Haptophyte Diversity and Vertical Distribution Explored by 18S and 28S Ribosomal RNA Gene Metabarcoding and Scanning Electron Microscopy

Total Page:16

File Type:pdf, Size:1020Kb

Haptophyte Diversity and Vertical Distribution Explored by 18S and 28S Ribosomal RNA Gene Metabarcoding and Scanning Electron Microscopy Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Haptophyte Diversity and Vertical Distribution Explored by 18S and 28S Ribosomal RNA Gene Metabarcoding and Scanning Electron Microscopy Sandra Gran-Stadniczenko~ a,1, Luka Supraha b,1, Elianne D. Eggea & Bente Edvardsena a Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway b Department of Earth Sciences, Uppsala University, Villavagen€ 16, Uppsala SE-75236, Sweden Keywords ABSTRACT Abundance; coccolithophores; high-throughput sequencing; Oslofjorden; Haptophyta encompasses more than 300 species of mostly marine pico- and phylogeny; richness. nanoplanktonic flagellates. Our aims were to investigate the Oslofjorden hapto- phyte diversity and vertical distribution by metabarcoding, and to improve the Correspondence approach to study haptophyte community composition, richness and propor- S. Gran-Stadniczenko,~ Department of tional abundance by comparing two rRNA markers and scanning electron Biosciences, University of Oslo, P. O. microscopy (SEM). Samples were collected in August 2013 at the Outer Box 1066 Blindern, Oslo 0316, Norway Oslofjorden, Norway. Total RNA/cDNA was amplified by haptophyte-specific Telephone number: +47-22-85-73-65; primers targeting the V4 region of the 18S, and the D1-D2 region of the 28S FAX number: +47-22-85-47-26; rRNA. Taxonomy was assigned using curated haptophyte reference databases e-mail: [email protected] and phylogenetic analyses. Both marker genes showed Chrysochromulinaceae and Prymnesiaceae to be the families with highest number of Operational Tax- 1Equal contribution. onomic Units (OTUs), as well as proportional abundance. The 18S rRNA data set also contained OTUs assigned to eight supported and defined clades con- Received: 15 September 2016; revised 6 sisting of environmental sequences only, possibly representing novel lineages December 2016; accepted December 7, from family to class. We also recorded new species for the area. Comparing 2016. coccolithophores by SEM with metabarcoding shows a good correspondence Early View publication January 29, 2017 with the 18S rRNA gene proportional abundances. Our results contribute to link morphological and molecular data and 28S to 18S rRNA gene sequences of hap- doi:10.1111/jeu.12388 tophytes without cultured representatives, and to improve metabarcoding methodology. THE protist division Haptophyta encompasses more than strong impact on coastal ecosystems through toxin pro- 300 morphospecies of mostly pico- and nanoplanktonic duction (Graneli et al. 2012; Moestrup 1994). flagellates (Edvardsen et al. 2016; Jordan et al. 2004; Being a large and diverse group, haptophytes commonly Thomsen et al. 1994). The group inhabits all seas and exhibit species- and even strain-specific physiological some also thrive in freshwater, exhibiting a high degree of traits, which ultimately define their ecological and biogeo- morphological, physiological and functional diversity (Jor- chemical performance (Edvardsen and Paasche 1998; Lan- dan and Chamberlain 1997). Haptophytes share common ger et al. 2006; Ridgwell et al. 2009). Therefore, structural features, notably the production of unmineral- identifying haptophytes to a low taxonomic level is of ized organic scales and possession of two flagella and a great importance in ecological surveys. Morphological haptonema, although the latter was lost in a few mem- identification to the species level is particularly difficult in bers (e.g. Isochrysidales). Haptophytes are major primary noncalcifying groups, which lack hard and mineralized producers in open oceans (Andersen et al. 1996; Liu et al. body parts, and can only be accurately identified by the 2009) and the calcifying coccolithophores play a key role time-consuming examination of organic scales using elec- in the biogeochemical carbon cycle (Holligan et al. 1993; tron microscopy (EM) (Edvardsen et al. 2011; Eikrem Iglesias-Rodrıguez et al. 2002; Robertson et al. 1994). In 1996; Eikrem and Edvardsen 1999). On the other hand, addition, blooms of noncalcifying haptophytes can have a scanning electron microscopy (SEM)-based methods allow © 2016 The Authors Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists 514 Journal of Eukaryotic Microbiology 2017, 64, 514–532 This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. Gran-Stadniczenko~ et al. Haptophyta Diversity and Distribution by Metabarcoding for precise analysis of taxonomic composition and species Previous metabarcoding studies of