Seed Preference in the Central American Agouti, Dasyprocta Punctata

Total Page:16

File Type:pdf, Size:1020Kb

Seed Preference in the Central American Agouti, Dasyprocta Punctata Seed preference in the Central American Agouti, Dasyprocta punctata Kristen Coogan Department of Wildlife and Conservation Biology, University of Rhode Island ABSTRACT Scatter-hoarding animals in the tropics typically depend on a cached supply of reserves when food is scarce. The Optimal Foraging Theory seeks to explain the behaviors these organisms exhibit upon prey selection. It is important for these scatter-hoarding animals to choose the most beneficial food item that will increase their energy intake. Central American agouties (Dasyprocta puncata) were presented with two differently sized seed species, the water apple (Syzygium malaccense) and the peach palm (Bactris gasipaes). A total of 400 flagged seeds were used, 200 of each species in groups of 20 seeds per species, over a 14 day period in Monteverde, Costa Rica. The seeds were collected and observed to determine seed fate. There was a significant difference in seed weight between the two species (T-test, p = <0.0001) and a significant difference between which species D. punctata chose to cache more ((2, p = <0.05), although there was no significant difference between which seed species D. punctata chose to eat (2, p=>0.05). Although D. punctata chose to cache more of the larger seed species, size and weight alone may not be the only measure for seed selection, therefore D. punctata may exhibit other selection processes in order to obtain its energy intake. RESUMEN Los animales dispersores y acaparadores tropicales dependen típicamente del suministro oculto de reservas cuando el alimento es escaso. La Teoría de Forrajeo Óptimo procura explicar las conductas que estos organismos exhiben en la selección de presa. Es importante para estos animales dispersores y acaparadores escoger el artículo de alimento más beneficioso que aumentará su toma de energía. Se presentaron dos especies de semillas de diferentes tamaños, la manzana de agua (Syzygium malaccense) y el pejibaye (Bactris gasipaes) a la guatusa centroamericana (Dasyprocta punctata). Se utilizó un total de 400 semillas marcadas; 200 de cada especie en grupos de 20 semillas por especie en un período de 14 días en Monteverde, Costa Rica. Las semillas se colectaron y fueron observadas para determinar el destino de cada una. Se encontró una diferencia significativa en el peso de las semillas entre las dos especies (prueba de t, p = <0.0001) y una diferencia significativa entre cuál especie D. punctata enterró más frecuentemente (2, P = <0.05). Sin embargo, no hubo diferencias significativas entre las especies que D. punctata prefirió consumir (2, P = >0.05). Aunque D. punctata escogiera enterrar más semillas de la especie más grande, el tamaño y el peso por si solos no pueden ser los únicos criterios para la selección de la semilla; por lo tanto, puede que D. punctata utilice otros procesos de selección para obtener su energía. INTRODUCTION The goal of every organism in their lifetime is to survive and reproduce. Natural selection determines what phenotypes will be represented in future generations based on adaptation to selective pressures in the surrounding environments (Osborne 2000). Organisms must evaluate resource availability, foraging techniques, and survival probability in order to guarantee their survival and fitness. The Optimal Foraging Theory states that an organism will choose a feeding method that will maximize their net rate of energy intake. The net energy is measured as the amount of energy in the food minus the energy expended in finding, investing, and digesting it (Osborne 2000). The Optimal Foraging theory seeks to explain certain behaviors exhibited by organisms upon their diet selection. Selection of prey is made by evaluating both the positive and negative outcomes, and selection may be influenced by prey density, prey size, and nutrient content. Organisms will generally discriminate against food items which will not optimize their survival or fitness and choose those that will be most beneficial to them. Many animals hoard food from local abundance in order to conserve it for future use. In the case of a scatter-hoarding organism, small amounts of food are dispersed among many spatially spaced caches (Jansen et al. 2002). These individuals need to evaluate their food quality, in order to receive the highest net energy gain for the present time, as well as in the future when retrieving their cached reserves. It is beneficial for organisms which exhibit the scatter-hoarding strategy to manage a small supply of large seeds rather than a large supply of small, less nutritious seeds (Jansen et al. 2002). Seed fate is also important in determining the value of the food source. Scatter-hoarding animals typically eat few seeds while caching