a New Polypore from China
Mycosphere 8(6): 986–993 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/6/2 Copyright © Guizhou Academy of Agricultural Sciences Porodaedalea chinensis (Hymenochaetaceae, Basidiomycota) – a new polypore from China Dai SJ1, Vlasák J2, Tomšovský M3 and Wu F1* 1Institute of Microbiology, PO Box 61, Beijing Forestry University, Beijing 100083, China 2Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic 3Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, CZ-61300, Czech Republic Dai SJ, Vlasák J, Tomšovský M, Wu F 2017 – Porodaedalea chinensis (Hymenochaetaceae, Basidiomycota) – a new polypore from China. Mycosphere 8(6), 986–993, Doi 10.5943/mycosphere/8/6/2 Abstract Porodaedalea chinensis is described and illustrated as a new species occurring on Pinus yunnanensis from southwestern China based on morphological and molecular characters. Phylogenetic analyses of the combined internal transcribed spacer (ITS) of ribosomal RNA gene and translation elongation factor 1-alpha (tef1-α) sequences show that the new species forms a distinct lineage separating it from other Porodaedalea species. P. chinensis is characterized by perennial, pileate basidiocarps, relatively small pores (2–3 per mm), a dimitic hyphal system with generative hyphae bearing simple septa which are frequent in trama and skeletal hyphae dominant in context and trama, broadly ellipsoid, hyaline, thin-to slightly thick-walled, smooth, moderately cyanophilous -
Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity
Biodiversity and Coarse woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA - October 18-20,1993 Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workhop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA October 18-20,1993 Editors: James W. McMinn, USDA Forest Service, Southern Research Station, Forestry Sciences Laboratory, Athens, GA, and D.A. Crossley, Jr., University of Georgia, Athens, GA Sponsored by: U.S. Department of Energy, Savannah River Site, and the USDA Forest Service, Savannah River Forest Station, Biodiversity Program, Aiken, SC Conducted by: USDA Forest Service, Southem Research Station, Asheville, NC, and University of Georgia, Institute of Ecology, Athens, GA Preface James W. McMinn and D. A. Crossley, Jr. Conservation of biodiversity is emerging as a major goal in The effects of CWD on biodiversity depend upon the management of forest ecosystems. The implied harvesting variables, distribution, and dynamics. This objective is the conservation of a full complement of native proceedings addresses the current state of knowledge about species and communities within the forest ecosystem. the influences of CWD on the biodiversity of various Effective implementation of conservation measures will groups of biota. Research priorities are identified for future require a broader knowledge of the dimensions of studies that should provide a basis for the conservation of biodiversity, the contributions of various ecosystem biodiversity when interacting with appropriate management components to those dimensions, and the impact of techniques. management practices. We thank John Blake, USDA Forest Service, Savannah In a workshop held in Athens, GA, October 18-20, 1993, River Forest Station, for encouragement and support we focused on an ecosystem component, coarse woody throughout the workshop process. -
Kenai National Wildlife Refuge Species List - Kenai - U.S
Kenai National Wildlife Refuge Species List - Kenai - U.S. Fish and Wild... http://www.fws.gov/refuge/Kenai/wildlife_and_habitat/species_list.html Kenai National Wildlife Refuge | Alaska Kenai National Wildlife Refuge Species List Below is a checklist of the species recorded on the Kenai National Wildlife Refuge. The list of 1865 species includes 34 mammals, 154 birds, one amphibian, 20 fish, 611 arthropods, 7 molluscs, 11 other animals, 493 vascular plants, 180 bryophytes, 29 fungi, and 325 lichens. Of the total number of species, 1771 are native, 89 are non-native, and five include both native and non-native subspecies. Non-native species