The Identification and Development of Small Molecule Inhibitors of Amyloid Β Aggregation

Total Page:16

File Type:pdf, Size:1020Kb

The Identification and Development of Small Molecule Inhibitors of Amyloid Β Aggregation The Identification and Development of Small Molecule Inhibitors of Amyloid β Aggregation Súil Collins Downing College University of Cambridge September 2017 Supervised by Professor David R. Spring A dissertation submitted to the University of Cambridge for the degree of Doctor of Philosophy Abstract The Identification and Development of Small Molecule Inhibitors of Amyloid β Aggregation Súil Collins Amyloid β (1-42) (Aβ42) is a seminal neuropathic agent in Alzheimer’s disease (AD), a multifaceted neurodegenerative disorder for which no preventative measures or disease modifying therapies currently exist. Aggregation of this peptide plays a key role in the synaptic dysfunction and neuronal death associated with the disease. Perturbing the aggregation process, therefore, represents a key strategy for the development of new AD therapeutics. A variety of issues with current screening methods, including lack of reproducibility, high reagent consumption and spectral interference from the test molecules, can limit efforts to identify new small molecule inhibitors. Furthermore, the lack of robust, time- and cost-efficient methods for screening compounds in cellular or in vivo models limits the throughput with which seemingly active small molecules can be validated and prioritised. Herein, this thesis describes efforts to overcome such limitations through the development of a unified in vitro to in vivo assay system, in which hits identified in the ‘nanoFLIM’ microfluidic-based assay can quickly be tested in cellular and whole organism disease models. The assay platform designed relies on the use of an amyloid aggregation fluorescence lifetime sensor. Aβ42 aggregation is monitored by changes in the fluorescence lifetime of an attached fluorophore, which is significantly quenched upon amyloid formation. To take advantage of the benefits associated with miniaturisation, an in vitro microfluidic platform was employed. A microfluidic chip capable of trapping 110 precisely ordered droplets was designed, allowing for increased sample size and greatly lowering reagent consumption relative to conventional assay formats. Optimisation of the lifetime sensor technique permitted real-time compound screening in SH-SY5Y neuroblastoma cells, as well as in disease model Caenorhabditis elegans (C. elegans). To demonstrate the potential of this assay, a selection of novel chemical libraries developed in the Spring research group was screened, resulting in the identification of a key library of interest. The inhibitory activity of the lead compound from this collection was validated using a variety of biophysical tests, and was also shown to suppress amyloid aggregation in the live cell fluorescence lifetime sensor assay, as well as in whole organism disease model C. elegans. i Whilst assay development was underway, additional screening of structurally diverse chemical libraries was performed using a conventional Thioflavin T spectroscopic assay. Such work identified another molecular scaffold capable of exerting a strong inhibitory effect against Aβ42 aggregation. A selection of analogues was synthesised to improve the in vivo profile of this library, giving rise to a second lead inhibitory compound. The activity of this compound was subsequently validated in biophysical and cellular tests, and was also tested in disease model Drosophila melanogaster. The aggregation of Aβ42 lies at the root of Alzheimer’s disease. In light of the relatively few drug candidates in clinical trials for this disorder, the development of improved translational screening approaches and continued screening of novel chemical libraries is necessary to identify new potential therapeutics. In this study, an in vitro to in vivo fluorescence lifetime imaging assay has been established. Using this assay system and conventional screening approaches, two Aβ42 aggregation inhibitors have been identified and validated. These represent promising candidates for the development of new AD therapeutic agents, or for use as molecular probes to further dissect the mechanisms underlying this devastating disease. ii Declaration This dissertation is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy. It describes work carried out in the Department of Chemistry, the Department of Biochemistry and the Department of Chemical Engineering and Biotechnology, at the University of Cambridge between June 2014 and September 2017, under the supervision of Professor David Spring. The work presented has not been submitted for any other degree. It does not exceed the prescribed word limit for the Physics and Chemistry Degree Committee. Signed, Date: _________________________ _____________________ Súil Collins Downing College, Cambridge iii iv To my family, with all my love and appreciation v vi Acknowledgements First and foremost, I would like to thank Prof David Spring for inviting me to join his research group and for giving me the freedom to develop a project that I feel so strongly about. I truly appreciate it. I would like to express my sincerest gratitude to Dr Gabriele Kaminski Schierle, her constant stream of ideas and unrivalled enthusiasm has been inspiring. Many thanks to Prof Florian Hollfelder, his guidance and constructive critique have kept me, and my project, on track. Prof Clemens Kaminski and Dr Damian Crowther also deserve special thanks, for taking the time to introduce me to microscopy and Drosophila studies, respectively. I greatly enjoyed all this work. I am very grateful to the BBSRC and the Cambridge Trust, for their generous funding and for giving me the opportunity to participate in such