Potential Applications of Clay-Based Therapy for the Reduction of Pesticide Exposures in Humans and Animals

Total Page:16

File Type:pdf, Size:1020Kb

Potential Applications of Clay-Based Therapy for the Reduction of Pesticide Exposures in Humans and Animals applied sciences Article Potential Applications of Clay-Based Therapy for the Reduction of Pesticide Exposures in Humans and Animals Meichen Wang and Timothy D. Phillips * Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-979-845-6414 Received: 4 November 2019; Accepted: 4 December 2019; Published: 6 December 2019 Featured Application: Novel, clay-based sorbents, developed from montmorillonites that have been shown to be safe for human and animal consumption, can significantly decrease hazardous pesticide exposures when included in food, drinking water and feed. Abstract: The risk of pesticide exposure in humans and animals may be magnified following natural and man-made disasters such as hurricanes and floods that can result in mobilization and redistribution of contaminated sediments. To develop broad-acting sorbents for mixtures of diverse toxins, we have processed calcium and sodium montmorillonite clays with high concentrations of sulfuric acid. These acid-processed montmorillonite clays (APMs) have shown limited hydration and swelling in water, higher surface areas, and lower trace metal levels than the parent clays, prior to processing. Isothermal analyses have indicated that newly developed APMs are highly active sorbents, with significantly increased binding capacities for a wide range of pesticides, including pentachlorophenol (PCP), 2,4,6-trichlorophenol (2,4,6-TCP), lindane, diazinon, linuron, trifluralin and paraquat. The safety and protective effects of APMs, against pesticide design mixtures, were confirmed in a living organism (Hydra vulgaris). Further work is planned to confirm the safety of the APMs in long-term rodent studies. This is the first report of a sorbent material (other than carbon) with high binding efficacy for mixtures of these pesticides. Based on our results, APMs (and similar clays), may be able to decrease human and animal pesticide exposures during disasters and emergencies. Keywords: pesticides; acid activation; adsorption; isotherms; hydra; montmorillonite; clay; enterosorbent 1. Introduction More than 1 billion pounds of pesticides are used in the United States each year and nearly 6 billion pounds are used worldwide [1]. The use of pesticides is of major importance to agriculture, but their widespread occurrence and persistence in the environment can be hazardous to living organisms. It was reported that less than 1% of the total of applied pesticides reach the targets, so a high percentage of these chemicals may move off-target [2,3]. The residues of pesticides are frequently detected in various environmental matrixes, such as soil, water, air, and organism bodies [4]. Moreover, natural and man-made disasters (such as hurricanes and floods) can significantly mobilize these environmental contaminants, exposing humans and animals to contaminated soil and sediment and threatening the safety of municipal drinking water and food sources. Highly toxic and widely distributed pesticides that are on a watch list due to a potentially severe and/or cumulative risk to human health and/or the environment, or have been banned for use as Appl. Sci. 2019, 9, 5325; doi:10.3390/app9245325 www.mdpi.com/journal/applsci Appl. Sci. 2019, 9, 5325 2 of 15 suggested by the United Nations and the Food and Agriculture Organization [5,6], were chosen for this study. These include: the organochlorines: pentachlorophenol (PCP), 2,4,6-trichorophenol (2,4,6-TCP) and lindane;Appl. Sci. 2019 an, organophosphate:9, x FOR PEER REVIEW diazinon; a urea-type pesticide: linuron; a dinitroaniline:2 trifluralin; of 15 and a bipyridyl pesticide: paraquat [7]. this study. These include: the organochlorines: pentachlorophenol (PCP), 2,4,6-trichorophenol (2,4,6- PCPTCP) isand widespread, lindane; an persistentorganophosphate: in the environmentdiazinon; a urea-type and highly pesticide: toxic linuron; to humans a dinitroaniline: and animals [8]. It hastrifluralin; been classified and a bipyridyl as a possible pesticide: carcinogen paraquat [7]. by the International Agency for Research on Cancer (IARC) [9PCP]. PCP is widespread, has been persistent banned for in the purchase environment and useand byhighly the toxic general to humans public, and but animals it is still [8]. used frequentlyIt has been for industrial classified as applications. a possible carcinogen 2,4,6-TCP by has the beenInternational commonly Agency used for as Research a pesticide on Cancer and wood preservative(IARC) [9]. [10 PCP]. It hashas beenbeen reportedbanned for that purchase exposure andto use 2,4,6-TCP by the general may increase public, but