Environmental Fate of TCDD and Agent Orange and Bioavailability to Troops in Vietnam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2,4-Dichlorophenoxyacetic Acid
2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators. -
Exposure to Herbicides in House Dust and Risk of Childhood Acute Lymphoblastic Leukemia
Journal of Exposure Science and Environmental Epidemiology (2013) 23, 363–370 & 2013 Nature America, Inc. All rights reserved 1559-0631/13 www.nature.com/jes ORIGINAL ARTICLE Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia Catherine Metayer1, Joanne S. Colt2, Patricia A. Buffler1, Helen D. Reed3, Steve Selvin1, Vonda Crouse4 and Mary H. Ward2 We examine the association between exposure to herbicides and childhood acute lymphoblastic leukemia (ALL). Dust samples were collected from homes of 269 ALL cases and 333 healthy controls (o8 years of age at diagnosis/reference date and residing in same home since diagnosis/reference date) in California, using a high-volume surface sampler or household vacuum bags. Amounts of agricultural or professional herbicides (alachlor, metolachlor, bromoxynil, bromoxynil octanoate, pebulate, butylate, prometryn, simazine, ethalfluralin, and pendimethalin) and residential herbicides (cyanazine, trifluralin, 2-methyl-4- chlorophenoxyacetic acid (MCPA), mecoprop, 2,4-dichlorophenoxyacetic acid (2,4-D), chlorthal, and dicamba) were measured. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. Models included the herbicide of interest, age, sex, race/ethnicity, household income, year and season of dust sampling, neighborhood type, and residence type. The risk of childhood ALL was associated with dust levels of chlorthal; compared to homes with no detections, ORs for the first, second, and third tertiles were 1.49 (95% CI: 0.82–2.72), 1.49 (95% CI: 0.83–2.67), and 1.57 (95% CI: 0.90–2.73), respectively (P-value for linear trend ¼ 0.05). The magnitude of this association appeared to be higher in the presence of alachlor. -
Sorption of Atrazine, Alachlor and Trifluralin from Water Onto Different Geosorbents
RSC Advances Sorption of atrazine, alachlor and trifluralin from water onto different geosorbents Journal: RSC Advances Manuscript ID: RA-ART-04-2014-003886.R1 Article Type: Paper Date Submitted by the Author: 04-Dec-2014 Complete List of Authors: Leovac, Anita; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Vasyukova, Ekaterina; Technische Universität Dresden, Faculty of Environmental Sciences, Institute of Urban Water Management Ivančev-Tumbas, Ivana; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Uhl, Wolfgang; Technische Universität Dresden, Faculty of Environmental Sciences, Institute of Urban Water Management Kragulj, Marijana; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Trickovic, Jelena; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Kerkez, Đurña; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Dalmacija, Bozo; University of Novi Sad Faculty of Sciences, Department for Chemistry, Biochemistry and Environmental Protection Page 1 of 21 RSC Advances 1 Sorption of atrazine, alachlor and trifluralin from water onto different geosorbents 2 Anita S. Leovac 1, Ekaterina Vasyukova 2, Ivana I. Ivan čev-Tumbas 1, Wolfgang Uhl 2, 3 Marijana M. Kragulj 1, Jelena S. Tri čkovi ć1, Đur đa V. Kerkez 1, Božo D. Dalmacija 1 -
Trifluralin Human Health and Ecological Risk Assessment FINAL REPORT
SERA TR-052-26-03a Trifluralin Human Health and Ecological Risk Assessment FINAL REPORT Submitted to: Paul Mistretta, COR USDA/Forest Service, Southern Region 1720 Peachtree RD, NW Atlanta, Georgia 30309 USDA Forest Service Contract: AG-3187-C-06-0010 USDA Forest Order Number: AG-43ZP-D-10-0010 SERA Internal Task No. 52-26 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 8125 Solomon Seal Manlius, New York 13104 E-Mail: [email protected] Home Page: www.sera-inc.com September 20, 2011 Table of Contents LIST OF FIGURES ...................................................................................................................... vii LIST OF TABLES ........................................................................................................................ vii LIST OF APPENDICES .............................................................................................................. viii LIST OF ATTACHEMENTS ...................................................................................................... viii ACRONYMS, ABBREVIATIONS, AND SYMBOLS ................................................................ ix COMMON UNIT CONVERSIONS AND ABBREVIATIONS .................................................. xii CONVERSION OF SCIENTIFIC NOTATION ......................................................................... xiii EXECUTIVE SUMMARY ......................................................................................................... xiv 1. INTRODUCTION ..................................................................................................................... -