an exciting interdisciplinary programme. I have been incredibly lucky to work in three inspiring research groups, each filled with exceptional individuals, who freely gave their time and expertise to help me and my research. Thank you to all the Spring group members, past and present, for sharing your chemistry knowledge and for all the fun and laughter we’ve shared, both in the lab, and out. Sean, Steve, Sarah, Joe, Josie, Tommy, Twigg and Warren deserve special acknowledgement for many helpful discussions and day-to-day moral support. Thanks to the members of the Laser Analytics and Molecular Neuroscience Groups for their kindness, encouragement and invaluable input. I am indebted to Claire, Colin and Amberley for helping me to get to grips with the biological experiments, and to Romain and Weiyue for sharing their boundless FLIM knowledge with me. Thanks to everyone in the Hollfelder group, for their continuous help and advice, and for being such great friends. I would also like to express my deepest appreciation to Liisa, for welcoming me to the group with a smile, and to Fabrice, for his instrumental help in getting my project up and running. I am extremely grateful to the many wonderful friends, both old and new, who have made the last few years so special. Thanks to the basketball club for helping to keep me sane after long hours in the lab. Molly, Michelle and Tati – three-time Varsity champs – thank you for never accepting my attempts to retire. Thanks to Sylwia and Timo, my Cambridge family; Nicole, Sara and Alice for always being there for me with a smile and a hug; Yuteng, for letting me follow him to Cambridge; Eilíse, a breath of fresh Irish air when I needed one; Rita, for making my internship such an enjoyable one; Tom Cotton, my favourite Hot Numbers date; and Kerri, my partner-in-crime from early undergraduate years and hopefully for many years to come. To those who I have neither the space nor word-count to mention, I thank you for your patience, support and encouragement. vii I reserve special thanks for David, who came into my life during a period when my research was being especially uncooperative. Thank you for being so exceptionally tolerant and patient. Compassionate from miles away, never passive in the things you say. You make every day happier. I will finish with thanks to my family, for always setting the bar high and giving me the space and encouragement to rise to the challenge. Much love and thanks to both my grannies, for providing inspirational examples of strong and determined women. Thanks to Aingeal, our surrogate auntie and wonderful friend. Leanbh, Eibh, and Tom, thank you for your support at every step of the journey. Your motivational messages, random jokes and Christmas countdown reminders have kept me smiling. Mariusz, Gar and Doc, thank you for providing family support, when I was otherwise distracted. Mum and dad, you deserve more thanks than I can ever put in words. Thanks to Dad for giving me my first science kit, and to mum for taking away all the dangerous pieces. Your constant love and unfaltering support have filled me with the hope, joy, and the confidence to be the best that I can be. I am eternally grateful to you both. A final thanks to my new baby niece, who has kindly waited to make her debut until after I’ve submitted. We’re ready for you now, Dotty. viii Abbreviations 3D three-dimensional °C degrees Celsius Å Ångström(s) μ micro λ wavelength τ fluorescence lifetime Aβ amyloid β peptide Aβ40 amyloid β peptide 40 residues in length Aβ42 amyloid β peptide 42 residues in length Aβ42-488 synthetic Aβ42 labelled with Hilyte™ Fluor 488 AD Alzheimer’s disease ADME absorption, distribution, metabolism, and excretion AFM atomic force microscopy APP amyloid precursor protein approx. approximately a.u. arbitrary units BACE beta-secretase BBB blood brain barrier (c)LogD (calculated) octanol-water distribution coefficient
Recommended publications
  • An Error Detection and Correction Framework for Connectomics
    An Error Detection and Correction Framework for Connectomics Jonathan Zung Ignacio Tartavull∗ Kisuk Leey Princeton University Princeton University MIT [email protected] [email protected] [email protected] H. Sebastian Seung Princeton University [email protected] Abstract We define and study error detection and correction tasks that are useful for 3D reconstruction of neurons from electron microscopic imagery, and for image seg- mentation more generally. Both tasks take as input the raw image and a binary mask representing a candidate object. For the error detection task, the desired output is a map of split and merge errors in the object. For the error correction task, the desired output is the true object. We call this object mask pruning, because the candidate object mask is assumed to be a superset of the true object. We train multiscale 3D convolutional networks to perform both tasks. We find that the error-detecting net can achieve high accuracy. The accuracy of the error-correcting net is enhanced if its input object mask is “advice” (union of erroneous objects) from the error-detecting net. 1 Introduction While neuronal circuits can be reconstructed from volumetric electron microscopic imagery, the process has historically [39] and even recently [37] been highly laborious. One of the most time- consuming reconstruction tasks is the tracing of the brain’s “wires,” or neuronal branches. This task is an example of instance segmentation, and can be automated through computer detection of the boundaries between neurons. Convolutional networks were first applied to neuronal boundary detection a decade ago [14, 38]. Since then convolutional nets have become the standard approach, arXiv:1708.02599v2 [cs.CV] 3 Dec 2017 and the accuracy of boundary detection has become impressively high [40, 3, 21, 9].
