Development and Survivorship of Zooxanthellate and Azooxanthellate Primary Polyps of the Soft Coral Heteroxenia Fuscescens: Laboratory and field Comparisons

Total Page:16

File Type:pdf, Size:1020Kb

Development and Survivorship of Zooxanthellate and Azooxanthellate Primary Polyps of the Soft Coral Heteroxenia Fuscescens: Laboratory and field Comparisons Marine Biology (2003) 142: 1055–1063 DOI 10.1007/s00227-003-1035-6 T. Yacobovitch Æ V. M. Weis Æ Y. Benayahu Development and survivorship of zooxanthellate and azooxanthellate primary polyps of the soft coral Heteroxenia fuscescens: laboratory and field comparisons Received: 26 February 2002 / Accepted: 17 January 2003 / Published online: 14 March 2003 Ó Springer-Verlag 2003 Abstract The zooxanthellate Red Sea soft coral Hete- other seasons, thus strengthening existing evidence that roxenia fuscescens releases aposymbiotic planulae nearly the summer is the most favorable season for the breeding all year round, with higher numbers in the summer than and development of H. fuscescens sexual progeny. in other seasons. After metamorphosis, primary polyps Comparisons between laboratory-reared zooxanthellate become infected with symbiotic dinoflagellates (zoo- primary polyps and naturally settled animals in the field xanthellae), derived from the ambient seawater. This showed a higher survivorship in the laboratory, possibly study compares aspects of development and survivor- due to unfavorable conditions commonly occurring in ship of metamorphic stages of H. fuscescens in relation the field. Our findings indicate that H. fuscescens rep- to onset of infection by the algal symbionts in the lab- resents an appropriate model system for study of ac- oratory and the field. We revealed no distinct differences quisition of algae by aposymbiotic offspring and the in the timing and sequence of morphogenetic events impact of the process on their development and surviv- during metamorphosis between zooxanthellate and orship. azooxanthellate primary polyps in the laboratory. In the field, the polyps exhibited higher developmental syn- chronization during the first days after metamorphosis Introduction compared to the laboratory-reared ones, probably as result of a rapid and synchronized onset of metamor- Various studies have addressed the question of the de- phosis in the former. Later, there were no distinct velopmental stage at which sexually produced offspring differences in these parameters between the laboratory- of symbiotic hosts acquire their dinoflagellate algal reared zooxanthellate polyps and those in the field. symbionts (zooxanthellae) (e.g. Muscatine 1974; Fitt Although the symbiotic state did not appear to affect 1984; Trench 1987; Douglas 1998). Trench (1987) sug- developmental sequence or timing, it did increase host gested two modes of symbiont acquisition by sexual survivorship. In the laboratory, the survivorship of progeny: direct transmission via the eggs or brooded zooxanthellate primary polyps was significantly higher larvae (also known as vertical or maternal inheritance) compared to azooxanthellate ones. Therefore, the sym- or by post-larval stages from the ambient environment biotic state appears to be ultimately important in overall (also known also as the horizontal or open system). survivorship. The survivorship of zooxanthellate pri- Direct transmission of symbionts has been documented mary polyps developed from planulae released during in cnidarian species: classes Hydrozoa (Campbell 1990), the summer months was higher compared to those from Scyphozoa (Montgomery and Kremer 1995) and An- thozoa (Glynn et al. 1991; Benayahu et al. 1992; Hirose et al. 2000). Acquisition from the ambient environment Communicated by O. Kinne, Oldendorf/Luhe is far more common than maternal inheritance, and occurs in stony corals (Harrison and Wallace 1990; & T. Yacobovitch Æ Y. Benayahu ( ) Shlesinger and Loya 1991; Schwarz et al. 1999) and soft Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel corals (Kinzie 1974; Benayahu et al. 1989a; Achituv et al. 1992; Benayahu 1997; Coffroth et al. 2001). Eggs E-mail: [email protected] Tel.: +972-3-6409090 broadcast by the vast majority of species of both coral Fax: +972-3-6409403 groups lack algal symbionts upon release (azooxanthel- late), whereas brooded planulae are mostly symbiotic V. M. Weis Department of Zoology, Oregon State University, (zooxanthellate) (Babcock and Heyward 1986; Harrison 3029 Cordley Hall, Corvallis, OR 97331, USA and Wallace 