are indicated by dagger symbols (†) and species having both native and non-native subspecies are indicated by double dagger symbols (‡). Fifteen species no longer occur on the Refuge, indicated by empty set symbols ( ∅). Data were updated on 15 October 2015. See also the Kenai National Wildlife Refuge checklist on iNaturalist.org ( https://www.inaturalist.org/check_lists/188476-Kenai-National-Wildlife- Refuge-Check-List ). Mammals ( #1 ) Birds ( #2 ) Amphibians ( #3 ) Fish ( #4 ) Arthropods ( #5 ) Molluscs ( #6 ) Other Animals ( #7 ) Vascular Plants ( #8 ) Other Plants ( #9 ) Fungi ( #10 ) Lichens ( #11 ) Change Log ( #changelog ) Mammals () Phylum Chordata Class Mammalia Order Artiodactyla Family Bovidae 1. Oreamnos americanus (Blainville, 1816) (Mountain goat) 2. Ovis dalli Nelson, 1884 (Dall's sheep) Family Cervidae 3. Alces alces (Linnaeus, 1758) (Moose) 4. Rangifer tarandus (Linnaeus, 1758) (Caribou) Order Carnivora Family Canidae 5. Canis latrans Say, 1823 (Coyote) 6. Canis lupus Linnaeus, 1758 (Gray wolf) 7. Vulpes vulpes (Linnaeus, 1758) (Red fox) Family Felidae 8. Lynx lynx (Linnaeus, 1758) (Lynx) 9. -
Common Names for Tree Diseases in the Western United States and In
COMMON NAMES FOR TREE DISEASES IN THE WESTERN UNITED STATES AND WESTERN CANADA Supplement to the Proceedings of the 32nd Annual Western International Forest Disease Work Conference COMMON NAMES FOR TREE DISEASES IN THE WESTERN UNITED STATES AND WESTERN CANADA FRANK G. HAWKSWORTH USDA Forest Service Rocky Mountain Forest and Range Experiment Station Fort Collins, Colorado 80526 ROBERT L. GILBERTSON Department of Plant Pathology University of Arizona, Tucson, Arizona 85721 and GORDON W. WALLIS Pacific Forest Research Centre Victoria, B.C., Canada V8Z 1M5 Supplemelit to the Proceedings of the 32nd Annual Wester11 Internatiorial Forest Disease Work Conference. Taos, hew Mexico, September 25-28, 1984. JANUARY 1985 INTRODUCTION There has long been a need for a compendium of common names for tree diseases in the Western United States and Western Canada, so the authors were asked by the Chairman of the Western International Forest Disease Work Confer- ence in 1982 to prepare such a list. This is the first attempt to compile a list of common names of western tree diseases, although some publications (see references) cite several names. Ziller's (1974) is the most comprehensive for a disease group, providing common names for all tree rusts in Western Canada. In preparing this list, comments from members of the Western International Forest Disease Work Conference were solicited. The response was very good and, as was anticipated, there was considerable disagreement on appropriate common names for some diseases. In general, views of pathologists most familiar with the disease in question were relied upon. There were some suggestions that we develop a new systematic system of common names to help do away with the confusion and ambiguity that exists in the present hodgepodge of names. -
State Fo Rester F Orum
BROOM RUSTS Introduction Broom rusts are fungus-caused diseases that result in the formation of witches-brooms in the branches of infected trees. “Witches-broom” is a generic term for a localized proliferation of twigs with short internodes on a branch (Figures 1 & 2). Two broom rusts occur in Idaho. Spruce broom rust, caused by Chrysomyxa arctostaphyli, infects Engelmann spruce. Fir broom rust, caused by Melampsorella caryophyllacearum, can be found on grand and subalpine fir. Figure 2. Witches-broom in true fir. (Photo by Susan K. Hagle, USDA Forest Service, www.forestryimages.org) Disease Recognition Shoots forming witches-brooms grow upright and produce new needles with yellow to light- green coloration each year, making brooms stand out in the spring and summer against a background of relatively healthy, dark-green foliage (Figures 1 & 2). The fungus-infected needles of a broom are shed during fall and winter, but it is not dead. The shoots of a State Forester Forum State Forester broom remain alive over winter and, in early spring, new needles grow from the infected Figure 1. Witches-broom in spruce. (Photo by shoots. Because the fungus is systemic in the Oscar J. Dooling, USDA Forest Service, www.forestryimages.org) broom’s shoots, it grows readily into the new needles. The needles on a broom are shorter Tom Schultz Insect and Disease Craig Foss Director Chief, Bureau of Forestry Idaho Department of Lands No. 10 Assistance 300 N. 6th Street, Suite 103 3284 W. Industrial Loop Boise, ID 83720 September 2014 Coeur d’Alene, ID 83815 Phone: (208) 334-0200 Phone: (208) 769-1525 BROOM RUSTS and thicker than needles on normal branches. -
