Multimodal Actions of Brown Seaweed (Ochrophyta)

Total Page:16

File Type:pdf, Size:1020Kb

Multimodal Actions of Brown Seaweed (Ochrophyta) Mariana Nunes Barbosa MULTIMODAL ACTIONS OF BROWN SEAWEED (OCHROPHYTA) BIOACTIVE COMPOUNDS IN INFLAMMATION AND ALLERGY NETWORK Thesis for Doctor Degree in Pharmaceutical Sciences Phytochemistry and Pharmacognosy Specialty Work performed under the supervision of Professor Doctor Paula Cristina Branquinho de Andrade and co-supervision of Professor Doctor Patrícia Carla Ribeiro Valentão May 2018 Study nature, love nature, stay close to nature. It will never fail you. – Frank Lloyd Wright To my beloved family and my dear friends Work financially supported through the attribution of a Doctoral Grant (SFRH/BD/95861/2013) by the Fundação para a Ciência e a Tecnologia (FCT) under the framework of POPH – QREN – Type 4.1 – Advanced Training, funded by the Fundo Social Europeu (FSE) and by National funds of Ministério da Educação e Ciência (MEC), and by Programa de Cooperación Interreg V-A España–Portugal (POCTEP) 2014–2020 (project 0377_IBERPHENOL_6_E). VII IT IS AUTHORIZED THE REPRODUCTION OF THIS THESIS ONLY FOR RESEARCH PURPOSES, UNDER THE WRITTEN STATEMENT OF THE INTERESTED PARTY, COMMITTING ITSELF TO DO IT. VIII PUBLICATIONS PUBLICATIONS The data contained in the following works make part of this thesis. PUBLICATIONS IN INTERNATIONAL PEER-REVIEWED JOURNALS INDEXED AT THE JOURNAL CITATION REPORTS (JCR) OF THE ISI WEB OF KNOWLEDGE: 1. Barbosa M, Valentão P, Andrade PB. Bioactive compounds from macroalgae in the new millennium: Implications for neurodegenerative diseases. Mar Drugs. 2014 Sep; 12 (9): 4934–4972. 2. Barbosa M, Collado-González J, Andrade PB, Ferreres F, Valentão P, Galano JM, Durand T, Gil-Izquierdo Á. Nonenzymatic α-linolenic acid derivatives from the sea: Macroalgae as novel sources of phytoprostanes. J Agric Food Chem. 2015 Jul ;63 (28): 6466–6474. 3. Barbosa M, Valentão P, Andrade PB. Biologically active oxylipins from enzymatic and nonenzymatic routes in macroalgae. Mar Drugs. 2016 Jan; 14 (1): 23. 4. Fernandes F, Barbosa M, Oliveira AP, Azevedo IC, Sousa-Pinto I, Valentão P, Andrade PB. The pigments of kelps (Ochrophyta) as part of the flexible response to highly variable marine environments. J Appl Phycol 2016 Dec; 28 (6): 3689–3696. 5. Barbosa M, Fernandes F, Pereira DM, Azevedo IC, Sousa-Pinto I, Andrade PB, Valentão P. Fatty acid patterns of the kelps Saccharina latissima, Saccorhiza polyschides and Laminaria ochroleuca: Influence of changing environmental conditions. Arab J Chem 2017 (in press). DOI: 10.1016/j.arabjc.2017.01.015. 6. Barbosa M, Lopes G, Ferreres F, Andrade PB, Pereira DM, Gil-Izquierdo Á, Valentão P. Phlorotannin extracts from Fucales: Marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. Algal Res 2017 Dec; 28: 1–8. 7. Lopes G, Barbosa M, Vallejo F, Gil-Izquierdo Á, Andrade PB, Valentão P, Pereira DM, Ferreres F. Profiling phlorotannins from Fucus spp. of the Northern Portuguese coastline: Chemical approach by HPLC-DAD- ESI/MSn and UPLC-ESI-QTOF/MS. Algal Res 2018 Jan; 29: 113–120. IX PUBLICATIONS 8. Barbosa M, Lopes G, Valentão P, Ferreres F, Gil-Izquierdo Á, Pereira DM, Andrade PB. Edible seaweeds’ phlorotannins in allergy: a natural multi- target approach. (Under review) 9. Barbosa M, Lopes G, Andrade PB, Valentão P. Inflammation and allergy network: The multimodal actions of brown seaweed phlorotannins. (Manuscript in preparation) BOOK CHAPTER: 1. Barbosa M, Valentão P, Andrade PB. Astaxanthin and fucoxanthin: Promising marine xanthophylls with therapeutic potential. Accepted for publication in Encyclopedia of Marine Biotechnology, Kim SK (Ed.). Wiley- Blackwell, New Jersey, USA. ORAL COMMUNICATION: 1. Barbosa M, Fernandes F, Pereira DM, Valentão P, Ferreres F, Gil- Izquierdo Á, Andrade PB. UHPLC-QqQ-MS/MS method for phytoprostane profiling in macroalgae. 