1990; Benayahu et al. 1992; Benayahu and 1056 Schleyer 1998). Consequently, horizontal acquisition of determine whether algal acquisition is required for nor- symbionts is far more common than vertical acquisition. mal early development of the juvenile host. Examination Open and closed symbioses offer different evolution- of these processes provides a point of departure for ary scenarios in regard to their influence on zooxanthella study of the entire complex process of symbiosis onset. diversity (Rowan 1998). In contrast to closed symbioses, an open system should facilitate polymorphic symbioses by providing members of a host species with many op- Materials and methods portunities to obtain different symbionts (Rowan and Knowlton 1995; Douglas 1998). Recently, it has been Collection of planulae shown that initial zooxanthella acquisition by newly Mature colonies of Heteroxenia fuscescens (>36 mm in diameter, settled polyps of gorgonians was non-selective and did see Achituv and Benayahu 1990) were sampled randomly from the not reflect the adult host specificity, which appeared over coral reef (3–8 m deep) across from the Interuniversity Institute of time (Coffroth et al. 2001). Experimental manipulations Eilat (IUI) over a 22-month period (November 1998–August 2000). In the laboratory, these colonies were placed in containers with of cnidarian sexual offspring in the field and the labo- )1 ratory are still needed in order to answer open questions running seawater, at a flow rate of 2 l min . Prior to sunset, each colony was transferred to a separate aerated aquarium, and ex- concerning the significance of the mode of symbiont amined the following morning for the presence of planulae (see also acquisition in the processes in which the coral host and Ben-David-Zaslow and Benayahu 1996). For each colony, released its algal partners are engaged. In choosing a system to planulae were counted and placed into 250-ml PVC containers investigate these aspects, the best strategy is undoubt- filled with Millipore-filtered (0.22 lm) seawater (FSW), to avoid bacterial contamination. Planulation was monitored for three to edly to study an association with an open system (sensu five successive nights using 10–15 colonies per sampling month. Trench 1987), in which both azooxanthellate and zoo- The average number of planulae (±SD) released per colony per xanthellate early ontogenetic stages exist. Therefore, night in the different months was calculated. The calculation of experiments to date on the dynamics of initiation of each monthly average was based on colonies that produced planulae during at least one of the successive monitoring nights, algal-cnidarian symbioses have been largely confined to including zero results from these colonies when applicable (i.e. associations displaying an open system of symbiont n-value for each month=number of colonies that produced plan- transmission (see Montgomery and Kremer 1995; Sch- ulae at least one night each month·number of monitoring nights). warz et al. 1999; Weis et al. 2001). The planulae and their respective parental colonies were trans- The intriguing questions related to onset of infection ported to Tel Aviv for further experiments. Availability of planulae and the resulting primary polyps throughout the study period of early developmental stages of a cnidarian host by dictated the number of replications of each experiment, in both the zooxanthellae led us to launch a comprehensive study of laboratory and the field (see below). the cascade of events that occur during this process. For this purpose, we chose the early developmental stages of the zooxanthellate Red Sea soft coral Heteroxenia Development of primary polyps in the laboratory and in the field fuscescens. The main nutritional source of this species is from uptake of dissolved organic material (DOM) and We conducted a series of experiments to examine several aspects of utilization of its symbiotic algal photosynthesis products development in metamorphic stages of H. fuscescens. For this (Schlichter 1982). H. fuscescens is a hermaphroditic soft purpose, we reared zooxanthellate and azooxanthellate primary polyps in the laboratory and zooxanthellate primary polyps in the coral that broods planulae (Benayahu et al. 1989a; field. A scoring system was developed, corresponding to the dif- Benayahu 1991). These planulae lack zooxanthellae, ferent morphogenetic stages of the primary polyps, which were also unlike brooded planulae of other soft corals, which