Toxicity of Herbicides to Newly Emerged Honey Bees,1.2.3
PUKOr.SED BV THE ACr.ICl'.LT RESEARCH SIRViCE. U. S. DEPA:;T.rfEH OF AGRICULTURE FOR OFFICIAL US* Reprinted from the Environmental Entomology Volume 1, Number 1, pp. 102-104, February 1972 Toxicity of Herbicides to Newly Emerged Honey Bees,1.2.3 HOWARD L. MORTON,' JOSEPH O. MOFFETT," and ROBERT H. MACDONALD" Agricultural Research Service, USDA, Tucson, Arizona 85719 :, ■ ABSTRACT . We fed herbicides to newly emerged worker Apis mellifera L. in 60% sucrose syrup at concentrations of 0, 10, 100, and ] 000 parts per million by weight. The following herbicides were relatively nontoxic to honey bees at all concentra tions: 2,4-D, 2,4,5-T, silvcx, 2,4-DB, dicamba, 2,3,6-TBA, chloramben, picloram, Ethrel®, 2-chIoroethylphosphonic acid, EPTC, and dalapon. The following were extremely toxic at 100 and 1000 ppmw concentrations: paraquat, MAA, MSMA, DSMA, hexaflurate, and cacodylic acid. Two compounds, bromoxynil and endothall, were very toxic only at 1000 parts per million by weight (ppmw) concentration. Paraquat, MAA, and cacodylic acid were moderately toxic at 10 ppmw. No sig nificant differences were noted in the toxicity of purified and commercially formulated herbicides. Studies conducted at this laboratory (MolTctt Materials and Methods et al. 1972) and elsewhere (Palmer-Jones 1950, Ten grams (approximately 100 individuals) of 1964; King 1961") indicate that toxicily of herbi newly emerged honey bees were placed in 2x6x6- cides to honey bees, Apis mellijera L., depends upon in. screened cages. All honey bees were less than the chemical, the formulation, and the carrier used 24 hr old at the time they were placed in the with the herbicide. -
Herbicide Programs for Managing Glyphosate- Resistant Palmer Amaranth and Common Waterhemp in Louisiana Corn, Cotton and Soybean
Herbicide Programs for Managing Glyphosate- Resistant Palmer Amaranth and Common Waterhemp in Louisiana Corn, Cotton and Soybean Palmer amaranth and common waterhemp are extremely troublesome weeds in corn, cotton and soybean. They have the potential to • LOUISIANA PARISHES WITH substantially reduce crop yield and harvesting GLYPHOSATE-RESISTANCE • Red parishes efficiency. Glyphosate-resistant Palmer amaranth – Palmer amaranth and common waterhemp were documented • Orange parishes in Louisiana in 2010 and 2015, respectively. – common waterhemp Currently, Palmer amaranth has spread to essentially all crop-producing parishes in Louisiana, while glyphosate-resistant common waterhemp has only been documented in two parishes. Utilization of herbicides with differing modes of action (how they kill) for soil residual activity is vital for management of these two pigweed species. In addition, these herbicides typically need to be applied multiple times during the growing season. It is very important to control glyphosate-resistant Palmer amaranth and common waterhemp at germination or before they reach 3 inches in height. Timely applications are crucial because control with many herbicides is poor if they are applied after glyphosate-resistant Palmer amaranth height is taller than 3 inches. In addition to use of herbicides with differing modes of action, herbicide rotation in conjugation with crop rotation is a good way to avoid and/or manage glyphosate-resistant Palmer amaranth - female plant inflorescence Palmer amaranth. For example, if a corn and cotton rotation is used, herbicides with identical modes of action use in both crops should be applied sparingly. The same can be applied to corn/soybean or cotton/soybean rotations. It is important to also remember that numerous herbicides have a rotation interval restriction for a following crop. -
Cacodylic Acid), in F344/Ducrj Rats After Pretreatment with Five Carcinogens1