11th National Meeting of Organic Chemistry and 4th Meeting of Therapeutic Chemistry. December 1–3, 2015. Porto, Portugal. POSTER COMMUNICATIONS: 1. Andrade PB, Lopes G, Barbosa M, Weber GM, Pinto E, Valentão P. Exploring seaweeds: the potential of phlorotannins. 8th ISANH Congress on Polyphenols Applications. June 5–6, 2014. Lisboa, Portugal. 2. Barbosa M, Collado-González J, Ferreres F, Valentão P, Fernandes F, Pereira DM, Gil-Izquierdo Á, Andrade PB. Non-enzymatic α-linolenic acid derivatives in macroalgae: Phytoprostane profiling. 2nd EuCheMS Congress on Green and Sustainable Chemistry (EuGSC). October 4–7, 2015. Lisboa, Portugal. X PUBLICATIONS 3. Andrade PB, Barbosa M, Lopes G, Ferreres F, Gil-Izquierdo Á, Pereira DM, Valentão P. Marine algal polyphenols: Phlorotannin-targeted extracts from Fucus spp. and their anti-inflammatory potential. XXIX International Conference on Polyphenols and 9th Tannin Conference. July 16–20, 2018. Madison, USA. XI AUTHOR STATEMENT The author declares to have afforded a major contribution to the technical execution, interpretation of the results and manuscript preparation of all works included in this thesis, with the collaboration of other coauthors. XII ACKNOWLEDGMENTS ACKNOWLEDGMENTS Accomplishing this PhD thesis would not have been possible without the contribution of several people and institutions to whom I would like to thank: To “Fundação para a Ciência e a Tecnologia” (FCT) for granting me a Doctoral scholarship (SFRH/BD/95861/2013) under the POPH – QREN – Type 4.1 – Advanced Training, funded by the European Social Fund (FSE) and by National funds from the “Ministério da Educação e Ciência”, and by Programa de Cooperación Interreg V-A España–Portugal (POCTEP) 2014–2020 (project 0377_IBERPHENOL_6_E). To Prof. Doctor Paula Cristina Branquinho de Andrade, my supervisor, for the continuous support of my PhD. I am gratefully indebted to her for accepting me in the Laboratory of Pharmacognosy of the Faculty of Pharmacy of the University of Porto and for all the years of guidance and encouragement. With her, I began my humble path in research, always as her dedicated student. I have always admired her professional journey and her charisma, which incented me to pursue the PhD. Prof. Paula consistently allowed this thesis to be my own work but steered me in the right direction whenever she thought I needed. In fact, without her valuable inputs this thesis could not have been successfully conducted. I could not have imagined having a better supervisor and mentor for my PhD. Thank you. To Prof. Doctor Patrícia Carla Ribeiro Valentão, co-supervisor of this thesis, for her uninterrupted patience and insightful recommendations. Whenever I ran into a trouble spot or had a question about my research or writing, her door was always open. Prof. Patrícia’s attention to detail drove me to be better and her hard questions incented me to widen my research from various perspectives. For all this, I would like to express my very great appreciation. To Prof. Doctor Federico Ferreres, from Centro de Edafología y Biología Aplicada del Segura (CEBAS), of Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain, for his availability and essential contribution for the identification of phlorotannins by HPLC-DAD-ESI/MSn and UPLC-ESI-QTOF/MS. His willingness to give his time so generously has been very much appreciated. To Prof. Doctor Ángel Gil-Izquierdo, also from CEBAS-CSIC, for his assistance in conducting the UHPLC-QqQ-MS/MS analysis of phytoprostanes. XIII ACKNOWLEDGMENTS To my PhD colleagues and to all the staff of the Laboratory of Pharmacognosy of the Faculty of Pharmacy of the University of Porto, for their companionship, for the stimulating discussions and for contributing to the normal functioning of the lab and the development of this thesis. To my dear friends that even under the toughest circumstances