others. The seeds they store are presumably more valuable than the seeds they are consuming in order for them to be more beneficial in times of scarcity (Hallwachs 1994). The Central American Agouti, Dasyprocta punctata a scatter-hoarding organism. This species is a ground dwelling rodent, mostly active throughout the day, which can withstand disturbed habitats (Wainwright 2002). The diet of D. punctata consists mainly of fruits and seeds that are high in nutrients. Unlike the equally common seminivore- frugivore related species in the area, Agouti paca, D. punctata is unable to store fat. Their solution to seasonal scarcity is to bury seeds in times of plenty and dig them up later (Smythe 1978). Agoutis are therefore classified as a scatter hoarding rodent that usually caches a surplus of seeds in a dispersed pattern due to the uncertainty of retrieval (Smythe 1978). Seeds that have not been recovered have a possibility of germination, thereby also making D. punctata an important disperser for many plants. The aim of this study was to examine what preferences D. punctata exhibited for seed size. Smaller seeds were expected to be eaten due to their less nutritional value, while larger seeds were expected to be cached in order to benefit the agouti in times of scarcity. METHODS This experiment took place from April 23rd through May 7th, 2006 at the Santuario Ecológico located in Cerro Plano, Costa Rica, during the dry season (Fig. 1). The Santuario Ecológico is a secondary, lowland forest that was previously used for banana production and agouties are often observed foraging in a patch of open understory, approximately six meters by two meters in size. Two morphologically different tree seed species were used in choice experiments to determine whether D. punctata commonly took larger seeds over smaller seeds. The two species chosen for this study were Syzygium malaccense and Bactris gasipaes. The value of the seeds picked were placed under three categories based on their fate. The seed fate categories included being eaten, cached, or un-recovered. S. malaccense and B. gasipaes were purchased from a vegetable and fruit stand. The fruit was split with a knife; seeds were removed and then washed and dried. In order to locate the seeds in the field, each seed needed to be marked with flagging tape. Holes were carefully drilled in the center of every seed, and a meter of test nylon fishing line was threaded through the seed and tied. Twelve centimeters of flagging tape were then attached to the fishing line. Seeds were weighed in grams and then each tape was recorded with the seed number and weight. D. punctata bury the seeds not the flagging tape, so cached seeds were easily found. Previous studies have shown that marking seeds in this manner does not alter disperser behavior; however, this cannot be discounted completely (Jansen et al. 2002). Twenty seeds of each species were placed in two separate piles at the site, side by side (Fig. 2). Seeds were placed at 9 a.m. and checked the following morning at 8 a.m. The fates of the seeds were classified into one of the three categories, those being eaten, cached, or lost. Eaten seeds were those with the entire embryo consumed, or if the flagging tape and fishing line were removed from the seed. Cached seeds were those that were removed from the original site and buried shallowly in the nearby soil. Seeds whose flagging was not found were classified as lost. A new supply of seeds was then offered, ensuring that there were twenty of each seed species presented at all times. A t-test was used to determine weight difference in seed species. A Chi-squared test was also conducted in order to test if there was any significant difference in the fate of the seeds. RESULTS A total of 400 seeds were presented to D. punctata, 200 of each seed species. One- hundred and eighty one seeds were found and collected for data. Results of the S. malaccense seeds found, 148 seeds were eaten and 43 were cached. One-hundred and seventy-one of the B. gasipaes seeds were eaten, while 19 were cached (Table 1). The average weight for S. malaccense seeds was 10.78 g while the average weight for B. gasipaes seeds was 3.77 g (Fig. 3). An unpaired t-test showed that there was a significant difference in weight between the two chosen seed species (t = 15.70, p < 0.0001, df = 398). S. malaccense was the larger seed species used, while B. gasipaes was the smaller species. A Chi-squared test was used to determine if there were significant differences between the numbers of eaten or cached seeds between both species (Fig. 4). There was no significant difference in the number of seeds eaten between the S. malaccense and B. gasipaes (Chi-squared = 1.65, p >0.05, df = 1). Conversely, there was a significant difference in the numbers of cached seeds between the two species (Chi-squared = 9.2, p <0.05, df = 1). The Chi-squared test found that D.