haptophytes (Bittner abundance of coccolithophore communities (Bollmann et al. 2013) and protists (Massana et al. 2015) comparing et al. 2002; Cros and Fortuno~ 2002; Young et al. 2003). DNA vs. RNA as templates did not find any significant dif- With the advance of molecular techniques, notably envi- ferences in community structure. However, Egge et al. ronmental sequencing of clone-libraries and metabarcoding (2013) found that RNA captured more of the diversity than using high-throughput sequencing (HTS), it has become with DNA where larger cells were favored. Using RNA possible to overcome some of the limitations of micro- may significantly reduce the bias due to variability in rDNA scopical analysis in investigating haptophyte communities copy numbers among taxonomic groups (Not et al. 2009). (Edvardsen et al. 2016). Most importantly, molecular Massana et al. (2015) found that Haptophyta were under- methods allow for detection of rare or fragile species that represented in DNA compared to RNA surveys (average commonly remain unnoticed in ecological surveys. A num- read ratio DNA/RNA was 7.4). In addition, compared to ber of studies specifically investigated haptophyte commu- DNA, RNA is thought to more accurately picture which nities using molecular methods (Bittner et al. 2013; Egge protists are metabolically active at the time of collection et al. 2015a,b; Liu et al. 2009), each of them further (Stoeck et al. 2007). improving the methodology and providing new insights Further, comparison of different studies is complicated about the diversity and distribution of the group. The due to use of different marker genes. Of both 18S and major shift in understanding the diversity of haptophytes 28S rRNA genes there are more than 600 different ref- was provided by the early clone-library studies (Moon-van erence sequences available in gene databases from cul- der Staay et al. 2000, 2001; Edvardsen et al. 2016 for tured material and environmental clone-libraries comprehensive list of studies), as well as HTS-based (Edvardsen et al. 2016). The number of described hapto- works of Bittner et al. (2013) and Egge et al. (2015a,b). phyte species for which there are reference sequences These studies identified an abundance of new haptophyte available are higher for the 18S than 28S rRNA gene sequences (OTUs) and new haptophyte lineages, which (96 vs. 76) (Edvardsen et al. 2016) which makes 18S a could not be assigned to a cultured and genetically charac- more useful marker for identifying species in an environ- terized taxon. This indicated that the haptophyte diversity mental sample. However, in haptophytes the 18S rRNA in the modern oceans was largely underestimated in previ- gene may differ in only a few base pairs between clo- ous microscopic investigations, and that there are many sely related species, and short variable regions used for morphospecies still to be described. HTS metabarcoding, such as the V4, may be identical However, despite the rigorous processing of data during (Bittner et al. 2013; Edvardsen et al. 2016). The 28S analysis of 454-reads, a significant portion of ribotypes rRNA gene has more variable regions than 18S, and may still represent chimeric sequences or amplification regions of the 28S such as the D1-D2 have therefore artefacts (Haas et al. 2011; Huse et al. 2010; Speksnijder been suggested to be more appropriate barcodes for et al. 2001). The lack of studies combining qualitative and distinguishing recently diverged species (Bittner et al. quantitative morphological analysis of haptophyte commu- 2013; Liu et al. 2009), although some intraspecies varia- nities with molecular approaches complicates the estima- tion may occur, which will overestimate species rich- tion of the actual species diversity and abundance. ness (Liu et al. 2009). As these two markers offer Conducting such investigations on haptophyte communi- complementary views of environmental haptophyte com- ties is difficult due to the mentioned methodological limita- munities, it is important to compare richness and taxo- tions in identifying noncalcifying species using a nomic composition of 18S and 28S metabarcoding data morphological approach. Therefore, coccolithophores are sets obtained from the same samples. To our knowl- arguably the most appropriate group of haptophytes for edge, no study has so far done such a rigorous compar- such comparative investigation. A study by Young et al. ison for haptophytes. (2014) aimed at comparing the molecular (environmental The aim of our study was to investigate the Oslofjorden sequencing of clone-libraries) approach based on the 28S haptophyte community diversity and vertical distribution rRNA gene with the morphological (LM and SEM) analysis by using HTS with