al- visualized by scanning electron microscope (see below). The polyps ready harbor symbiotic algae upon release (Benayahu were monitored under a dissecting microscope, and the timing and sequence of morphogenetic events of the primary polyps were et al. 1989b, 1992; Benayahu and Schleyer 1998). The routinely recorded and scored accordingly. This enabled us to release of H. fuscescens planulae can be observed nearly compare the morphogenetic events of the three types of polyps at all year round, with highest rates occurring in summer different ages. The number of surviving primary polyps at different (Ben-David-Zaslow et al. 1999). In the field, these ages was quantified as the ratio between the number of counted planulae settled 5–8 h after release and then underwent primary polyps and the initial number of planulae for each of the experiments detailed below. metamorphosis into
Recommended publications
  • (Symbiodinium) in Scleractinian Corals from Tropical Reefs in Southern Hainan
    Journal of Systematics and Evolution 49 (6): 598–605 (2011) doi: 10.1111/j.1759-6831.2011.00161.x Research Article Low genetic diversity of symbiotic dinoflagellates (Symbiodinium) in scleractinian corals from tropical reefs in southern Hainan Island, China 1,2Guo-Wei ZHOU 1,2Hui HUANG∗ 1(Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China) 2(Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China) Abstract Endosymbiotic dinoflagellates in the genus Symbiodinium are among the most abundant and important group of photosynthetic protists found in coral reef ecosystems. In order to further characterize this diversity and compare with other regions of the Pacific, samples from 44 species of scleractinian corals representing 20 genera and 9 families, were collected from tropical reefs in southern Hainan Island, China. Denaturing gradient gel electrophoresis fingerprinting of the ribosomal internal transcribed spacer 2 identified 11 genetically distinct Symbiodinium types that have been reported previously. The majority of reef-building coral species (88.6%) harbored only one subcladal type of symbiont, dominated by host-generalist C1 and C3, and was influenced little by the host’s apparent mode of symbiont acquisition. Some species harbored more than one clade of Symbiodinium (clades C, D) concurrently. Although geographically isolated from the rest of the Pacific, the symbiont diversity in southern Hainan Island was relatively low and similar to both the Great Barrier Reef and Hawaii symbiont assemblages (dominated by clade C Symbiodinium). These results indicate that a specialist symbiont is not a prerequisite for existence in remote and isolated areas, but additional work in other geographic regions is necessary to test this idea.
    [Show full text]
  • Planula Release, Settlement, Metamorphosis and Growth in Two Deep-Sea Soft Corals
    REPRODUCTIVE BIOLOGY OF DEEP-SEA SOFT CORALS IN THE NEWFOUNDLAND AND LABRADOR REGION by ©Zhao Sun A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Ocean Sciences Centre and Department of Biology, Memorial University, St. John's (Newfoundland and Labrador) Canada 28 April2009 ABSTRACT This research integrates processing of pre erved samples and, for the first time, long-term monitoring of live colonies and the study of planula behaviour and settlement preferences in four deep-sea brooding octocorals (Alcyonacea: Nephtheidae). Results indicate that reproduction can be correlated to bottom temperature, photoperiod, wind speed and fluctuations in phytoplankton abundance. Large planula larvae are polymorphic, exhibit ubstratum selectivity and can fuse together or with a parent colony. Planulae of two Drifa species are also able to metamorphose in the water column before ettlement. Thi research thus brings evidence of both the resilience (i.e., extended breeding period, demersal larvae with a long competency period) and vulnerability (i.e., substratum selectivity, slow growth) of deep-water corals; and open up new perspectives on experimental tudies of deep-sea organisms. II ACKNOWLEDGEMENTS I would like to thank my supervisor Annie Mercier, as well a Jean-Fran~oi Hamel, for their continuou guidance, support and encouragement. With great patience and pas ion, they helped me adapt to graduate studies. I would also like to thank my co- upervisor Evan Edinger, committee member Paul Snelgrove and examiners Catherine McFadden and Robert Hooper for providing valuable input and for comment on the manuscripts and thesis.