Recommended publications
  • Mammal Abundances and Seed Traits Control the Seed Dispersal and Predation Roles of Terrestrial Mammals in a Costa Rican Forest
    BIOTROPICA 45(3): 333–342 2013 10.1111/btp.12014 Mammal Abundances and Seed Traits Control the Seed Dispersal and Predation Roles of Terrestrial Mammals in a Costa Rican Forest Erin K. Kuprewicz1 Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, U.S.A. ABSTRACT In Neotropical forests, mammals act as seed dispersers and predators. To prevent seed predation and promote dispersal, seeds exhibit physical or chemical defenses. Collared peccaries (Pecari tajacu) cannot eat some hard seeds, but can digest chemically defended seeds. Central American agoutis (Dasyprocta punctata) gnaw through hard-walled seeds, but cannot consume chemically defended seeds. The objectives of this study were to determine relative peccary and agouti abundances within a lowland forest in Costa Rica and to assess how these two mammals affect the survival of large seeds that have no defenses (Iriartea deltoidea, Socratea exorrhiza), physical defenses (Astrocaryum alatum, Dipteryx panamensis), or chemical defenses (Mucuna holtonii) against seed predators. Mammal abundances were deter- mined over 3 yrs from open-access motion-detecting camera trap photos. Using semi-permeable mammal exclosures and thread-marked seeds, predation and dispersal by mammals for each seed species were quantified. Abundances of peccaries were up to six times higher than those of agoutis over 3 yrs, but neither peccary nor agouti abundances differed across years. Seeds of A. alatum were predomi- nantly dispersed by peccaries, which did not eat A. alatum seeds, whereas non-defended and chemically defended seeds suffered high levels of predation, mostly by peccaries. Agoutis did not eat M. holtonii seeds. Peccaries and agoutis did not differ in the distances they dispersed seeds.
    [Show full text]
  • Red-Rumped Agouti)
    UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Dasyprocta leporina (Red-rumped Agouti) Family: Dasyproctidae (Agoutis) Order: Rodentia (Rodents) Class: Mammalia (Mammals) Fig. 1. Red-rumped agouti, Dasyprocta leporina. [http://upload.wikimedia.org/wikipedia/commons/3/3b/Dasyprocta.leporina-03-ZOO.Dvur.Kralove.jpg, downloaded 12 November 2012] TRAITS. Formerly Dasyprocta aguti, and also known as the Brazilian agouti and as “Cutia” in Brazil and “Acure” in Venezuela. The average Dasyprocta leporina weighs approximately between 3 kg and 6 kg with a body length of about 49-64 cm. They are medium sized caviomorph rodents (Wilson and Reeder, 2005) with brown fur consisting of darker spots of brown covering their upper body and a white stripe running down the centre of their underside (Eisenberg, 1989). Show sexual dimorphism as the males are usually smaller in size than the females but have a similar appearance (Wilson and Reeder, 2005). Locomotion is quadrupedal. Forefeet have four toes while hind feet (usually longer than forefeet) have 3. Small round ears with short hairless tail not more than 6 cm in length (Dubost 1998). UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour ECOLOGY. Dasyprocta leporina is found in the tropical forests of Trinidad and conserved in the Central Range Wildlife Sanctuary at the headwaters of the Tempuna and Talparo watersheds in central Trinidad (Bacon and Ffrench 1972). They are South American natives and are distributed widely in Venezuela, French Guiana and Amazon forests of Brazil (Asquith et al. 1999; Dubost 1998). Has widespread distribution in the Neotropics (Eisenberg 1989; Emmons and Feer 1997).