the it risk is still of behavioral used impairmentfrequently in childrenfor industrial and applications. carcinogenicity 2,4,6-TCP in humans. has been These commonly chlorophenol used as compoundsa pesticide and are wood persistent in thepreservative environment [10]. andIt has can been be reported commonly that exposure detected to in2,4,6- rivers,TCP may ponds increase and the soils risk [11 of]. behavioral Lindane is a impairment in children and carcinogenicity in humans. These chlorophenol compounds are hexachlorocyclohexane that is widely used to treat scabies and pediculosis. It is persistent and persistent in the environment and can be commonly detected in rivers, ponds and soils [11]. Lindane undegradable, and thus tends to bioaccumulate in the food chain [12]. is a hexachlorocyclohexane that is widely used to treat scabies and pediculosis. It is persistent and Diazinonundegradable, is an and organophosphorus thus tends to bioaccumulate insecticide, in the which food chain has been [12]. effectively used throughout the world withDiazinon applications is an organophosphorus in agriculture and insecticide, horticulture which for has controlling been effectively insects. used Its toxicity throughout is due the to the inhibitionworld ofwith the applications enzyme acetylcholine in agriculture esterase and horticulture [13]. for controlling insects. Its toxicity is due to Linuronthe inhibition is a phenylurea of the enzyme herbicide acetylcholine usedwidely esterase to [13]. selectively control weeds and grasses by inhibiting photosynthesis.Linuron It is has a phenylurea been shown herbicide to act as used an androgen widely to receptor selectively ligand control that weeds can competitively and grasses by inhibit the bindinginhibiting of androgensphotosynthesis. and It produce has been reproductive shown to act malformations as an androgen [14, 15receptor]. ligand that can Trifluralincompetitively is inhibit dinitroaniline the binding herbicide of androgens which and controls produce areproductive wide variety malformations of grasses [14,15]. and broadleaf Trifluralin is dinitroaniline herbicide which controls a wide variety of grasses and broadleaf weeds by interrupting mitosis, controlling weeds as they germinate. It is one of the most widely used weeds by interrupting mitosis, controlling weeds as they germinate. It is one of the most widely used herbicides [16]. Trifluralin has been banned in the European Union since 2008, primarily due to its herbicides [16]. Trifluralin has been banned in the European Union since 2008, primarily due to its highhigh toxicity toxicity to aquatic to aquatic life life [17 [17].]. ParaquatParaquat is one is one of theof the most most widely widely used used herbicidesherbicides due due to to its its rapid, rapid, contact-dependent contact-dependent killing killing of of weedsweeds and and plants plants [18 ].[18]. It isIt theis the leading leading cause cause ofof deathdeath from from pesticide pesticide self-poisoning self-poisoning and and murder. murder. ExposureExposure to theseto these pesticides pesticides can can stimulate stimulate lipid peroxidation, peroxidation, paralyze paralyze the therespiratory respiratory system, system, causecause endocrine endocrine disruption disruption and aandffect affect the nervous the nervou ands reproductive and reproductive system, system, etc. [ 19etc.–21 [19–21].]. The molecularThe modelsmolecular of each models pesticide, of each derived pesticide, from derived a computational from a computational quantum quantum mechanical mechanical AM1 methodAM1 in HyperChem,method in are HyperChem, shown in are Figure shown1. in Figure 1. (a) (b) (c) (d) (e) (f) (g) FigureFigure 1. Molecular 1. Molecular models models of:of: ( a)) pentachlorophenol pentachlorophenol (PCP); (PCP); (b) 2,4,6-trichorophenol (b) 2,4,6-trichorophenol (2,4,6-TCP); (2,4,6-TCP); (c) (c) lindane;lindane; ( d(d)) diazinon; diazinon; ((ee)) linuron;linuron; ( (ff)) trifluralin; trifluralin; (g ()g paraquat,) paraquat, illustrating illustrating the thespatial spatial orientation orientation and and size ofsize the of functionalthe functional groups. groups. Previously,Previously, our our laboratory laboratory has has conductedconducted a series series of of intervention intervention studies studies showing showing that that montmorillonite clay is safe for short-term human and animal consumption [22]. The idea of montmorillonite clay is safe for short-term human and animal consumption [22]. The idea of including clay-based sorbents in the diet has been fueled by the historical perspective that clay includingminerals clay-based and other sorbents sorbent inmaterials the diet have has been been co fueledmmonly by used the historical as ancient perspective medicine for that humans clay and minerals and otheranimals