    [Show full text]
  • The Reproduction of the Red Sea Coral Stylophora Pistillata
    MARINE ECOLOGY PROGRESS SERIES Vol. 1, 133-144, 1979 - Published September 30 Mar. Ecol. Prog. Ser. The Reproduction of the Red Sea Coral Stylophora pistillata. I. Gonads and Planulae B. Rinkevich and Y.Loya Department of Zoology. The George S. Wise Center for Life Sciences, Tel Aviv University. Tel Aviv. Israel ABSTRACT: The reproduction of Stylophora pistillata, one of the most abundant coral species in the Gulf of Eilat, Red Sea, was studied over more than two years. Gonads were regularly examined using histological sections and the planula-larvae were collected in situ with plankton nets. S. pistillata is an hermaphroditic species. Ovaries and testes are situated in the same polyp, scattered between and beneath the septa and attached to them by stalks. Egg development starts in July preceding the spermaria, which start to develop only in October. A description is given on the male and female gonads, their structure and developmental processes. During oogenesis most of the oocytes are absorbed and usually only one oocyte remains in each gonad. S. pistillata broods its eggs to the planula stage. Planulae are shed after sunset and during the night. After spawning, the planula swims actively and changes its shape frequently. A mature planula larva of S. pistillata has 6 pairs of complete mesenteries (Halcampoides stage). However, a wide variability in developmental stages exists in newly shed planulae. The oral pole of the planula shows green fluorescence. Unique organs ('filaments' and 'nodules') are found on the surface of the planula;
    [Show full text]
  • Symbiont Identity Influences Patterns of Symbiosis Establishment, Host
    Reference: Biol. Bull. 234: 1–10. (February 2018) © 2018 The University of Chicago Symbiont Identity Influences Patterns of Symbiosis Establishment, Host Growth, and Asexual Reproduction in a Model Cnidarian- Dinoflagellate Symbiosis YASMIN GABAY1, VIRGINIA M. WEIS2, AND SIMON K. DAVY1,* 1School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand; and 2Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331 Abstract. The genus Symbiodinium is physiologically di- study enhances our understanding of the link between symbi- verse and so may differentially influence symbiosis establish- ont identity and the performance of the overall symbiosis, ment and function. To explore this, we inoculated aposymbiotic which is important for understanding the potential establish- individuals of the sea anemone Exaiptasia pallida (commonly ment and persistence of novel host-symbiont pairings. Impor- referred to as “Aiptasia”), a model for coral symbiosis, with one tantly, we also provide a baseline for further studies on this of five Symbiodinium species or types (S. microadriaticum, topic with the globally adopted “Aiptasia” model system. S. minutum, phylotype C3, S. trenchii,orS. voratum). The spatial pattern of colonization was monitored over time via Introduction confocal microscopy, and various physiological parameters were Among the most significant marine mutualisms are those measured to assess symbiosis functionality. Anemones rapidly between cnidarians and their photosynthetic dinoflagellate formed a symbiosis with the homologous symbiont, S. minu- symbionts (Roth, 2014). These interactions, in particular, be- tum, but struggled or failed to form a long-lasting symbiosis tween anthozoan cnidarians (e.g., corals and sea anemones) with Symbiodinium C3 or S. voratum, respectively.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Pattern of Distribution and Adaptation to Different Lrradiance Levels of Zooxanthellae in the Soft Coral Litophyton Arboreum (Octocorallia, Alcyonacea)
    Symbiosis, 3 (1987) 23-40 23 Balaban Publishers, Philadelphia/Rehovot Pattern of Distribution and Adaptation to Different lrradiance Levels of Zooxanthellae in the Soft Coral Litophyton arboreum (Octocorallia, Alcyonacea) TAMAR BERNER, YAIR ACHITUV, ZVY DUBINSKY and YEHUDA BENAYAHU1 Department of Life Sciences, Bar-flan University, Ramat-Gan 52100, 1 Department of Zoology, Tel-Aviv University, Ramat-Aoio, Israel Tel. 03-718283 Telex 361311 BARIL IL Received 27 August, 1986; Accepted 2 December 1986 Abstract Photoadaptation responses of endosymbiotic zooxanthellae exposed to differ• ent light intensity within the same colony of the soft coral Litophyton arboreum were studied. Differences in the ultrastructure, including number and total length of sections of thylakoids as compared to chloroplast and cell mem• brane perimeter were measured. Chlorophyll a is 2.5-fold higher in cells from low light intensity as compared with cells taken from high light intensity. Chlorophyll a to c ratio of algae under lower light intensity increases in com• parison to high irradiance. All the results show higher light harvesting capac• ity in terms of ultrastructure and pigment content in the same shade-adapted algae as compared to the light-adapted ones. Keywords: Litophyton, Octocorallia, zooxanthellae, light-shade adaptation, syrn• biosls, ultrastructure, Red Sea 1. Introduction The existence of symbiotic algae within Coelenterata has been recognized as early as 1882 (Brandt, 1882; Entz, 1882) and various aspect of this as• sociation have been extensively studied since then. These studies have been reviewed, among others, by Droop (1963), McLaughlin and Zahl (1966), Trench (1971), Taylor (1973), Muscatine (1974), and Glider and Pardy (1982).