Root Rots, Butt Rots & Stem Decays of Alaskan Trees
Root Rots, Butt Rots & Stem Decays of Alaskan Trees DAMAGE AGENTS PAGE Root & Butt Rots (Unknown) 1 Armillaria species / Armillaria Root Rot 3 Heterobasidion occidentale / Heterobasidion Root Rot 5 Onnia tomentosa / Tomentosus Root Rot 7 Phaeolus schweinitzii / Velvet Top 9 Pholiota species / Yellow Cap Fungus 11 Stem Decays (Unknown) 13 Echinodontium tinctorium / Paint Fungus 15 Fomes fomentarius / Tinder Conk 17 Fomitopsis officinalis / Quinine Conk 19 Fomitopsis pinicola / Red Belt Conk 21 Ganoderma applanatum / Artist’s Conk 23 Ganoderma tsugae / Varnish Conk 25 Inonotus obliquus / Cinder Conk 27 Laetiporus sulphureus / Chicken of the woods 29 Phellinus hartigii / Hartigs Conk 31 Phellinus igniarius and P. tremulae/ False Tinder Conk 33 Piptoporus betulinus / Birch Conk 35 Porodaedalea pini / Red Ring Rot 37 0 Root and Butt Rots 1 Root and Butt Rots Hosts: All tree species in Alaska. ID: Decayed roots and butts. Mushrooms, conks, or other fungal structures on the root collar or roots (nonpathogenic mushrooms and conks can also be found near tree bases). Uprooted trees have few remaining roots (root ball, root wad). The direction of tree fall may be inconsistent rather than with the direction of prevailing wind. Remarks: The known root and butt diseases in Alaska are caused by internal wood decay (rot) fungi that may overlap with stem decay fungi. Butt rot fungi decay the heartwood at the base of the stem. Trees can live with butt rot for years or decades. Tree mortality usually occurs due to uprooting or snapping associated with the loss of structural integrity. 2 Armillaria species Armillaria Root Rot mycelial fans 3 rhizomorphs Hosts: All tree species in Alaska. -
A Field Guide to Diseases and Insect Pests of Northern and Central
2013 Reprint with Minor Revisions A FIELD GUIDE TO DISEASES & INSECT PESTS OF NORTHERN & CENTRAL ROCKY MOUNTAIN CONIFERS HAGLE GIBSON TUNNOCK United States Forest Service Department of Northern and Agriculture Intermountain Regions United States Department of Agriculture Forest Service State and Private Forestry Northern Region P.O. Box 7669 Missoula, Montana 59807 Intermountain Region 324 25th Street Ogden, UT 84401 http://www.fs.usda.gov/main/r4/forest-grasslandhealth Report No. R1-03-08 Cite as: Hagle, S.K.; Gibson, K.E.; and Tunnock, S. 2003. Field guide to diseases and insect pests of northern and central Rocky Mountain conifers. Report No. R1-03-08. (Reprinted in 2013 with minor revisions; B.A. Ferguson, Montana DNRC, ed.) U.S. Department of Agriculture, Forest Service, State and Private Forestry, Northern and Intermountain Regions; Missoula, Montana, and Ogden, Utah. 197 p. Formated for online use by Brennan Ferguson, Montana DNRC. Cover Photographs Conk of the velvet-top fungus, cause of Schweinitzii root and butt rot. (Photographer, Susan K. Hagle) Larvae of Douglas-fir bark beetles in the cambium of the host. (Photographer, Kenneth E. Gibson) FIELD GUIDE TO DISEASES AND INSECT PESTS OF NORTHERN AND CENTRAL ROCKY MOUNTAIN CONIFERS Susan K. Hagle, Plant Pathologist (retired 2011) Kenneth E. Gibson, Entomologist (retired 2010) Scott Tunnock, Entomologist (retired 1987, deceased) 2003 This book (2003) is a revised and expanded edition of the Field Guide to Diseases and Insect Pests of Idaho and Montana Forests by Hagle, Tunnock, Gibson, and Gilligan; first published in 1987 and reprinted in its original form in 1990 as publication number R1-89-54.