    [Show full text]
  • Panthera Onca) Distribution, Density, and Movement in the Brazilian Pantanal
    SUNY College of Environmental Science and Forestry Digital Commons @ ESF Dissertations and Theses 6-10-2019 Drivers of jaguar (Panthera onca) distribution, density, and movement in the Brazilian Pantanal Allison Devlin [email protected] Follow this and additional works at: https://digitalcommons.esf.edu/etds Part of the Environmental Monitoring Commons, and the Natural Resources and Conservation Commons Recommended Citation Devlin, Allison, "Drivers of jaguar (Panthera onca) distribution, density, and movement in the Brazilian Pantanal" (2019). Dissertations and Theses. 114. https://digitalcommons.esf.edu/etds/114 This Open Access Dissertation is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. DRIVERS OF JAGUAR (PANTHERA ONCA) DISTRIBUTION, DENSITY, AND MOVEMENT IN THE BRAZILIAN PANTANAL by Allison Loretta Devlin A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree State University of New York College of Environmental Science and Forestry Syracuse, New York June 2019 Department of Environmental and Forest Biology Approved by: Jacqueline L. Frair, Major Professor Stephen V. Stehman, Chair, Examining Committee James P. Gibbs, Examining Committee Jonathan B. Cohen, Examining Committee Peter G. Crawshaw Jr., Examining Committee Luke T.B. Hunter, Examining Committee Melissa K. Fierke, Department Chair S. Scott Shannon, Dean, The Graduate School © 2019 Copyright A.L. Devlin All rights reserved Acknowledgements I am indebted to many mentors, colleagues, friends, and loved ones whose guidance, support, patience, and constructive challenges have carried this project to its culmination.
    [Show full text]
  • Using Allele-Specific
    NOTES AND COMMENTS Rapid identification of capybara (Hydrochaeris hydrochaeris) using allele-specific PCR Henrique-Silva, F.*, Cervini, M., Rios, WM., Lusa, AL., Lopes, A., Gonçalves, D., Fonseca, D., Franzin, F., Damalio, J., Scaramuzzi, K., Camilo, R., Ferrarezi, T., Liberato, M., Mortari, N. and Matheucci Jr., E. Departamento de Genética e Evolução, Universidade Federal de São Carlos – UFSCar, Rod. Washington Luiz, Km 235, CEP 13565-905, São Carlos, SP, Brazil *e-mail: [email protected] Received August 11, 2005 – Accepted February 10, 2006 – Distributed February 28, 2007 (With 1 figure) The capybara is the largest rodent in the world and is ments of frozen meat using treatment with proteinase K, widely distributed throughout Central and South America as described in (Sambrook et al., 1989). Basically, the (Paula et al., 1999). It is an animal of economic interest meat fragments were incubated in 400 µL buffer (10 mM due to the pleasant flavor of its meat and higher protein Tris-HCl, pH:7.8; 5 mM EDTA; 0.5% SDS) containing content in comparison to beef and pork meat. The hide, 400 µg of. proteinase K at 65 °C for 2 hours. After that, hair and fat also have economic advantages. Thus, as an the solution was treated with an equal volume of phenol- animal with such high economic potential, it is the target chloroform, and the DNA was purified from the aqueous of hunters, even though hunting capybara is prohibited phase by ethanol precipitation. Approximately 50 ng of by law in Brazil (Fauna Law, number 9.605/98). the DNA was used in amplification reactions containing Due to their similarities, capybara meat is easily 20 mM Tris.HCl pH 8.4; 50 mM KCl; 1.5 mM MgCl2, confused with pork.