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • An Explanation for the 18O Excess in Noelaerhabdaceae Coccolith Calcite
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 189 (2016) 132–142 www.elsevier.com/locate/gca An explanation for the 18O excess in Noelaerhabdaceae coccolith calcite M. Hermoso a,⇑, F. Minoletti b,c, G. Aloisi d,e, M. Bonifacie f, H.L.O. McClelland a,1, N. Labourdette b,c, P. Renforth g, C. Chaduteau f, R.E.M. Rickaby a a University of Oxford – Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom b Sorbonne Universite´s, UPMC Universite´ Paris 06 – Institut de Sciences de la Terre de Paris (ISTeP), 4 Place Jussieu, 75252 Paris Cedex 05, France c CNRS – UMR 7193 ISTeP, 4 Place Jussieu, 75252 Paris Cedex 05, France d Sorbonne Universite´s, UPMC Universite´ Paris 06 – UMR 7159 LOCEAN, 4 Place Jussieu, 75005 Paris, France e CNRS – UMR 7159 LOCEAN, 4 Place Jussieu, 75005 Paris, France f Institut de Physique du Globe de Paris, Sorbonne Paris Cite´, Universite´ Paris-Diderot, UMR CNRS 7154, 1 rue Jussieu, 75238 Paris Cedex, France g Cardiff University – School of Earth and Ocean Sciences, Parks Place, Cardiff CF10 3AT, United Kingdom Received 10 November 2015; accepted in revised form 11 June 2016; available online 18 June 2016 Abstract Coccoliths have dominated the sedimentary archive in the pelagic environment since the Jurassic. The biominerals pro- duced by the coccolithophores are ideally placed to infer sea surface temperatures from their oxygen isotopic composition, as calcification in this photosynthetic algal group only occurs in the sunlit surface waters. In the present study, we dissect the isotopic mechanisms contributing to the ‘‘vital effect”, which overprints the oceanic temperatures recorded in coccolith calcite.
    [Show full text]
  • Harmful Algae 91 (2020) 101587
    Harmful Algae 91 (2020) 101587 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review Progress and promise of omics for predicting the impacts of climate change T on harmful algal blooms Gwenn M.M. Hennona,c,*, Sonya T. Dyhrmana,b,* a Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States b Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States c College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States ARTICLE INFO ABSTRACT Keywords: Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past Genomics twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have trans- Transcriptomics formed that data landscape of many fields including the study of HABs. Advances in technology have facilitated Proteomics the creation of many publicly available omics datasets that are complementary and shed new light on the Metabolomics mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity Climate change and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species Phytoplankton Harmful algae responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In Cyanobacteria this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world.
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • Seasonal and Depth Variations in Molecular and Isotopic Alkenone Composition of Sinking Particles from the Western Title North Pacific
    Seasonal and depth variations in molecular and isotopic alkenone composition of sinking particles from the western Title North Pacific Author(s) Yamamoto, Masanobu; Shimamoto, Akifumi; Fukuhara, Tatsuo; Naraoka, Hiroshi; Tanaka, Yuichiro; Nishimura, Akira Deep Sea Research Part I : Oceanographic Research Papers, 54(9), 1571-1592 Citation https://doi.org/10.1016/j.dsr.2007.05.012 Issue Date 2007-09 Doc URL http://hdl.handle.net/2115/28776 Type article (author version) File Information DSR54-9.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Seasonal and depth variations in molecular and isotopic alkenone composition of sinking particles from the western North Pacific Masanobu Yamamoto1,*, Akifumi Shimamoto2, Tatsuo Fukuhara2, Hiroshi Naraoka3, Yuichiro Tanaka4 and Akira Nishimura4 1Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan. 2The General Environmental Technos Co., LTD., Osaka 541-0052, Japan. 3Department of Earth Sciences, Okayama University, Okayama 700-8530, Japan. 4National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567, Japan *Corresponding author; [email protected] Abstract: Seasonal and depth variations in alkenone flux and molecular and isotopic composition of sinking particles were examined using a 21-month time-series sediment trap experiment at a mooring station WCT-2 (39°N, 147°E) in the mid-latitude NW Pacific to assess the influences of seasonality, production depth, and degradation in the K’ water column on the alkenone unsaturation index U 37. Analysis of the underlying sediments was also conducted to evaluate the effects of alkenone degradation at the 1 K’ K’ water-sediment interface on U 37.