always made me laugh. I sincerely appreciate your support. To Lara Reis, my friend of a lifetime, for her precious encouragement and unceasing support. To my family, particularly my grandmother Belmira, my uncle Serafim, my cousin Ana, my brother, and my nephew Francisco, for their care and support. To Hugo Santos, for all his dedication, understanding and care. Thank you for always being there. To my parents, for their never-ending support and unconditional love. None of this would have been possible without them. XIV ABSTRACT ABSTRACT ABSTRACT Among the wealth of biodiversity characterizing the marine environment, macroalgae, commonly addressed as seaweeds, have proved their auspicious ecological roles, as well as their chemical and biological potential. Seaweeds are an abundant and heterogenous group of photosynthetic organisms, distributed worldwide and endowed of unique molecules with high impact in food science, pharmaceutical industry, and public health. Within seaweed groups, the brown ones (Ochrophyta) stand out, as one of the most prolific producers of functional compounds. To harness the biotechnological potential of the Portuguese marine flora, several seaweed species were analyzed and explored for their chemical composition and biological activities. Moreover, as seaweed cultivation has become more widespread, there is a need to expand the knowledge on this material. Therefore, seaweeds grown in integrated multi-trophic aquaculture (IMTA) systems were also studied. A complex fatty acid profile, characterized mainly by the presence of medium and long fatty acyl chains (14–22 carbon atoms), with different degrees of unsaturation, was observed in Saccharina latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders, Saccorhiza polyschides (Lightfoot) Batters, and Laminaria ochroleuca Bachelot de la Pylaie tissues subjected to seasonal variations,
Recommended publications
  • Università Di Bologna in Cotutela Con Università Dell'algarve
    Allma Mater Studiiorum – Uniiversiità dii Bollogna in cotutela con Università dell’Algarve DOTTORATO DI RICERCA IN Scienze Della Terra, Della Vita E Dell’Ambiente Ciclo XXIX Settore Concorsuale di afferenza: 05/C1 Ecologia Settore Scientifico disciplinare: BIO/07 Ecologia GENETIC BACKGROUND, RANGE SHIFTS AND ASSOCIATED MICROBIAL RESPONSES OF CANOPY ALGAE UNDER CHANGING ENVIRONMENT Presentata da: Roberto Buonomo Coordinatore Dottorato Relatori Prof. Barbara Mantovani Prof. Laura Airoldi Prof. Ester A. Serrão Co–relatori Dr. Aschwin H. Engelen Esame finale anno 2017 “Dove inizia la fine del mare? O addirittura: cosa diciamo quando diciamo: mare? Diciamo l'immenso mostro capace di divorare qualsiasi cosa, o quell'onda che ci schiuma intorno ai piedi? L'acqua che puoi tenere nel cavo della mano o l'abisso che nessuno può vedere? Diciamo tutto in una sola parola o in una sola parola tutto nascondiamo? Sto qui, a un passo dal mare, e neanche riesco a capire, lui, dov'è. Il mare. Il mare.” – Alessandro Baricco, Oceano Mare Genetic background, range shifts and associated microbial responses of canopy algae under changing environment ABSTRACT Marine forests are a key habitat across temperate rocky shores, increasing dimensional complexity, local biodiversity, and productivity. However, canopy-forming algae are experiencing a general global decline, mostly driven by human pressures on coastal ecosystems and global changes. In contrast with their high ecological relevance, little is known about how their genetic diversity, dispersal and connectivity can be affected by global changes, despite the expected consequences for population resilience. I focused on studying brown macroalgae of the genus Cystoseira, one of the leading canopy-forming seaweed genera along European coasts, coupling molecular and ecological approaches to understand several processes that affect these marine forests.