    [Show full text]
  • Dolichotis Patagonum (CAVIOMORPHA; CAVIIDAE; DOLICHOTINAE) Mastozoología Neotropical, Vol
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Silva Climaco das Chagas, Karine; Vassallo, Aldo I; Becerra, Federico; Echeverría, Alejandra; Fiuza de Castro Loguercio, Mariana; Rocha-Barbosa, Oscar LOCOMOTION IN THE FASTEST RODENT, THE MARA Dolichotis patagonum (CAVIOMORPHA; CAVIIDAE; DOLICHOTINAE) Mastozoología Neotropical, vol. 26, no. 1, 2019, -June, pp. 65-79 Sociedad Argentina para el Estudio de los Mamíferos Argentina Available in: https://www.redalyc.org/articulo.oa?id=45762554005 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Mastozoología Neotropical, 26(1):65-79, Mendoza, 2019 Copyright ©SAREM, 2019 Versión on-line ISSN 1666-0536 http://www.sarem.org.ar https://doi.org/10.31687/saremMN.19.26.1.0.06 http://www.sbmz.com.br Artículo LOCOMOTION IN THE FASTEST RODENT, THE MARA Dolichotis patagonum (CAVIOMORPHA; CAVIIDAE; DOLICHOTINAE) Karine Silva Climaco das Chagas1, 2, Aldo I. Vassallo3, Federico Becerra3, Alejandra Echeverría3, Mariana Fiuza de Castro Loguercio1 and Oscar Rocha-Barbosa1, 2 1 Laboratório de Zoologia de Vertebrados - Tetrapoda (LAZOVERTE), Departamento de Zoologia, IBRAG, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro, Brasil. 2 Programa de Pós-Graduação em Ecologia e Evolução do Instituto de Biologia/Uerj. 3 Laboratorio de Morfología Funcional y Comportamiento. Departamento de Biología; Instituto de Investigaciones Marinas y Costeras (CONICET); Universidad Nacional de Mar del Plata.
    [Show full text]
  • Mammal List of Mindo Lindo
    Mammal list of Mindo Lindo Fam. Didelphidae (Opossums) Didelphis marsupialis, Black-eared/ Common Opossum Fam. Soricidae (Shrews) Cryptotis spec Fam. Myrmecophagidae (Anteaters) Tamandua mexicana, Northern Tamandua Fam. Dasypodidae (Armadillos) Dasypus novemcinctus, Nine-banded Armadillo Fam. Megalonychidae (Two-toed sloths) Choloepus hoffmanni, Hoffmann’s two-toed sloth Fam. Cebidae (Cebid monkeys) Cebus capucinus, White-throated Capuchin Fam. Atelidae (Atelid monkeys) Alouatta palliata, Mantled Howler Fam. Procyonidae (Procyonids) Nasua narica, Coati Potos flavus, Kinkajou Bassaricyon gabbii, Olingo Fam. Mustelidae (Weasel Family) Eira barbara, Tayra Mustela frenata, Long-tailed Weasel Fam. Felidae (Cats) Puma concolor, Puma Felis pardalis, Ozelot Fam. Tayassuidae (Peccaries) Tayassu tajacu, Collared Peccary Fam. Cervidae (Deer Family) Odocoileus virginianus, White-tailed Deer Fam. Sciuridae (Squirrels and Marmots) Sciurus granatensis, Neotropical Red Squirrel Fam. Erethizontidae (Porcupines) Coendou bicolor, Bicolor-spined Porcupine Fam. Dasyproctidae (Agoutis) Dasyprocta punctata, Central American Agouti Fam. Phyllostomatidae (New World Leaf-nosed bats) Carollia brevicauda, Silky short-tailed bat Anoura fistulata, Tube-lipped nectar bat Micronycteris megalotis, Little big-eared bat Fam. Vespertilionidae (Vesper bats) Myotis spec. There are far more mammal species in Mindo Lindo but until now we could not identify them for sure (especially the bats and rodents). Systematics follow: Eisenberg, J.F. & K.H. Redford (1999): Mammals of the Neotropics, vol.3. Various Wikipedia articles as well as from the Handbook of the mammals of the world. .