    [Show full text]
  • Coccolithophore Distribution in the Mediterranean Sea and Relate A
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 11, 613–653, 2014 Open Access www.ocean-sci-discuss.net/11/613/2014/ Ocean Science OSD doi:10.5194/osd-11-613-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. 11, 613–653, 2014 This discussion paper is/has been under review for the journal Ocean Science (OS). Coccolithophore Please refer to the corresponding final paper in OS if available. distribution in the Mediterranean Sea Is coccolithophore distribution in the A. M. Oviedo et al. Mediterranean Sea related to seawater carbonate chemistry? Title Page Abstract Introduction A. M. Oviedo1, P. Ziveri1,2, M. Álvarez3, and T. Tanhua4 Conclusions References 1Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Spain Tables Figures 2Earth & Climate Cluster, Department of Earth Sciences, FALW, Vrije Universiteit Amsterdam, FALW, HV1081 Amsterdam, the Netherlands J I 3IEO – Instituto Espanol de Oceanografia, Apd. 130, A Coruna, 15001, Spain 4GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Marine Biogeochemistry, J I Duesternbrooker Weg 20, 24105 Kiel, Germany Back Close Received: 31 December 2013 – Accepted: 15 January 2014 – Published: 20 February 2014 Full Screen / Esc Correspondence to: A. M. Oviedo ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 613 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract OSD The Mediterranean Sea is considered a “hot-spot” for climate change, being char- acterized by oligotrophic to ultra-oligotrophic waters and rapidly changing carbonate 11, 613–653, 2014 chemistry. Coccolithophores are considered a dominant phytoplankton group in these 5 waters.
    [Show full text]
  • The Coccolithophore Family Calciosoleniaceae with Report of A
    The coccolithophore family Calciosoleniaceae with report of a new species: Calciosolenia subtropicus from the southern Indian Ocean Shramik Patil, Rahul Mohan, Syed Jafar, Sahina Gazi, Pallavi Choudhari, Xavier Crosta To cite this version: Shramik Patil, Rahul Mohan, Syed Jafar, Sahina Gazi, Pallavi Choudhari, et al.. The coccolithophore family Calciosoleniaceae with report of a new species: Calciosolenia subtropicus from the southern Indian Ocean. Micropaleontology, Micropaleontology Press, 2019. hal-02323185 HAL Id: hal-02323185 https://hal.archives-ouvertes.fr/hal-02323185 Submitted on 22 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The coccolithophore family Calciosoleniaceae with report of a new species: Calciosolenia subtropicus from the southern Indian Ocean Shramik Patil1, Rahul Mohan1, Syed A. Jafar2, Sahina Gazi1, Pallavi Choudhari1 and Xavier Crosta3 1National Centre for Polar and Ocean Research (NCPOR), Headland Sada, Vasco-da-Gama, Goa-403804, India email: [email protected] 2Flat 5-B, Whispering Meadows, Haralur Road, Bangalore-560 102, India 3UMR-CNRS 5805 EPOC, Université de Bordeaux, Allée Geoffroy Saint Hilaire, 33615 Pessac Cedex, France ABSTRACT: The families Calciosoleniaceae, Syracosphaeraceae and Rhabdosphaeraceae belong to the order Syracosphaerales and constitute a significant component of extant coccolithophore species, sharing similar ultrastructural bauplans.
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Functional Group-Specific Traits Drive Phytoplankton Dynamics in the Oligotrophic Ocean
    Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean Harriet Alexandera,b, Mónica Roucoc, Sheean T. Haleyc, Samuel T. Wilsond, David M. Karld,1, and Sonya T. Dyhrmanc,1 aMIT–WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139; bBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; cDepartment of Earth and Environmental Sciences, Lamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964; and dDaniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawaii, Honolulu, HI 96822 Contributed by David M. Karl, September 15, 2015 (sent for review June 29, 2015; reviewed by Kay D. Bidle and Adrian Marchetti) A diverse microbial assemblage in the ocean is responsible for Marine phytoplankton accounts for roughly half of global nearly half of global primary production. It has been hypothesized primary production (6). Although central to balancing global and experimentally demonstrated that nutrient loading can stimulate biogeochemical models of gross primary production (7), knowl- blooms of large eukaryotic phytoplankton in oligotrophic systems. edge of the biogeochemical drivers that govern the dynamics of Although central to balancing biogeochemical models, knowledge of these bloom-forming organisms in oligotrophic systems is lim- the metabolic traits that govern the dynamics of these bloom-forming ited. Nutrient environments are integral to the structuring of phytoplankton is limited. We used eukaryotic metatranscriptomic phytoplankton communities (8–10) and initiating blooms. Orig- techniques to identify the metabolic basis of functional group-specific inally thought to be a stable low-fluctuating habitat, long-term traits that may drive the shift between net heterotrophy and monitoring at Station ALOHA has demonstrated that within the autotrophy in the oligotrophic ocean.