[CANCER RESEARCH 55, 1271-1276, March 15, 1995] Cancer Induction by an Organic Arsenic Compound, Dimethylarsinic Acid (Cacodylic Acid), in F344/DuCrj Rats after Pretreatment with Five Carcinogens1 Shinji Vaniamolo,2 Yoshitsugu Konishi, Tsutomu Matsuda, Takashi Murai, Masa-Aki Shibata, Isao Matsui-Yuasa,3 Shuzo Otani, Koichi Kuroda, Ginji Endo, and Shoji Fukushima First Department of Pathology ¡S. Y., Ts. M., Ta. M.. M-A. S.. S. F.1, Second Department of Biochemistry //. M-Y., S. O.j, and Department of Preventive Medicine and Environmental Health /K K., G. E.I, Osaka City University Medical School, 1-4-54 Asahi-machi, Aheno-ku, Osaka 545, and Osaka Cit\ Institute of Public Health and Environmental Sciences, Osaka 543 IK. K.], Japan ABSTRACT Taiwan and Mexico are exposed to high amounts of As via the drinking water (5, 8). Moreover, the wide population in the United Arsenic (As) is environmentally ubiquitous and an epidemiologically States may be supplied with water containing more than 50 ju.g/1As significant chemical related to certain human cancers. Dimethylarsinic (6). Industrial arsenicals are used for smelting, glass making, and the acid (cacodylic acid; DMA) is one of the major methylated metabolites of manufacture of semiconductors (3, 9). For more than half a century, ingested arsenicals in most mammals. To evaluate the effects of DMA on chemical carcinogenesis, we conducted a multiorgan bioassay in rats given various carcinogenic effects of As for humans have been documented, various doses of DMA. One-hundred twenty-four male F344/DuCrj rats mainly involving the skin and lung (7). In addition, recent epidemi- were divided randomly into 7 groups (20 rats each for groups 1-5; 12 rats ological studies have indicated that there are significant dose-response each for groups 6 and 7). -
Control of Crabgrass in Home Lawns
AY-10-W IL-IN TW 33 CControlontrol ooff CrabgrassCrabgrass inin HomeHome LawnsLawns Crabgrass is a common weed that infests home lawns in the Midwest (Figure 1). Crabgrass is an summer annual weed that germinates when soil temperatures are approximately 60º F for 3-5 days at the 1/4” level. It begins fl owering and setting seed in July and dyes with the fi rst frost of fall. Crabgrass has tremendous survival reproductive Purdue University capabilities. Because of this, it is unrealistic Turf Science to expect a crabgrass free lawn. You cannot Department of eradicate crabgrass (or any other pest for that Agronomy matter); a few crabgrass plants in your lawn are Figure 1. Mature crabgrass plant (Zac Reicher). www.agry.purdue.edu/turf acceptable. Cultural Crabgrass Control The most effective way to control crabgrass is University of Illinois to create a dense, healthy turf. A healthy turf will Turfgrass Program compete well with crabgrass and prevent it from Department of establishing. Natural Mowing Resources and Environmental • Mow at 2.5 to 3.0 inches depending on the turf Sciences species. Mowing below this range will increase www.turf.uiuc.edu crabgrass populations (Figure 2). • Mow frequently so as not to remove more than Figure 2. High crabgrass population in a Kentucky 1/3 of the leaf blade at one time. This may mean bluegrass lawn mown at 1.0 inch (Aaron Patton). mowing twice weekly in spring and every other week in summer. Fertilization Irrigation Apply 2 to 4 pounds nitrogen per 1000 ft2 each Irrigate deeply and infrequently. -
List of Lists
United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals -
Determination of Arsenical Herbicide Residues in Plant Tissues1 R
Determination of Arsenical Herbicide Residues in Plant Tissues1 R. M. SACHS,~ J. L. MICEIAEL,~ I?. U. ANAS.TASIA,J and W. A. WELL+ Abstract. Paper chromatographic separation of hydroxydi- the toxicity of which may be greater than the parent methylarsine oxide (cacodylic acid), monosodium methane- arsenical (i 1). Comparativk phy?otoxicity studies in our arsonate (MSMA), sodium arsenate, and sodium arsenite was laboratories of foliar and root applications of hydroxy- achieved with the aid of four solvent systems. Aqueous ex- dimethylarsine oxide (cacodylic acid), monosodium meth- tracts of plant tissues removed essentially all the arscnicals anearsonate (MSMA), sodium arsenate, and sodium arse- applied, but mechanoiic fractionation was required before the nite revealed that cacodylic acid was the most potent extracts could be analyzed by paper chromntographic pro- of the four when all were foliarly-applied, whereas cedures. A standard nitric-sulfuric acid digestion