    [Show full text]
  • Discover the Darién and Canal Zone of Panama With
    Day 8 Other birds recorded here are Black-bellied & Buff-breasted Wrens, AM: Canopy Tower & Semaphore Hill Road Golden-collared Manakin, Gartered, Slaty-tailed, Black-throated, Your guide will be waiting for you at the Observation Deck for White-tailed & Black-tailed Trogons, and Purple-crowned Fairy. During early morning birding. Photographers will find the sunrise on the migration this entrance road is excellent for migrant warblers, Tower spectacular. While you look for birds, you can enjoy hot flycatchers, grosbeaks and tanagers. Lunch at Canopy Tower. Discover the Darién and Canal Zone of Panama coffee and tea. Some species that we are likely to see are Green PM: Summit Gardens/Harpy Exhibit (10 min. from Canopy Tower) & Red-legged Honeycreepers, Green Shrike-Vireo, Scaled Pigeon, Summit Gardens is a center for recreation, education and with Hawks Aloft & the Canopy Family! Red-lored Parrots, Keel-billed Toucan, Collared Araçari, conservation, dedicated to reflect and enhance Panama’s tropical and flycatchers of various kinds and raptors, including King Vulture cultural diversity. The botanical gardens are great for migratory and Black Hawk-Eagle! After breakfast, at mid-morning, you’ll warblers and other forest-edge species, including a colony of start exploring Soberanía National Park by taking a pleasant walk Chestnut-headed Oropendolas, Laughing Falcon, Gray-lined, Crane & down Semaphore Hill Road. This winding, shady paved road, Great Black Hawks, Collared Forest-Falcon, Masked Tityra, Yellow- November 9 – November 18, 2019 festooned on the shoulders by wildflowers of many types, is a rumped Cacique, and Blue Cotinga. This park is the best place to find little more than a mile long and crosses a large creek about half- Streak-headed Woodcreeper, a difficult species to get elsewhere.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Behavioral Repertoire of the Brazilian Spiny-Rats, Trinomys
    ISSN 1519-6984 (Print) ISSN 1678-4375 (Online) THE INTERNATIONAL JOURNAL ON NEOTROPICAL BIOLOGY THE INTERNATIONAL JOURNAL ON GLOBAL BIODIVERSITY AND ENVIRONMENT Original Article Behavioral repertoire of the Brazilian spiny-rats, Trinomys setosus and Clyomys laticeps: different levels of sociality Repertório comportamental dos ratos-espinhos brasileiros, Trinomys setosus e Clyomys laticeps: diferentes níveis de socialidade L. M. R. Cantanoa , L. C. Luchesia , J. T. Takataa , and P. F. Monticellia* aUniversidade de São Paulo – USP, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto – FFCLRP, Departamento de Psicologia, Laboratório de Etologia e Bioacústica – EBAC, Programa de Pós-Graduação em Psicobiologia em Psicobiologia, Ribeirão Preto, SP, Brasil Abstract Behavior is a useful trait for comparative studies that provide the comprehension of phylogenetic relationships among species. Here, we present a description of two spiny-rats species’ behavioral repertoire, Clyomys laticeps and Trinomys setosus (Rodentia: Echimyidae). The affiliative and agonistic behavioral patterns were sampled during a three-year study of captive populations of wild animals. Observational data were collected in two phases under different arrangements of individuals in groups. We also compare the behavioral traits of T. setosus and C. laticeps with the known behavioral patterns of Trinomys yonenagae. We add categories to the previous descriptions of T. setosus and a standard ethogram for C. laticeps. Trinomys setosus showed a visual and vocal display we called foot-trembling, which was not described in this form and function for other species studied until now. We discuss the differences in their sociality levels and similarities and differences among behavior patterns and repertoires. Keywords: Brazilian Cerrado, seismic communication, ethogram, neotropical species, rodents.