    [Show full text]
  • The Neural Circuit for Touch Sensitivity in Caenorhabditis Elegans'
    0270.6474/85/0504-0956$02.0’3/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 5. No. 4, pp. 9X-964 Printed in U.S.A. April 1985 The Neural Circuit for Touch Sensitivity in Caenorhabditis elegans’ MARTIN CHALFIE,*$*, JOHN E. SULSTON,* JOHN G. WHITE,* EILEEN SOUTHGATE,* J. NICHOL THOMSON,+ AND SYDNEY BRENNERS * Deoartment of Biolooical Sciences, Columbia University, New York, New York 10027 and $ Medical Research Council Laboratory of Molecular Biology, Hiis Road, Cambridge CB2 2QH, En&and Abstract In this paper, we use an alternative approach to analyze the function of specific cells and synapses in that part of the C. elegans The neural pathways for touch-induced movement in Cae- nervous system that mediates touch-induced movement. The recon- norhabditis ekgans contain six touch receptors, five pairs of structions are used to identify cells that are likely to be involved in interneurons, and 69 motor neurons. The synaptic relation- the touch reflex. The role of these cells is then tested by killing them ships among these cells have been deduced from recon- with a laser microbeam (Sulston and White, 1980) and observing structions from serial section electron micrographs, and the the effects of cell loss on the touch response. This method has roles of the cells were assessed by examining the behavior enabled us to confirm the functional importance of certain synapses of animals after selective killing of precursors of the cells by seen in the electron microscope and to generate a plausible model laser microsurgery. This analysis revealed that there are two of the touch reflex circuit.
    [Show full text]
  • Applications of the Free-Living Nematode, Caenorhabditis Elegans: a Review
    Journal of Zoological Research Volume 3, Issue 4, 2019, PP 19-30 ISSN 2637-5575 Applications of the Free-Living Nematode, Caenorhabditis Elegans: A Review Marwa I. Saad El-Din* Assistant Professor, Zoology Department, Faculty of Science, Suez Canal University, Egypt *Corresponding Author: Marwa I. Saad El-Din, Assistant Professor, Zoology Department, Faculty of Science, Suez Canal University, Egypt. Email: [email protected]. ABSTRACT The free-living nematode, Caenorhabditis elegans, has been suggested as an excellent model organism in ecotoxicological studies. It is a saprophytic nematode species that inhabits soil and leaf-litter environments in many parts of the world. It has emerged to be an important experimental model in a broad range of areas including neuroscience, developmental biology, molecular biology, genetics, and biomedical science. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of culture and maintenance, short and prolific life cycle, and small and transparent body. These features have led to an increasing use of C. elegans for environmental toxicology and ecotoxicology studies since the late 1990s. Although generally considered a soil organism, it lives in the interstitial water between soil particles and can be easily cultured in aquatic medium within the laboratory. It has been successfully used to study toxicity of a broad range of environmental toxicants using both lethal and sub lethal endpoints including behavior, growth and reproduction and feeding. In this work we review the choice, use and applications of this worm as an experimental organism for biological and biomedical researches that began in the 1960s.