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • Exposure to Herbicides in House Dust and Risk of Childhood Acute Lymphoblastic Leukemia
    Journal of Exposure Science and Environmental Epidemiology (2013) 23, 363–370 & 2013 Nature America, Inc. All rights reserved 1559-0631/13 www.nature.com/jes ORIGINAL ARTICLE Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia Catherine Metayer1, Joanne S. Colt2, Patricia A. Buffler1, Helen D. Reed3, Steve Selvin1, Vonda Crouse4 and Mary H. Ward2 We examine the association between exposure to herbicides and childhood acute lymphoblastic leukemia (ALL). Dust samples were collected from homes of 269 ALL cases and 333 healthy controls (o8 years of age at diagnosis/reference date and residing in same home since diagnosis/reference date) in California, using a high-volume surface sampler or household vacuum bags. Amounts of agricultural or professional herbicides (alachlor, metolachlor, bromoxynil, bromoxynil octanoate, pebulate, butylate, prometryn, simazine, ethalfluralin, and pendimethalin) and residential herbicides (cyanazine, trifluralin, 2-methyl-4- chlorophenoxyacetic acid (MCPA), mecoprop, 2,4-dichlorophenoxyacetic acid (2,4-D), chlorthal, and dicamba) were measured. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. Models included the herbicide of interest, age, sex, race/ethnicity, household income, year and season of dust sampling, neighborhood type, and residence type. The risk of childhood ALL was associated with dust levels of chlorthal; compared to homes with no detections, ORs for the first, second, and third tertiles were 1.49 (95% CI: 0.82–2.72), 1.49 (95% CI: 0.83–2.67), and 1.57 (95% CI: 0.90–2.73), respectively (P-value for linear trend ¼ 0.05). The magnitude of this association appeared to be higher in the presence of alachlor.
    [Show full text]
  • Sorption of Atrazine, Alachlor and Trifluralin from Water Onto Different Geosorbents
    RSC Advances Sorption of atrazine, alachlor and trifluralin from water onto different geosorbents Journal: RSC Advances Manuscript ID: RA-ART-04-2014-003886.R1 Article Type: Paper Date Submitted by the Author: 04-Dec-2014 Complete List of Authors: Leovac, Anita; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Vasyukova, Ekaterina; Technische Universität Dresden, Faculty of Environmental Sciences, Institute of Urban Water Management Ivančev-Tumbas, Ivana; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Uhl, Wolfgang; Technische Universität Dresden, Faculty of Environmental Sciences, Institute of Urban Water Management Kragulj, Marijana; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Trickovic, Jelena; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Kerkez, Đurña; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Dalmacija, Bozo; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Page 1 of 21 RSC Advances 1 Sorption of atrazine, alachlor and trifluralin from water onto different geosorbents 2 Anita S. Leovac 1, Ekaterina Vasyukova 2, Ivana I. Ivan čev-Tumbas 1, Wolfgang Uhl 2, 3 Marijana M. Kragulj 1, Jelena S. Tri čkovi ć1, Đur đa V. Kerkez 1, Božo D. Dalmacija 1
    [Show full text]
  • Trifluralin Human Health and Ecological Risk Assessment FINAL REPORT
    SERA TR-052-26-03a Trifluralin Human Health and Ecological Risk Assessment FINAL REPORT Submitted to: Paul Mistretta, COR USDA/Forest Service, Southern Region 1720 Peachtree RD, NW Atlanta, Georgia 30309 USDA Forest Service Contract: AG-3187-C-06-0010 USDA Forest Order Number: AG-43ZP-D-10-0010 SERA Internal Task No. 52-26 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 8125 Solomon Seal Manlius, New York 13104 E-Mail: [email protected] Home Page: www.sera-inc.com September 20, 2011 Table of Contents LIST OF FIGURES ...................................................................................................................... vii LIST OF TABLES ........................................................................................................................ vii LIST OF APPENDICES .............................................................................................................. viii LIST OF ATTACHEMENTS ...................................................................................................... viii ACRONYMS, ABBREVIATIONS, AND SYMBOLS ................................................................ ix COMMON UNIT CONVERSIONS AND ABBREVIATIONS .................................................. xii CONVERSION OF SCIENTIFIC NOTATION ......................................................................... xiii EXECUTIVE SUMMARY ......................................................................................................... xiv 1. INTRODUCTION .....................................................................................................................