    [Show full text]
  • Sunscreen, Antioxidant, and Bactericide Capacities of Phlorotannins from the Brown Macroalga Halidrys Siliquosa
    1 Journal Of Applied Phycology Achimer December 2016, Volume 28 Issue 6 Pages 3547-3559 http://dx.doi.org/10.1007/s10811-016-0853-0 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00366/47682/ © Springer Science+Business Media Dordrecht 2016 Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa Le Lann Klervi 1, *, Surget Gwladys 1, Couteau Celine 2, Coiffard Laurence 2, Cerantola Stephane 3, Gaillard Fanny 4, Larnicol Maud 5, Zubia Mayalen 6, Guerard Fabienne 1, Poupart Nathalie 1, Stiger-Pouvreau Valerie 1 1 UBO, European Inst Marine Studies IUEM, LEMAR UMR UBO CNRS Ifremer IRD 6539, Technopole Brest Iroise, F-29280 Plouzane, France. 2 Nantes Atlant Univ, Univ Nantes, Fac Pharm, LPiC,MMS,EA2160, 9 Rue Bias,BP 53508, F-44000 Nantes, France. 3 UBO, RMN RPE MS, 6 Ave,Victor Le Gorgeu CS93837, F-29238 Brest 3, France. 4 CNRS, Plateforme Spectrometrie Masse MetaboMER, FR2424, Stn Biol, Pl Georges Teissier,BP 74, F-29682 Roscoff, France. 5 Venelle Carros, Labs Sci & Mer, CS 70002, F-29480 Le Relecq Kerhuon, France. 6 Univ Polynesie Francaise, EIO UMR 244, LabEx CORAIL, BP 6570, Faaa 98702, Tahiti, Fr Polynesia. * Corresponding author : Klervi Le Lann, email address : [email protected] Abstract : The present study focused on a brown macroalga (Halidrys siliquosa), with a particular emphasis on polyphenols and their associated biological activities. Two fractions were obtained by liquid/liquid purification from a crude hydroethanolic extract: (i) an ethyl acetate fraction and (ii) an aqueous fraction. Total phenolic contents and antioxidant activities of extract and both fractions were assessed by in vitro tests (Folin–Ciocalteu test, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power assay, superoxide anion scavenging assay, and β-carotene–linoleic acid system).
    [Show full text]
  • Investigating the Genetic Origin of Three Fucus Morphotypes Using Microsatellite Analysis
    Investigating the genetic origin of three Fucus morphotypes using microsatellite analysis Frida Catharina Skovereng Knoop Master of Marine Biology, June 2021 Supervisors: Inga Kjersti Sjøtun, Pedro Miguel de Azevedo Ribeiro, Geir Dahle Department of Biological Sciences, University of Bergen 1 Acknowledgements First, I would like to say thank you Kjersti, for shaping the thesis and for giving me the opportunity to participate in this project. Without exception, you have been so kind and supportive throughout the whole process. Although I only got to explore a small part of the vast world of algae, it surely has been an inspirational and interesting journey full of new learnings. Thank you for your guidance and patience in the field, the lab, and for always answering my questions. I could not ask for a better supervisor, and it has been a pleasure to work with you. Pedro, thank you for being an excellent co-supervisor. During this thesis, I very much appreciated your positive attitude and patience. Thank you for taking your time to explain the processes behind the molecular work and for guiding me through the statistical part, which I found particularly challenging. During stressful times, your support kept me calm and made sure I did not lose focus. Also, your feedback was very much appreciated. A special thank you to co-supervisor Geir Dahle at the Institute of Marine Science (IMR) for taking your time to help with the genetic analysis, the ABI Machine, and allele scoring, which was only possible at IMR. I also want to thank you for sharing your knowledge regarding microsatellite analysis, being helpful with the statistics, and providing good feedback.