    [Show full text]
  • SYDNEY BRENNER Salk Institute, 100010 N
    NATURE’S GIFT TO SCIENCE Nobel Lecture, December 8, 2002 by SYDNEY BRENNER Salk Institute, 100010 N. Torrey Pines Road, La Jolla, California, USA, and King’s College, Cambridge, England. The title of my lecture is “Nature’s gift to Science.” It is not a lecture about one scientific journal paying respects to another, but about how the great di- versity of the living world can both inspire and serve innovation in biological research. Current ideas of the uses of Model Organisms spring from the ex- emplars of the past and choosing the right organism for one’s research is as important as finding the right problems to work on. In all of my research these two decisions have been closely intertwined. Without doubt the fourth winner of the Nobel prize this year is Caenohabditis elegans; it deserves all of the honour but, of course, it will not be able to share the monetary award. I intend to tell you a little about the early work on the nematode to put it into an intellectual perspective. It bridges, both in time and concept, the biol- ogy we practice today and the biology that was initiated some fifty years ago with the revolutionary discovery of the double-helical structure of DNA by Watson and Crick. My colleagues who follow will tell you more about the worm and also recount their incisive research on the cell lineage and on the genetic control of all death. To begin with, I can do no better than to quote from the paper I published in 1974 (1).
    [Show full text]
  • A Cellular and Regulatory Map of the Cholinergic Nervous System of C
    TOOLS AND RESOURCES A cellular and regulatory map of the cholinergic nervous system of C. elegans Laura Pereira1,2,3*, Paschalis Kratsios1,2,3†, Esther Serrano-Saiz1,2,3†, Hila Sheftel4, Avi E Mayo4, David H Hall5, John G White6, Brigitte LeBoeuf7, L Rene Garcia7,8, Uri Alon4, Oliver Hobert1,2,3* 1Department of Biological Sciences, Columbia University, New York, United States; 2Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States; 3Howard Hughes Medical Institute, Columbia University, New York, United States; 4Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; 5Department of Neuroscience, Albert Einstein College of Medicine, New York, United States; 6MRC Laboratory of Molecular Biology, Cambridge, United Kingdom; 7Department of Biology, Texas A&M University, College Station, United States; 8Howard Hughes Medical Institute, Texas A&M University, College Station, United States Abstract Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including *For correspondence: pereira. a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared [email protected] (LP); or38@ interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that columbia.edu (OH) ACh may also operate very broadly as an inhibitory neurotransmitter.
    [Show full text]
  • C. Elegans Multi-Dendritic Sensory Neurons: Morphology and Function
    YMCNE-02539; No of Pages 10 Molecular and Cellular Neuroscience xxx (2010) xxx–xxx Contents lists available at ScienceDirect Molecular and Cellular Neuroscience journal homepage: www.elsevier.com/locate/ymcne C. elegans multi-dendritic sensory neurons: Morphology and function Adi Albeg a, Cody J. Smith b, Marios Chatzigeorgiou c, Dror G. Feitelson d, David H. Hall e, William R. Schafer c, David M. Miller III b, Millet Treinin a,⁎ a Department of Medical Neurobiology, Institute for Medical Research – Israel-Canada, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel b Department of Cell and Developmental Biology and Program in Neuroscience, Vanderbilt University, Nashville, TN 37232-8240, USA c Cell Biology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge UK d Department of Computer Science, Hebrew University, Jerusalem 91904, Israel e Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA article info abstract Article history: PVD and FLP sensory neurons envelope the body of the C. elegans adult with a highly branched network of thin Received 3 June 2010 sensory processes. Both PVD and FLP neurons are mechanosensors. PVD is known to mediate the response to Revised 2 October 2010 high threshold mechanical stimuli. Thus PVD and FLP neurons are similar in both morphology and function to Accepted 13 October 2010 mammalian nociceptors. To better understand the function of these neurons we generated strains lacking Available online xxxx them. Behavioral analysis shows that PVD and FLP regulate movement under normal growth conditions, as animals lacking these neurons demonstrate higher dwelling behavior. In addition, PVD—whose thin branches Keywords: — C.