    [Show full text]
  • Observations on Syracosphaera Rhombica Sp. Nov
    Disponible en ligne sur ScienceDirect www.sciencedirect.com Revue de micropaléontologie 59 (2016) 233–237 Coccolithophores in modern oceans Observations on Syracosphaera rhombica sp. nov. Observations sur Syracosphaera rhombica sp. nov. a b c,∗ Harald Andruleit , Aisha Ejura Agbali , Richard W. Jordan a Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany b Earth, Ocean and Atmospheric Science, Florida State University, P.O. Box 3064520, Tallahassee, FL 32306-4520, USA c Department of Earth & Environmental Sciences, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan Abstract A spherical coccosphere and two collapsed coccospheres composed of monomorphic rhombic coccoliths were encountered in 2005 in the Java upwelling system of the SE Indian Ocean, while a further two specimens with elongate coccospheres were recently found in the Gulf of Mexico. All of the specimens were collected from the lower photic zone (75–160 m). The coccoliths possess a proximal flange, a slightly flared wall with a serrated distal margin, and a relatively plain central area structure comprised only of overlapping laths. The taxon appears to be an undescribed species of the Syracosphaera nodosa group, so we describe it herein as Syracosphaera rhombica sp. nov. © 2016 Published by Elsevier Masson SAS. Keywords: Coccolithophorid; Gulf of Mexico; Indian Ocean; Lower photic zone; Syracosphaera Résumé Une coccosphère sphérique (ainsi que deux coccosphères effondrées) composée de coccolithes rhombiques monomorphiques a été rencontrée en 2005 dans le système de remontée d’eaux profondes de Java dans l’océan Indien du Sud-Est, tandis que deux autres spécimens avec coccosphères allongées ont été récemment trouvées dans le golfe du Mexique.
    [Show full text]
  • A 15 Million-Year Long Record of Phenotypic Evolution in the Heavily Calcified Coccolithophore Helicosphaera and Its Biogeochemical Implications
    A 15 million-year long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications 5 Luka Šupraha1, a, Jorijntje Henderiks1, 2 1 Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden. 2 Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway. a Present address: Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, P.O. 10 Box 1066 Blindern, 0316 Oslo, Norway Correspondence to: Luka Šupraha ([email protected]) Abstract. The biogeochemical impact of coccolithophores is defined by their overall abundance in the oceans, but also by a wide range in physiological traits such as cell size, degree of calcification and carbon production rates between different species. Species’ “sensitivity” to environmental forcing has been suggested to relate to their cellular PIC:POC ratio and other 15 physiological constraints. Understanding both the short and longer-term adaptive strategies of different coccolithophore lineages, and how these in turn shape the biogeochemical role of the group, is therefore crucial for modeling the ongoing changes in the global carbon cycle. Here we present data on the phenotypic evolution of a large and heavily-calcified genus Helicosphaera (order Zygodiscales) over the past 15 million years (Ma), at two deep-sea drill sites from the tropical Indian Ocean and temperate South Atlantic. The modern species Helicosphaera carteri, which displays eco-physiological adaptations 20 in modern strains, was used to benchmark the use of its coccolith morphology as a physiological proxy in the fossil record.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES SCHOOL OF OCEAN AND EARTH SCIENCE The Biogeochemical Role of Coccolithus pelagicus by Chris James Daniels Thesis for the degree of Doctor of Philosophy June 2015 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NAUTRAL AND ENVIRONMENTAL SCIENCES SCHOOL OF OCEAN AND EARTH SCIENCE Doctor of Philosophy THE BIOGEOCHEMICAL ROLE OF COCCOLITHUS PELAGICUS by Chris James Daniels Coccolithophores are a biogeochemically important group of phytoplankton, responsible for around half of oceanic carbonate production through the formation of calcite coccoliths. Globally distributed, Emiliania huxleyi is generally perceived to be the key calcite producer, yet it has a relatively low cellular calcite content (~ 0.4 – 0.7 pmol C cell -1) compared to heavily calcified species such as Coccolithus pelagicus (~ 15 – 21 pmol C cell -1).
    [Show full text]