    [Show full text]
  • Establishment and Persistence of Dense Stands of the Introduced Kelp Undaria Pinnatifida"
    "Establishment and persistence of dense stands of the introduced kelp Undaria pinnatifida" by Joseph Peter Valentine BSc(Hons), University of Tasmania Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania (April, 2003) II Statement of Originality This thesis contains no material that has been accepted for a degree or diploma by the University or any other institution. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due acknowledgement is made in the text. Joseph Peter Valentine Statement of Authority of Access This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Joseph Peter Valentine DI Acknowledgements To begin I would like to thank my supervisor, Craig Johnson for his encouragement and support over the duration of the project. Your efforts to secure funds made this work possible and for that I am very grateful. Your help and advice on experimental design and analysis was also appreciated, as was your understanding during some challenging times. An intensive diving project such as this one cannot be completed successfully (and safely) without a reliable diving buddy. This work could not have been conducted without the help of my fellow PhD student and friend Hugh Pederson. Hugh's assistance and advice above and below the water, particularly on all things mechanical was invaluable. I also appreciate Hugh's understanding in accommodating field schedules to meet the needs of both of our projects. It was not all hard work though- a tough day of Undaria surveying around Maria Island was often rounded out by fine cuisine, with 'Peanut butter chicken' a favourite.
    [Show full text]
  • Plants and Ecology 2013:2
    Fucus radicans – Reproduction, adaptation & distribution patterns by Ellen Schagerström Plants & Ecology The Department of Ecology, 2013/2 Environment and Plant Sciences Stockholm University Fucus radicans - Reproduction, adaptation & distribution patterns by Ellen Schagerström Supervisors: Lena Kautsky & Sofia Wikström Plants & Ecology The Department of Ecology, 2013/2 Environment and Plant Sciences Stockholm University Plants & Ecology The Department of Ecology, Environment and Plant Sciences Stockholm University S-106 91 Stockholm Sweden © The Department of Ecology, Environment and Plant Sciences ISSN 1651-9248 Printed by FMV Printcenter Cover: Fucus radicans and Fucus vesiculosus together in a tank. Photo by Ellen Schagerström Summary The Baltic Sea is considered an ecological marginal environment, where both marine and freshwater species struggle to adapt to its ever changing conditions. Fucus vesiculosus (bladderwrack) is commonly seen as the foundation species in the Baltic Sea, as it is the only large perennial macroalgae, forming vast belts down to a depth of about 10 meters. The salinity gradient results in an increasing salinity stress for all marine organisms. This is commonly seen in many species as a reduction in size. What was previously described as a low salinity induced dwarf morph of F. vesiculosus was recently proved to be a separate species, when genetic tools were used. This new species, Fucus radicans (narrow wrack) might be the first endemic species to the Baltic Sea, having separated from its mother species F. vesiculosus as recent as 400 years ago. Fucus radicans is only found in the Bothnian Sea and around the Estonian island Saaremaa. The Swedish/Finnish populations have a surprisingly high level of clonality.
    [Show full text]
  • The Halogenated Metabolism of Brown Algae
    The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage To cite this version: Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance. Marine drugs, MDPI, 2010, 8, pp.988. hal-00987044 HAL Id: hal-00987044 https://hal.archives-ouvertes.fr/hal-00987044 Submitted on 5 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mar. Drugs 2010, 8, 988-1010; doi:10.3390/md8040988 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre 1,2,*, Philippe Potin 1,2, Catherine Leblanc 1,2 and Ludovic Delage 1,2 1 Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails: [email protected] (P.P.); [email protected] (C.L.); [email protected] (L.D.) 2 CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-298-292-361; Fax: +33-298-292-385.