    [Show full text]
  • Herbicide Programs for Managing Glyphosate- Resistant Palmer Amaranth and Common Waterhemp in Louisiana Corn, Cotton and Soybean
    Herbicide Programs for Managing Glyphosate- Resistant Palmer Amaranth and Common Waterhemp in Louisiana Corn, Cotton and Soybean Palmer amaranth and common waterhemp are extremely troublesome weeds in corn, cotton and soybean. They have the potential to • LOUISIANA PARISHES WITH substantially reduce crop yield and harvesting GLYPHOSATE-RESISTANCE • Red parishes efficiency. Glyphosate-resistant Palmer amaranth – Palmer amaranth and common waterhemp were documented • Orange parishes in Louisiana in 2010 and 2015, respectively. – common waterhemp Currently, Palmer amaranth has spread to essentially all crop-producing parishes in Louisiana, while glyphosate-resistant common waterhemp has only been documented in two parishes. Utilization of herbicides with differing modes of action (how they kill) for soil residual activity is vital for management of these two pigweed species. In addition, these herbicides typically need to be applied multiple times during the growing season. It is very important to control glyphosate-resistant Palmer amaranth and common waterhemp at germination or before they reach 3 inches in height. Timely applications are crucial because control with many herbicides is poor if they are applied after glyphosate-resistant Palmer amaranth height is taller than 3 inches. In addition to use of herbicides with differing modes of action, herbicide rotation in conjugation with crop rotation is a good way to avoid and/or manage glyphosate-resistant Palmer amaranth - female plant inflorescence Palmer amaranth. For example, if a corn and cotton rotation is used, herbicides with identical modes of action use in both crops should be applied sparingly. The same can be applied to corn/soybean or cotton/soybean rotations. It is important to also remember that numerous herbicides have a rotation interval restriction for a following crop.
    [Show full text]
  • Control of Crabgrass in Home Lawns
    AY-10-W IL-IN TW 33 CControlontrol ooff CrabgrassCrabgrass inin HomeHome LawnsLawns Crabgrass is a common weed that infests home lawns in the Midwest (Figure 1). Crabgrass is an summer annual weed that germinates when soil temperatures are approximately 60º F for 3-5 days at the 1/4” level. It begins fl owering and setting seed in July and dyes with the fi rst frost of fall. Crabgrass has tremendous survival reproductive Purdue University capabilities. Because of this, it is unrealistic Turf Science to expect a crabgrass free lawn. You cannot Department of eradicate crabgrass (or any other pest for that Agronomy matter); a few crabgrass plants in your lawn are Figure 1. Mature crabgrass plant (Zac Reicher). www.agry.purdue.edu/turf acceptable. Cultural Crabgrass Control The most effective way to control crabgrass is University of Illinois to create a dense, healthy turf. A healthy turf will Turfgrass Program compete well with crabgrass and prevent it from Department of establishing. Natural Mowing Resources and Environmental • Mow at 2.5 to 3.0 inches depending on the turf Sciences species. Mowing below this range will increase www.turf.uiuc.edu crabgrass populations (Figure 2). • Mow frequently so as not to remove more than Figure 2. High crabgrass population in a Kentucky 1/3 of the leaf blade at one time. This may mean bluegrass lawn mown at 1.0 inch (Aaron Patton). mowing twice weekly in spring and every other week in summer. Fertilization Irrigation Apply 2 to 4 pounds nitrogen per 1000 ft2 each Irrigate deeply and infrequently.