    [Show full text]
  • Embryo and Larval Biology of the Deep- Sea Octocoral Dentomuricea Aff
    Embryo and larval biology of the deep- sea octocoral Dentomuricea aff. meteor under different temperature regimes Maria Rakka1,2 António Godinho1,2 Covadonga Orejas3 Marina Carreiro-Silva1,2 1 IMAR-Instituto do Mar, Universidade dos Acores,¸ Horta, Portugal 2 Okeanos-Instituto de Investigacão¸ em Ciências do Mar da Universidade dos Acores,¸ Horta, Portugal 3 Centro Oceanográfico de Gijón, Instituto Español de Oceanografia, IEO, CSIC, Gijón, Spain ABSTRACT Deep-sea octocorals are common habitat-formers in deep-sea ecosystems, however, our knowledge on their early life history stages is extremely limited. The present study focuses on the early life history of the species Dentomuricea aff. meteor, a common deep- sea octocoral in the Azores. The objective was to describe the embryo and larval biology of the target species under two temperature regimes, corresponding to the minimum and maximum temperatures in its natural environment during the spawning season. At temperature of 13 ±0.5 ◦C, embryos of the species reached the planula stage after 96h and displayed a median survival of 11 days. Planulae displayed swimming only after stimulation, swimming speed was 0.24 ±0.16 mm s−1 and increased slightly but significantly with time. Under a higher temperature (15 ◦C ±0.5 ◦C) embryos reached the planula stage 24 h earlier (after 72 h), displayed a median survival of 16 days and had significantly higher swimming speed (0.3 ±0.27 mm s−1). Although the differences in survival were not statistically significant, our results highlight how small changes in temperature can affect embryo and larval characteristics with potential cascading effects in larval dispersal and success.
    [Show full text]
  • Cytotoxic and HIV-1 Enzyme Inhibitory Activities of Red Sea Marine Organisms Mona S Ellithey1, Namrita Lall2, Ahmed a Hussein3 and Debra Meyer1*
    Ellithey et al. BMC Complementary and Alternative Medicine 2014, 14:77 http://www.biomedcentral.com/1472-6882/14/77 RESEARCH ARTICLE Open Access Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms Mona S Ellithey1, Namrita Lall2, Ahmed A Hussein3 and Debra Meyer1* Abstract Background: Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. Methods: The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Results: Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09.
    [Show full text]
  • Conservation of Reef Corals in the South China Sea Based on Species and Evolutionary Diversity
    Biodivers Conserv DOI 10.1007/s10531-016-1052-7 ORIGINAL PAPER Conservation of reef corals in the South China Sea based on species and evolutionary diversity 1 2 3 Danwei Huang • Bert W. Hoeksema • Yang Amri Affendi • 4 5,6 7,8 Put O. Ang • Chaolun A. Chen • Hui Huang • 9 10 David J. W. Lane • Wilfredo Y. Licuanan • 11 12 13 Ouk Vibol • Si Tuan Vo • Thamasak Yeemin • Loke Ming Chou1 Received: 7 August 2015 / Revised: 18 January 2016 / Accepted: 21 January 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic Communicated by Dirk Sven Schmeller. Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1052-7) contains supplementary material, which is available to authorized users. & Danwei Huang [email protected] 1 Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore 2 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 3 Institute of Biological Sciences, Faculty of
    [Show full text]
  • Cytotoxic, Cytostatic and HIV-1 PR Inhibitory Activities of the Soft Coral Litophyton Arboreum
    Mar. Drugs 2013, 11, 4917-4936; doi:10.3390/md11124917 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Cytotoxic, Cytostatic and HIV-1 PR Inhibitory Activities of the Soft Coral Litophyton arboreum Mona S. Ellithey 1, Namrita Lall 2, Ahmed A. Hussein 3 and Debra Meyer 1,* 1 Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa; E-Mail: [email protected] 2 Department of Plant Science, University of Pretoria, Pretoria 0002, South Africa; E-Mail: [email protected] 3 Department of Chemistry, University of the Western Cape, Private Bag X17, Belleville 7535, South Africa; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +27-12-420-2300; Fax: +27-12-362-5302. Received: 24 September 2013; in revised form: 18 November 2013 / Accepted: 19 November 2013 / Published: 10 December 2013 Abstract: Bioassay-guided fractionation using different chromatographic and spectroscopic techniques in the analysis of the Red Sea soft coral Litophyton arboreum led to the isolation of nine compounds; sarcophytol M (1), alismol (2), 24-methylcholesta-5,24(28)-diene-3β-ol (3), 10-O-methyl alismoxide (4), alismoxide (5), (S)-chimyl alcohol (6), 7β-acetoxy-24-methylcholesta-5-24(28)-diene-3,19-diol (7), erythro-N-dodecanoyl-docosasphinga-(4E,8E)-dienine (8), and 24-methylcholesta-5,24 (28)-diene-3β,7β,19-triol (9). Some of the isolated compounds demonstrated potent cytotoxic- and/or cytostatic activity against HeLa and U937 cancer cell lines and inhibitory activity against HIV-1 protease (PR).