    [Show full text]
  • The Natural History of the Central American Agouti (Dasyprocta Punctata)
    The Natural History of the Central American Agouti (Dasyprocta punctata) ; NICHOLAS SMYTHE SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 257 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Pa/eobio/ogy Smithsonian Contributions to Zoology Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Trade in Endangered Species Order 2017
    2017/22 Trade in Endangered Species Order 2017 Patsy Reddy, Governor-General Order in Council At Wellington this 20th day of February 2017 Present: The Right Hon Bill English presiding in Council This order is made under section 53 of the Trade in Endangered Species Act 1989 on the advice and with the consent of the Executive Council. Contents Page 1 Title 1 2 Commencement 1 3 Meaning of Act 2 4 Schedules 1, 2, and 3 of Act replaced 2 5 Schedule 2 of Act amended 2 6 Revocation 3 Schedule 4 Schedules 1, 2, and 3 of Act replaced Order 1 Title This order is the Trade in Endangered Species Order 2017. 2 Commencement (1) Clause 5(1) comes into force on 4 April 2017. 1 cl 3 Trade in Endangered Species Order 2017 2017/22 (2) Clause 5(2) comes into force on 4 October 2017. (3) The rest of this order comes into force on the day after the date of its notifica- tion in Gazette. 3 Meaning of Act In this order, Act means the Trade in Endangered Species Act 1989. 4 Schedules 1, 2, and 3 of Act replaced Replace Schedules 1, 2, and 3 of the Act with the Schedules 1, 2, and 3 set out in the Schedule of this order. 5 Schedule 2 of Act amended (1) In Schedule 2, Part 1, of the Act, in the item relating to Class—Elasmobranchii (sharks) (as replaced by clause 4), replace the item relating to Myliobatiformes with: Myliobatiformes Myliobatidae— Manta spp Manta Rays Eagle and mobulid rays Mobula spp Devil Rays (2) In Schedule 2, Part 1, of the Act, replace the item relating to Class—Elasmo- branchii (sharks) (as replaced by clause 4 and amended by subclause
    [Show full text]
  • Esmeraldas, ECUADOR Mamíferos De La Laguna De Cube, Reserva
    Esmeraldas, ECUADOR 1 Mamíferos de la Laguna de Cube, Reserva Ecológica Mache-Chindul Marco Avila1, Mercy Cabrera1, Alfredo Carranco1, Alejandro Lara1, Manuel Loor1, Jairo Marín1, Juan Ostaiza1, Silvana Sabando1, Bryan Villavicencio1, Carlos Urgiles2, Freddy Gallo2 & Hugo Trávez2 Fotos:Reserva Ecológica Mache-Chindul. Producido por ICCA, con el apoyo de: OCP ECUADOR. © 1 Ministerio del Ambiente, Reserva Ecológica Mache-Chindul. Calle 3 de Julio y onceava transversal. Quinidé-Ecuador © 2 Instituto para la Conservación y Capacitación Ambiental “ICCA”. Mariano Cardenal N74-153 y Joaquin Mancheno, Quito-Ecuador. [fieldguides.fieldmuseum.org] [1026] versión 1 7/2018 1 Cuniculus paca 2 Cuniculus paca 3 Cuniculus paca CUNICULIDAE CUNICULIDAE CUNICULIDAE Paca de Tierras Bajas Paca de Tierras Bajas Paca de Tierras Bajas Lowland Paca Lowland Paca Lowland Paca 4 Dasypus novemcinctus 5 Dasypus novemcinctus 6 Dasypus novemcinctus DASYPODIDAE DASYPODIDAE DASYPODIDAE Armadillo de Nueve Bandas Armadillo de Nueve Bandas Armadillo de Nueve Bandas Nine-banded Armadillo Nine-banded Armadillo Nine-banded Armadillo 7 Dasypus novemcinctus 8 Dasypus novemcinctus 9 Dasypus novemcinctus DASYPODIDAE DASYPODIDAE DASYPODIDAE Armadillo de Nueve Bandas Armadillo de Nueve Bandas Armadillo de Nueve Bandas Nine-banded Armadillo Nine-banded Armadillo Nine-banded Armadillo Esmeraldas, ECUADOR 2 Mamíferos de la Laguna de Cube, Reserva Ecológica Mache-Chindul Marco Avila1, Mercy Cabrera1, Alfredo Carranco1, Alejandro Lara1, Manuel Loor1, Jairo Marín1, Juan Ostaiza1, Silvana Sabando1, Bryan Villavicencio1, Carlos Urgiles2, Freddy Gallo2 & Hugo Trávez2 Fotos:Reserva Ecológica Mache-Chindul. Producido por ICCA, con el apoyo de: OCP ECUADOR. © 1 Ministerio del Ambiente, Reserva Ecológica Mache-Chindul. Calle 3 de Julio y onceava transversal. Quinidé-Ecuador © 2 Instituto para la Conservación y Capacitación Ambiental “ICCA”.
    [Show full text]