    [Show full text]
  • An Assessment System for Potential Groundwater Contamination From
    (continued) Extension Bulletin No. 63, March 1994 Bruce Seelig, Water Quality Specialist Trade and Common Names of Pesticides and Their Filtration Potential Herbicides ----------------------------------------------------------------- * Filtration Trade Name Common Name Potential ----------------------------------------------------------------- 2,4-D Amine 2,4-D L 2,4-D Amine 4 pound 2,4-D L 2,4-D Ester 2,4-D L 2,4-D LV Ester 2,4-D L 2,4-D LV Ester 6 2,4-D L ----------------------------------------------------------------- 2,4-D LV-4 2,4-D L 2,4-D LV-6 2,4-D L 2,4-DB 2,4-DB L 2,4-DB 1.75 2,4-DB L Aatrex4L Atrazine L ----------------------------------------------------------------- Aatrex Nine-0 Atrazine L Accent Nicosulfuron nd Accord Glyphosate H Agsco 400 2,4-D L Agsco MXL Herbicide E MCPA I ----------------------------------------------------------------- Ally Metsulfuron L Amber Triasulfuron nd Amiben Chloramben L Amine 4 2,4-D Weed Killer 2,4-D L Amitrol-T Amitrole L ----------------------------------------------------------------- Antor Diethatyl I Arena Alachlor I Ascend Bentazon L Assert Imazamethabenz L Assure II Quizalofop-P I ----------------------------------------------------------------- Atrazine Atrazine L Atrazine 4L Atrazine L Atrazine 4L Herbicide Atrazine L Atrazine 90 Atrazine L Atrazine 90 DF Atrazine L ----------------------------------------------------------------- Atrazine 90 WDG Herbicide Atrazine L Avenge Difenzoquat H Balan Benefin H Banvel Dicamba L Banvel SGF Dicamba L -----------------------------------------------------------------
    [Show full text]
  • Herbicide-Resistant Palmer Amaranth (Amaranthus Palmeri S. Wats.) in the United States — Mechanisms of Resistance, Impact, and Management
    Chapter 1 Herbicide-Resistant Palmer amaranth (Amaranthus palmeri S. Wats.) in the United States — Mechanisms of Resistance, Impact, and Management Parminder S. Chahal, Jatinder S. Aulakh, M. Jugulam and Amit J. Jhala Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61512 Abstract Palmer amaranth, a dioecious summer annual species, is one of the most trouble‐ some weeds in the agronomic crop production systems in the United States. In the last two decades, continuous reliance on herbicide(s) with the same mode of action as the sole weed management strategy has resulted in the evolution of herbicide- resistant (HR) weeds, including Palmer amaranth. By 2015, Palmer amaranth bio‐ types had been confirmed resistant to acetolactate synthase (ALS)-inhibitors, dinitroanilines, glyphosate, hydroxyphenylpyruvate dioxygenase (HPPD)-inhibi‐ tors, and triazine herbicides in some parts of the United States along with multiple HR biotypes. Mechanisms of herbicide-resistance in Palmer amaranth are discussed in this chapter. Preplant herbicide options including glufosinate, 2,4-D, and dicam‐ ba provide excellent Palmer amaranth control; however, their application is limited before planting crops, which is often not possible due to unfavorable weather con‐ ditions. Agricultural biotechnology companies are developing new multiple HR crops that will allow the post-emergence application of respective herbicides for management of HR weeds, including Palmer amaranth. For the effective in-crop management of Palmer amaranth, and to reduce the potential for the evolution of other HR weeds, growers should apply herbicides with different modes of action in tank-mixture and should also incorporate cultural practices including inversion till‐ age and cover crops along with herbicide programs.
    [Show full text]
  • Using Countless Tons of Arsenic As a Non-Selective Contact and Soil Sterilant
    87 In addition to requiring the user to obtain a permit from, the agricultural commissioner, t4e regulations prescribe certain conditions to be met by those who possess or use sodium arsenite as follows: (a) No pesticide containing sodium arsenite shall be applied on exposed vegetation (other than dormant grapeviries) unless the vegetation to be treated is enclosed within a good and su£ficient fence or otherwis.e made inaccessible to grazing animals, pets, and children. (b) No pesticide containing sodium arsenite sha,11 be applied on soil or vegetation (other than dormant grapevines) in any area penetrated by roots of any plant of value, without the written consent of the owner of such plant. ( c) No pesticide containing sodium arsenite shall be kept or placed in drinking cups, pop bottles, or other containers of a type commonly used for food or drink. (d) No pesticide containing sodium arsenite, whether in concentrated or dilute form, shall be stored, placed, or transported in any container or receptacle which does not bear on the outside a conspicuous poison label which conforms to the label required to be placed on all packages of arsenic compounds and pre:parations sold or delivered within the State. These are only procedures that any careful person would observe in the use of a poisonous material like sodium arsenite. It is just over one year since the regulations became effective. In that time we have heard of no accidental deaths involving sodium arsenite in California and the regulations appear to be serving a good purpose. SUBSTITUTE HERBICIDES FOR SODIUM ARSENITE W.