    [Show full text]
  • Species Are Hypotheses: Avoid Connectivity Assessments Based on Pillars of Sand Eric Pante, Nicolas Puillandre, Amélia Viricel, Sophie Arnaud-Haond, D
    Species are hypotheses: avoid connectivity assessments based on pillars of sand Eric Pante, Nicolas Puillandre, Amélia Viricel, Sophie Arnaud-Haond, D. Aurelle, Magalie Castelin, Anne Chenuil, Christophe Destombe, Didier Forcioli, Myriam Valero, et al. To cite this version: Eric Pante, Nicolas Puillandre, Amélia Viricel, Sophie Arnaud-Haond, D. Aurelle, et al.. Species are hypotheses: avoid connectivity assessments based on pillars of sand. Molecular Ecology, Wiley, 2015, 24 (3), pp.525-544. hal-02002440 HAL Id: hal-02002440 https://hal.archives-ouvertes.fr/hal-02002440 Submitted on 31 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Molecular Ecology Species are hypotheses : avoid basing connectivity assessments on pillars of sand. Journal:For Molecular Review Ecology Only Manuscript ID: Draft Manuscript Type: Invited Reviews and Syntheses Date Submitted by the Author: n/a Complete List of Authors: Pante, Eric; UMR 7266 CNRS - Université de La Rochelle, Puillandre, Nicolas; MNHN, Systematique & Evolution Viricel, Amélia; UMR 7266 CNRS -
    [Show full text]
  • Extraction Assistée Par Enzyme De Phlorotannins Provenant D'algues
    Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maya Puspita To cite this version: Maya Puspita. Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques. Biotechnologie. Université de Bretagne Sud; Universitas Diponegoro (Semarang), 2017. Français. NNT : 2017LORIS440. tel-01630154v2 HAL Id: tel-01630154 https://hal.archives-ouvertes.fr/tel-01630154v2 Submitted on 9 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Enzyme-assisted extraction of phlorotannins from Sargassum and biological activities by: Maya Puspita 26010112510005 Doctoral Program of Coastal Resources Managment Diponegoro University Semarang 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maria Puspita 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques par: Maya Puspita Ecole Doctorale
    [Show full text]
  • An Emerging Trend in Functional Foods for the Prevention of Cardiovascular Disease and Diabetes: Marine Algal Polyphenols
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols Margaret Murray , Aimee L. Dordevic , Lisa Ryan & Maxine P. Bonham To cite this article: Margaret Murray , Aimee L. Dordevic , Lisa Ryan & Maxine P. Bonham (2016): An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2016.1259209 To link to this article: http://dx.doi.org/10.1080/10408398.2016.1259209 Accepted author version posted online: 11 Nov 2016. Published online: 11 Nov 2016. Submit your article to this journal Article views: 322 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [130.194.127.231] Date: 09 July 2017, At: 16:18 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2016.1259209 An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols Margaret Murray a, Aimee L. Dordevic b, Lisa Ryan b, and Maxine P. Bonham a aDepartment of Nutrition, Dietetics and Food, Monash University, Victoria, Australia; bDepartment of Natural Sciences, Galway-Mayo Institute of Technology, Galway, Ireland ABSTRACT KEYWORDS Marine macroalgae are gaining recognition among the scientific community as a significant source of Anti-inflammatory; functional food ingredients.
