Physiology regulates the relationship between coccosphere geometry and growth-phase in coccolithophores Rosie M. Sheward1,2, Alex J. Poulton3, Samantha J. Gibbs1, Chris J. Daniels3, Paul R. Bown4 1 Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, United 5 Kingdom. 2 Institute of Geosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany. 3 Ocean Biogeochemistry and Ecosystems, National Oceanography Centre, Southampton, SO14 3ZH, United Kingdom. 4 Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom. 10 Correspondence to: Rosie M. Sheward (
[email protected]) Abstract. Coccolithophores are an abundant phytoplankton group that exhibit remarkable diversity in their biology, ecology, and calcitic exoskeletons (coccospheres). Their extensive fossil record is testament to their important biogeochemical role and is a valuable archive of biotic responses to environmental change stretching back over 200 million years. However, to 15 realise the full potential of this archive for (paleo-)biology and biogeochemistry requires an understanding of the physiological processes that underpin coccosphere architecture. Using culturing experiments on four modern coccolithophore species (Calcidiscus leptoporus, Calcidiscus quadriperforatus, Helicosphaera carteri and Coccolithus braarudii) from three long-lived families, we investigate how coccosphere architecture responds to shifts from exponential (rapid cell division) to stationary (slowed cell division) growth phases as cell physiology reacts to nutrient depletion. These 20 experiments reveal statistical differences in coccosphere size and the number of coccoliths per cell between these two growth phases, specifically that cells in exponential-phase growth are typically smaller with fewer coccoliths, whereas cells experiencing growth-limiting nutrient depletion have larger coccosphere sizes and greater numbers of coccoliths per cell.