    [Show full text]
  • Revised Reregistration Eligibility Decision for MSMA, DSMA, CAMA
    Revised Reregistration Eligibility Decision for MSMA, DSMA, CAMA, and Cacodylic Acid August 10, 2006 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES MEMORANDUM Date: August 10, 2006 Subject: Revised “Reregistration Eligibility Decision for MSMA, DSMA, CAMA, and Cacodylic Acid” Document From: Lance Wormell, Chemical Review Manager Reregistration Branch 2 Special Review and Reregistration Division To: Organic Arsenical Herbicides Docket (EPA-HQ-OPP-2006-0201) EPA originally published the “Reregistration Eligibility Decision for MSMA, DSMA, CAMA, and Cacodylic Acid” (EPA 738-R-06-021) in the electronic docket on August 9, 2006. EPA has since identified and corrected a typographical error on page 22. The cancer slope factor for inorganic arsenic used to calculate the exposure level in drinking water was incorrectly listed as 3.67 x 10-3 (mg/kg/day)-1. The value has since been corrected to 3.67 (mg/kg/day)-1. The typographical change in the document does not alter EPA’s calculations or conclusions and the current document should be used in place of the previous version. United States Office of Prevention, Pesticides EPA 738-R-06-021 Environmental Protection And Toxic Substances July 2006 Agency (7508P) _________________________________________________________________ Reregistration Eligibility Decision for MSMA, DSMA, CAMA, and Cacodylic Acid List B Case Nos. 2395, 2080 TABLE OF CONTENTS I. Introduction.............................................................................................................
    [Show full text]
  • 3425Laybyweedcontrolinsugar
    Louisiana Field Crops IPM Information for Identifying and Controlling Diseases, Insects and Weeds Layby Weed Control in Sugarcane Layby herbicides for sugarcane are applied broadcast and directed un- derneath the sugarcane canopy, usually following the last cultivation (Figures 1 and 2). It is necessary that the lower canopy be contacted by the spray solu- tion to ensure weed control both in the sugarcane drill and in the row middle. If weeds are present, nonionic surfac- tant at 1 to 2 quarts per 100 gallons of solution or crop oil concentrate at 2 to 4 quarts per 100 gallons should be added to the spray solution for herbi- cides with postemergence activity. Layby is an important time to Figure 1. Broadcast application of herbicide in May at layby using two control itchgrass (Raoulgrass), seedling nozzles per row middle. johnsongrass, browntop millet and other annual grasses. Preemergence herbicide options for controlling grasses include the herbicides Pendi- 72-inch Nozzle Spacing methalin/Prowl H2O/others and Tre- flan/Trifluralin/others. Due to the rapid decomposition of Pendimethalin/Prowl H2O/others by sunlight, rainfall of a half-inch is required within seven to 10 days of application. Treflan/Trifluralin/ others is subject to volatility and must be incorporated within 24 hours after application. Since row middles are worked at layby, some growers prefer to incorporate a trifluralin product at the same time. This is an economical 72-inch treatment and incorporation helps to Row Spacing ensure the herbicide is in the soil when weed seeds begin to germinate. Figure 2. Broadcast application of herbicide at layby.
    [Show full text]
  • Environmental Fate of TCDD and Agent Orange and Bioavailability to Troops in Vietnam
    DIOXIN IN VIETNAM: CHARACTERISATION, MONITORING, REMEDIATION AND EFFECTS Environmental Fate of TCDD and Agent Orange and Bioavailability to Troops in Vietnam Nathan J. Karch1, Deborah K. Watkins1, Alvin L. Young2, Michael E. Ginevan1 ''Exponent, Inc., Washington, DC, USA 2University of Oklahoma, Norman, Oklahoma, USA Introduction This paper reviews the environmental fate of Agent Orange and the contaminant, 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD), and discusses how this affects the bioavailability of TCDD for ground troops in Vietnam. Methods and Materials From 1962 to 1971, herbicides were sprayed in Vietnam to defoliate the jungle canopy and to destroy crops, exposing the enemy and denying them food, and to clear tall grasses and bushes from the perimeters of US base camps and outlying fire-support bases. The most widely used herbicides were phenoxyacetic acids - 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5- trichlorophenoxyacetic acid (2,4,5-T), picloram and cacodylic acid. Only the herbicides containing 2,4,5-T were contaminated with TCDD - Agents Orange, Green, Pink and Purple. Dispersion of Agent Orange: The US Air Force was responsible for training aircrews, developing aerial tactics for herbicide missions and the developing, testing and evaluating spray equipment. These programs were conducted mainly at Eglin Air Force Base, Florida and to a lesser degree at Pran Buri Calibration Grid in Thailand. Responsibility for the defoliant rested with the US Army at Fort Detrick, Maryland with the cooperation of the US Department of Agriculture.1, 2 Extensive field tests with herbicide determined optimum conditions and deposition rate for Vietnam. Dispersal of herbicide droplets by air turbulence could be minimized by scheduling missions in favorable weather conditions and by controlling droplet size.
    [Show full text]