    [Show full text]
  • The Coral Reefs of Eilat – Past, Present and Future: Three Decades of Coral Community Structure Studies
    The Coral Reefs of Eilat – 1 Past, Present and Future: Three Decades of Coral Community Structure Studies Yossi Loya 1.1 Introduction Here, I shall present a brief review of ca. 35 years of our studies on changes in the coral species diversity and community structure at Eilat, Red Sea, at several scales in space and time. In the following, I shall: (1) summarize the geograph- ical setting and the geological,physical and biological characteristics of the Gulf of Eilat/Aqaba, then point out the uniqueness of the coral reefs of Eilat, which are situated at the most northerly boundary of coral reef distribution,yet exhibit extraordinarily high within-habitat coral species diversity; (2) present the changes that took place in coral species diversity and community structure on the reef flats in the northern Gulf of Aqaba/Eilat (during the 1969–1980), due to natural disturbances (extreme midday low tides) and man-made perturbations (chronic oil spills); (3) discuss possible mechanisms that generate and maintain the high within-habitat coral diversity typifying pristine reefs in the Gulf of Eilat/Aqaba;(4)discusstheoppositemechanismsthatcausedadramaticde- crease in coral abundance and living cover at the Eilat Coral Nature Reserve (ECNR) during 1986–2000.I will also point out two major anthropogenic distur- bances: first, eutrophication caused by Eilat’s sewage discharge to the sea until 1995; and second, further eutrophication originating from intensive net pen mariculture off the northern coast of Eilat,which exponentially expanded activ- ity from 1994–1995 to present times.The grave implications for the coral reefs of Eilat caused by this chronic eutrophication will be presented.
    [Show full text]
  • Cnidarian Interaction with Microbial Communities: from Aid to Animal’S Health to Rejection Responses
    marine drugs Review Cnidarian Interaction with Microbial Communities: From Aid to Animal’s Health to Rejection Responses Loredana Stabili 1,2,* ID , Maria Giovanna Parisi 3, Daniela Parrinello 3 and Matteo Cammarata 3,* 1 Istituto per l’Ambiente Marino Costiero, U.O.S. di Taranto, CNR, Via Roma 3, 74123 Taranto, Italy 2 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, via Prov.le Lecce Monteroni, 73100 Lecce, Italy 3 Laboratory of Marine Immunobiology, Dipartimento delle Scienze della Terra e del Mare, Università di Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; [email protected] (M.G.P.); [email protected] (D.P.) * Correspondence: [email protected] (L.S.); [email protected] (M.C.) Received: 27 July 2018; Accepted: 16 August 2018; Published: 23 August 2018 Abstract: The phylum Cnidaria is an ancient branch in the tree of metazoans. Several species exert a remarkable longevity, suggesting the existence of a developed and consistent defense mechanism of the innate immunity capable to overcome the potential repeated exposure to microbial pathogenic agents. Increasing evidence indicates that the innate immune system in Cnidarians is not only involved in the disruption of harmful microorganisms, but also is crucial in structuring tissue-associated microbial communities that are essential components of the Cnidarian holobiont and useful to the animal’s health for several functions, including metabolism, immune defense, development, and behavior. Sometimes, the shifts in the normal microbiota may be used as “early” bio-indicators of both environmental changes and/or animal disease. Here the Cnidarians relationships with microbial communities and the potential biotechnological applications are summarized and discussed.
    [Show full text]