    [Show full text]
  • Getting Into the Mind of a Worm—A Personal View* John G
    Getting into the mind of a worm—a personal view* John G. White§ Laboratory of Optical and Computational Instrumentation, University of Wisconsin, Madison WI 53706, USA Table of Contents 1. References ............................................................................................................................ 10 2. Author biography ................................................................................................................... 10 Ever since I can remember, I liked to take things to bits to see how they work. My parents thought that this trait was not to be encouraged when applied to living animals, so diverted my attention to things mechanical and electronic. I was given the use of a shed in the garden. This became my beloved workshop where I made bombs, rockets, and radios. After one of my bombs caused a local scare, my activities were restricted to electronics. On finishing school, I worked in a factory for a time and then progressed onto a couple of other jobs in industrial development labs on the basis of my self-taught skills in electronics. Eventually, I got a job as an electronics technician in the Medical Research Council's labs in Mill Hill (MRC National Institute for Medical Research, Mill Hill, London, UK). It was here that I got my first (ethical) exposure to biology. I developed a voltage clamp apparatus for neurophysiological research, a project that piqued my curiosity about nervous systems. I also developed a computer system for displaying 3D images of molecular structures. The MRC encouraged and supported me to study for a physics degree at Brunel University. However, after I graduated in 1969, there seemed no good career path where I could pursue my developing interest in computers in the lab where I was working, so I sought and obtained a job offer from industry.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Nonlinear Dynamics on a Novel Neural Topology a Thesis Submitted in Partial Fulfilment O
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Nonlinear Dynamics on a Novel Neural Topology A thesis submitted in partial fulfilment of the requirements For the degree of Master of Science in Physics By Alan Perstin May 2019 The thesis of Alan Perstin is approved: __________________________________ ___________ Dr. Eric Collins Date __________________________________ ___________ Dr. Tyler Luchko Date __________________________________ ___________ Dr. Yohannes Shiferaw, Chair Date California State University, Northridge ii Table of Contents Signature Page ii List of Figures v Abstract vii Chapter 1: Introduction 1 Chapter 2: Preliminary Biomedical Physics 5 2.1: Preliminaries Concerning Neurophysiology 5 2.2: Preliminaries Concerning Neural Diagnostics 11 2.3: Motivating the Island Network 15 Chapter 3: An Introduction to Graph Theory 20 3.1: Preliminaries Concerning Graphs 20 3.2: Graph Topology 21 3.2.1: The Adjacency Matrix 21 3.2.2: Degree Distribution and Edge Density 23 3.2.3: Average Shortest Path Length 25 3.2.4: Clustering Coefficient 27 3.2.5: Small-Worldness 29 3.2.6: Measures of Centrality 30 3.2.7: Hubs 34 3.2.8: Communities 37 3.2.9: Modularity 39 3.3: Topologies of Common Graphs 43 3.3.1: Random Networks 44 3.3.2: Small-World Networks 46 3.3.3: Scale-Free Networks 49 3.3.4: Closing Remarks 50 Chapter 4: Topology of the Island Network 52 4.1: Generating the Island Network 52 4.1.1: Properties of the Island Network 53 4.2: General Metrics 60 4.2.1 Degree Distribution and Edge Density 61 4.2.2 Small-Worldness 61 4.2.3 Hubs 63 4.2.4
    [Show full text]
  • Correlative Light and Electron Microscopy in an Intact Larval Zebrafish
    Correlative Light and Electron Microscopy in an Intact Larval Zebrafish The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Petkova, Mariela. 2020. Correlative Light and Electron Microscopy in an Intact Larval Zebrafish. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365549 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Correlative light and electron microscopy in an intact larval zebrafish a dissertation presented by Mariela Petkova to The Committee on Higher Degrees in Biophysics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biophysics Harvard University Cambridge, Massachusetts April 2020 ©2020 – Mariela Petkova all rights reserved. Thesis advisor: Professor Florian Engert Mariela Petkova Correlative light and electron microscopy in an intact larval zebrafish Abstract How does the structure of a living system relate to its function? In neuroscience, an outstanding issue is what can be learned about the brain’s function by knowing how the individual neurons are wired together. We use high resolution serial-section electron microscopy (EM) to map the structure of an entire vertebrate’s ner- vous system at the synaptic scale. The dataset is collected from an intact larval zebrafish at 4nm x 4nm x 30nm resolution and the imaged volume size is 76 million cubic microns.