procedure sodium arsenite was by far the most phytotoxic when all was employed for arsenic analyses, but great care was taken were root-applied (11). Hence, the need for an examina- LO avoid sulfuric-acid-induced charring by first adding rela- tion of problems of relative absorption, transport, and Lively large amounts of nitric acid to drive off chlorides present. metabolism was indicated. New methods of analysis were Depending upon the amount of chloride present, substantial developed and others modified to investigate these prob- losses of arsenic as arsine chlorides were observed if the samples lems. The methods are described in this paper. Studies charred. Five minutes in fuming sulfuric acid to completely of comparative phytotoxicity, absorption, and metab- break the carbon-arsenic bonds was another critical require- olism will appear separately (11). -
An Assessment System for Potential Groundwater Contamination From
(continued) Extension Bulletin No. 63, March 1994 Bruce Seelig, Water Quality Specialist Trade and Common Names of Pesticides and Their Filtration Potential Herbicides ----------------------------------------------------------------- * Filtration Trade Name Common Name Potential ----------------------------------------------------------------- 2,4-D Amine 2,4-D L 2,4-D Amine 4 pound 2,4-D L 2,4-D Ester 2,4-D L 2,4-D LV Ester 2,4-D L 2,4-D LV Ester 6 2,4-D L ----------------------------------------------------------------- 2,4-D LV-4 2,4-D L 2,4-D LV-6 2,4-D L 2,4-DB 2,4-DB L 2,4-DB 1.75 2,4-DB L Aatrex4L Atrazine L ----------------------------------------------------------------- Aatrex Nine-0 Atrazine L Accent Nicosulfuron nd Accord Glyphosate H Agsco 400 2,4-D L Agsco MXL Herbicide E MCPA I ----------------------------------------------------------------- Ally Metsulfuron L Amber Triasulfuron nd Amiben Chloramben L Amine 4 2,4-D Weed Killer 2,4-D L Amitrol-T Amitrole L ----------------------------------------------------------------- Antor Diethatyl I Arena Alachlor I Ascend Bentazon L Assert Imazamethabenz L Assure II Quizalofop-P I ----------------------------------------------------------------- Atrazine Atrazine L Atrazine 4L Atrazine L Atrazine 4L Herbicide Atrazine L Atrazine 90 Atrazine L Atrazine 90 DF Atrazine L ----------------------------------------------------------------- Atrazine 90 WDG Herbicide Atrazine L Avenge Difenzoquat H Balan Benefin H Banvel Dicamba L Banvel SGF Dicamba L ----------------------------------------------------------------- -
Herbicide-Resistant Palmer Amaranth (Amaranthus Palmeri S. Wats.) in the United States — Mechanisms of Resistance, Impact, and Management
Chapter 1 Herbicide-Resistant Palmer amaranth (Amaranthus palmeri S. Wats.) in the United States — Mechanisms of Resistance, Impact, and Management Parminder S. Chahal, Jatinder S. Aulakh, M. Jugulam and Amit J. Jhala Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61512 Abstract Palmer amaranth, a dioecious summer annual species, is one of the most trouble‐ some weeds in the agronomic crop production systems in the United States. In the last two decades, continuous reliance on herbicide(s) with the same mode of action as the sole weed management strategy has resulted in the evolution of herbicide- resistant (HR) weeds, including Palmer amaranth. By 2015, Palmer amaranth bio‐ types had been confirmed resistant to acetolactate synthase (ALS)-inhibitors, dinitroanilines, glyphosate, hydroxyphenylpyruvate dioxygenase (HPPD)-inhibi‐ tors, and triazine herbicides in some parts of the United States along with multiple HR biotypes. Mechanisms of herbicide-resistance in Palmer amaranth are discussed in this chapter. Preplant herbicide options including glufosinate, 2,4-D, and dicam‐ ba provide excellent Palmer amaranth control; however, their application is limited before planting crops, which is often not possible due to unfavorable weather con‐ ditions. Agricultural biotechnology companies are developing new multiple HR crops that will allow the post-emergence application of respective herbicides for management of HR weeds, including Palmer amaranth. For the effective in-crop management of Palmer amaranth, and to reduce the potential for the evolution of other HR weeds, growers should apply herbicides with different modes of action in tank-mixture and should also incorporate cultural practices including inversion till‐ age and cover crops along with herbicide programs.