    [Show full text]
  • Feasibility Study for Integrated Multitrophic Aquaculture in Southern Australia
    Feasibility study for integrated multitrophic aquaculture in southern Australia K. H. Wiltshire, J. E. Tanner, C.F.D. Gurgel and M. R Deveney SARDI Publication No. F2015/000786-1 SARDI Research Report Series No. 883 ISBN: 978-1-921563-86-7 FRDC PROJECT NO. 2010/201 SARDI Aquatics Sciences PO Box 120 Henley Beach SA 5022 December 2015 Report to the Fisheries Research & Development Corporation Feasibility study for integrated multitrophic aquaculture in southern Australia Report to the Fisheries Research & Development Corporation K. H. Wiltshire, J. E. Tanner, C.F.D. Gurgel and M. R Deveney SARDI Publication No. F2015/000786-1 SARDI Research Report Series No. 883 ISBN: 978-1-921563-86-7 FRDC PROJECT NO. 2010/201 December 2015 This publication may be cited as: Wiltshire, K. H., Tanner, J. E., Gurgel, C. F. D. and Deveney, M. R. (2015). Feasibility study for integrated multitrophic aquaculture in southern Australia. Report to the Fisheries Research & Development Corporation. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2015/000786-1. SARDI Research Report Series No. 883. 115pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.pir.sa.gov.au/research DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions.
    [Show full text]
  • Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria
    marine drugs Review Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria James Lever 1 , Robert Brkljaˇca 1,2 , Gerald Kraft 3,4 and Sylvia Urban 1,* 1 School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476V Melbourne, VIC 3001, Australia; [email protected] (J.L.); [email protected] (R.B.) 2 Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia 3 School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia; [email protected] 4 Tasmanian Herbarium, College Road, Sandy Bay, Tasmania 7015, Australia * Correspondence: [email protected] Received: 29 January 2020; Accepted: 26 February 2020; Published: 28 February 2020 Abstract: Marine macroalgae occurring in the south eastern region of Victoria, Australia, consisting of Port Phillip Bay and the heads entering the bay, is the focus of this review. This area is home to approximately 200 different species of macroalgae, representing the three major phyla of the green algae (Chlorophyta), brown algae (Ochrophyta) and the red algae (Rhodophyta), respectively. Over almost 50 years, the species of macroalgae associated and occurring within this area have resulted in the identification of a number of different types of secondary metabolites including terpenoids, sterols/steroids, phenolic acids, phenols, lipids/polyenes, pheromones, xanthophylls and phloroglucinols. Many of these compounds have subsequently displayed a variety of bioactivities. A systematic description of the compound classes and their associated bioactivities from marine macroalgae found within this region is presented. Keywords: marine macroalgae; bioactivity; secondary metabolites 1.
    [Show full text]
  • Brown Algae As a Source of Bioactive Compounds for Pancreatic Cancer
    Brown algae as a source of bioactive compounds for pancreatic cancer treatment Thanh Trung Dang B.Eng (Nha Trang University, Khanh Hoa, Vietnam) MSc (Nha Trang University, Khanh Hoa, Vietnam) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Food Science School of Environmental and Life Sciences, Faculty of Science University of Newcastle Australia May 2018 STATEMENT OF ORIGINALITY I hereby certify that to the best of my knowledge and belief this thesis is my own work and contains no material previously published or written by another person except where due references and acknowledgements are made. It contains no material which has been previously submitted by me for the award of any other degree or diploma in any university or other tertiary institution. Thanh Trung Dang Date: 6/5/2018 i DECLARATION OF AUTHORSHIP I hereby certify that this thesis is in the form of a series of 8 papers. I have included as part of the thesis a written statement from each co-author, endorsed in writing by the Faculty Assistant Dean (Research Training), attesting to my contribution to any jointly authored papers. Thanh Trung Dang Date: 6/5/2018 ii ACKNOWLEDGEMENTS Firstly, I would like to give a great appreciation to my supervisors: Principal supervisor: A/Prof. Christopher J. Scarlett; Co-supervisors: A/Prof. Michael C. Bowyer and Dr. Ian A. Van Altena for their supervision and support during my PhD course. The suggestions and encouragement from the supervisor panel played an important role in my research achievements. I acknowledge the financial support from University of Newcastle; the Vietnamese Government through the Ministry of Education and Training; the Ministry of Agriculture and Rural Development for awarding a VIED-TUIT scholarship, which enabled me to study for a PhD at the University of Newcastle, with full cover for academic expenses, as well as living and travellingallowances.
    [Show full text]