    [Show full text]
  • The Beginning of Connectomics: a Commentary on White Et Al
    Downloaded from http://rstb.royalsocietypublishing.org/ on March 10, 2015 The beginning of connectomics: a commentary on White et al. (1986) rstb.royalsocietypublishing.org ‘The structure of the nervous system of the nematode Caenorhabditis elegans’ Review Scott W. Emmons Cite this article: Emmons SW. 2015 The Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA beginning of connectomics: a commentary The article ‘Structure of the nervous system of the nematode Caenorhabditis on White et al. (1986) ‘The structure of elegans’ (aka ‘The mind of a worm’) by White et al., published for the first the nervous system of the nematode time the complete set of synaptic connections in the nervous system of an Caenorhabditis elegans’. Phil. Trans. R. Soc. B animal. The work was carried out as part of a programme to begin to under- 370: 20140309. stand how genes determine the structure of a nervous system and how a http://dx.doi.org/10.1098/rstb.2014.0309 nervous system creates behaviour. It became a major stimulus to the field of C. elegans research, which has since contributed insights into all areas of biology. Twenty-six years elapsed before developments, notably more One contribution of 18 to a theme issue powerful computers, made new studies of this kind possible. It is hoped ‘Celebrating 350 years of Philosophical that one day knowledge of synaptic structure, the connectome, together Transactions: life sciences papers’. with results of many other investigations, will lead to an understanding of the human brain. This commentary was written to celebrate the 350th anni- versary of the journal Philosophical Transactions of the Royal Society.
    [Show full text]
  • Genes, Behavior, and Developmental Emergentism: One Process, Indivisible?
    Genes, Behavior, and Developmental Emergentism: One Process, Indivisible? Kenneth F. Schaffner Philosophy of Science, Vol. 65, No. 2. (Jun., 1998), pp. 209-252. Stable URL: http://links.jstor.org/sici?sici=0031-8248%28199806%2965%3A2%3C209%3AGBADEO%3E2.0.CO%3B2-B Philosophy of Science is currently published by The University of Chicago Press. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Wed Oct 31 17:29:19 2007 Genes, Behavior, and Developmental Emergentism: One Process, Indivisible? Kenneth F.
    [Show full text]
  • HHMI BULLETIN • Howard Hughes Medical Institute • Vol
    HHMI BULLETIN A UG. ’07 VOL .20 • NO.03 • Howard Hu BULLETIN g hes Medical Institute HHMI • www.hhmi.or Tinkerers g Scientists with technical ingenuity are opening new vistas into the finer points of the cell. In thIs Issue Brain Asymmetry / Outsmarting Bacteria / Wise Man of Janelia Sebastian Maerkl / Quake lab About the Size of A quarteR, thiS gRoovy pAtteRn iS actuAlly A microlAboratoRy, deSigned by HHMI inveStigAtoR Stephen quAke A Rivulet Runs And hiS grad Student SebastiAn MaeRkl At StAnfoRd university. it enAbleS scientiStS to obSeRve 2,400 possible Chemical interactionS Through It SimultAneouSly Among Single moleCuleS SuCh as DNA And pRotein transcription fACtors. the meChAniSmS of thiS microChip (the orange And gReen vAlveS diReCt the moleCuleS’ flow toward the blue ReACtion ChAmbers) Come fRom the buRgeoning field of microfluidics (See pAge 52), the scienCe of mAnipulAting fluidS At nAnoliteR volumeS—one-hundRedth to one-thousandth thAt of A humAn teardRop. NONPROFIT ORG. US POSTAGE PAID 4000 Jones Bridge Road HYATTSVILLE, MD Chevy Chase, Maryland 20815-6789 PERMIT NO. 61 www.hhmi.org Change Service Requested vol. 20 /no. 03 O b s e r v a t i O n s Landscape Planting 10" engineered soil media 4 oz non-woven Polypropylene 5" Coarse Granular drainage media Composite drainage net Protection/ separation Course G410 Feltbacked membrane (secondary membrane) 48 mil Loose-laid, Heat-weldable thermoplastic membrane 3" rigid extruded Polystyrene insulation board (60 Psi - min) 1/2" Composite drainage Panel G476 membrane (Primary Waterproofing) 80 mil Grid-laid Heat-Weldable thermoplastic membrane nWP-Hd Felt (Leveling Layer) High-density non-woven PolyproplenFelt Leveling Layer G459 membrane (12" Wide Grid strip Flashing) 60 mil Fully adhered Heat Weldable thermoplastic membrane 8" Concrete slab Control test drain (Leak detection system) 32 Planaria would make great magician’s assistants.
    [Show full text]